Question 1: Compton scattering of photons (30 points)
Please derive the Compton scattering formula given below (assuming that the electron is at rest when the collision happens, and \(m \) is the rest mass of the electron).

\[
hv' = \frac{hv}{1 + \frac{hv}{mc^2} (1 - \cos \theta)}
\]
Solution:

Conservation of Energy:

\[h\nu + m_0c^2 = h\nu' + E' \]
\[h\nu + m_0c^2 = h\nu' + \sqrt{m_0^2c^4 + p'^2c^2} \]

Conservation of Momentum:

x-direction:

\[\frac{h\nu}{c} = \frac{h\nu'}{c} \cos(\theta) + p'\cos(\phi) \]
\[p'\cos(\phi) = \frac{h\nu}{c} - \frac{h\nu'}{c} \cos(\theta) \]
\[\Rightarrow (p'\cos(\phi))^2 = \left(\frac{h\nu}{c}\right)^2 - 2\frac{h\nu}{c} \times \frac{h\nu'}{c} \cos(\theta) + \left(\frac{h\nu'}{c} \cos(\theta)\right)^2 \]

y-direction:

\[y - \text{dir}: 0 = \frac{h\nu'}{c} \sin(\theta) - p'\sin(\phi) \]
\[p'\sin(\phi) = \frac{h\nu'}{c} \sin(\theta) \]
\[\Rightarrow (p'\sin(\phi))^2 = \left(\frac{h\nu'}{c} \sin(\theta)\right)^2 \]

Combining the two equations above:

\[p'^2 = \left(\frac{h\nu}{c}\right)^2 - 2\frac{h\nu}{c} \times \frac{h\nu'}{c} \cos(\theta) + \left(\frac{h\nu'}{c}\right)^2 \]

Eliminating \(p'^2\) in the energy equation and simplifying: [1 point]

\[h\nu + m_0c^2 - h\nu' = E' \]
\[(h\nu)^2 + (m_0c^2)^2 + (h\nu')^2 + 2h\nu m_0c^2 - 2h\nu h\nu' - 2m_0c^2 h\nu' = m_0^2c^4 + p'^2c^2 \]
\[(h\nu)^2 + (m_0c^2)^2 + (h\nu')^2 + 2h\nu m_0c^2 - 2h\nu h\nu' - 2m_0c^2 h\nu' = m_0^2c^4 + (h\nu)^2 - 2h\nu h\nu' \cos(\theta) + (h\nu')^2 \]
\[2h\nu m_0c^2 - 2h\nu h\nu' - 2m_0c^2 h\nu' = -2h\nu h\nu' \cos(\theta) \]
\[2h\nu h\nu' \cos(\theta) - 2h\nu h\nu' - 2m_0c^2 h\nu' = -2h\nu m_0c^2 \]
\[h\nu'(h\nu(1 - \cos(\theta)) + m_0c^2) = h\nu m_0c^2 \]
\[h\nu' = \frac{h\nu m_0c^2}{h\nu(1 - \cos(\theta)) + m_0c^2} \]
\[h\nu' = \frac{h\nu}{1 + \frac{h\nu}{m_0c^2}(1 - \cos(\theta))} \]
Question 2: Attenuation coefficient for X-ray and gamma rays in matter (20 points)

What is energy-transfer coefficient? and what is energy-absorption coefficient for X-ray and gamma-rays?

Please explain and write down the equations for these attenuation coefficients and explain the meaning of each individual term in the equations.

Solution:

For a parallel beam of monochromatic gamma rays transmitting through a unit distance in an absorbing material, the energy-transfer coefficient is the fraction of energy that was originally carried by the incident gamma-ray beam and transferred into the kinetic energy of secondary electrons inside the absorber.

The fraction of energy that is carried away by characteristic x-rays following the photoelectric effect. The fraction of energy that is carried away by the two 511keV gamma rays generated by the annihilation of the positron.

\[
\frac{\mu_{tr}}{\rho} = \frac{\tau}{\rho} \left(1 - \frac{\delta}{h\nu} \right) + \frac{\sigma}{\rho} \left(\frac{E_{avg}}{h\nu} \right) + \frac{\kappa}{\rho} \left(1 - \frac{2mc^2}{h\nu} \right)
\]

The fraction of energy that is transferred to recoil electron through Compton scattering.

where \(\tau, \sigma, \text{and} \ k \) are the linear attenuation coefficients due to photoelectric effect, Compton scattering, and pair production, respectively. \(\rho \) is the density of the absorbing material.

The energy-absorption coefficient is the fraction of energy that was originally carried by the incident gamma-ray beam and eventually absorbed inside the absorber.

\[
\frac{\mu_{en}}{\rho} = \frac{\mu_{tr}}{\rho} \left(1 - g \right)
\]

where \(g \) is the average fraction of energy of the initial kinetic energy transferred to electrons that is subsequently emitted as bremsstrahlung photons.
Question 3: Elastic Scattering of Neutrons (40 points)

(a) Please derive the maximum energy that a neutron of mass M and kinetic energy E_n could transfer to a target nucleus of mass m through a single elastic collision.

(b) If a 2.6 MeV neutron has an elastic collision with hydrogen, what is the probability that it loses between 0.63 to 0.75 MeV?

(c) What is the average energy loss by a 2.6 MeV neutron through a single collision with a carbon nucleus?

Hint: The energy loss by neutrons through elastic scattering follows a uniform distribution. To make use of this distribution, you will need to find the lower and upper limits of the distribution first.

Solution:

(a) The above figure shows a neutron (mass M and velocity V) approaching a nucleus (mass m, at rest). After the collision, which for maximum energy transfer is head-on, the neutron and the recoil nucleus move with speed V_1 and v_1 along the initial line of travel of the incident neutron. Since the energy and momentum are conserved in the collision, we have the following relationships:

\[
\frac{1}{2}MV^2 = \frac{1}{2}MV_1^2 + \frac{1}{2}mv_1^2
\]

and

\[
MV = MV_1 + mv_1.
\]

Solving the above equations, we obtain

\[
V_1 = \frac{(M - m)V}{M + m}.
\]

Using the above result, we find the maximum energy transfer from the incident neutron to the recoil nucleus given by
\[Q_{\text{max}} = \frac{1}{2} MV^2 - \frac{1}{2} MV_1^2 = \frac{4mME}{(M + m)^2}, \]

where
\[E = \frac{MV^2}{2}. \]

(b) The energy transfer from the incident neutron to the recoil nucleus follows a uniform distribution between the 0 and the maximum energy transfer of \(E_{\text{max}} = \frac{4mM}{(v^2 + m)^2} E = E = 2.6 \text{ MeV} \). So the probability of neutron losing energy between 0.63 and 0.75 keV is given by \(p = \frac{0.75 - 0.63}{2.6} = 0.046 \).

(c) The average energy loss by a neutron of 2.6 MeV to a carbon nucleus is
\[E_{\text{avg energy loss}} = \frac{2Mm}{(M+m)^2} \cdot E_0 = \frac{2 \times 1 \times 2 \times 1}{(12 + 1)^2} = 0.369 \text{ MeV}. \]