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Statistics of Radiation and Radiation Detection

Statistical nature of radiation and radiation interaction:

&

How much energy will an 1 MeV photon lose in its next collision with an atomic

electron?

Will a 400keV photon penetrate a 2 mm lead shielding without interaction?

When we use measured count-rate to estimate the activity of a source, and
how certain are we on the estimation?
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Exponential Radioactive Decay

Sample activity (A)
“ True sample activity is never known.

% The best we can do is to repeat the counting process for a number of times and

use the average as an indication of the sample activity — average number of
decays in the sample per second.

A=Ae™
® The above equation can be interpreted by implying that the probability that an
atom survives a time t without disintegration is
g = probability of survival=e™*
and
p = probability of decay =1-g =1-e *

The actual number of decay events is fluctuating around the average value
predicted by this equation.

5
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Radioactive Disintegration — Bernoulli Process

Consider the radioactive disintegration process in a sample, it follows the following
four conditions:

% |t consists of N trials.
% Each trial has a binary outcome: success or failure (decay or not).

% The probability of success (decay) is a constant from trial to trial — all atoms
have equal probability to decay.

% The trials are independent.

In statistics, these four conditions characterize a Bernoulli process.
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Binomial Distribution

Given, p, N and t, what is the probability of observing n disintegrations within a
time t?

% The number of ways to chose n atoms from a total of N atoms in the sample is

N}y N
n) n!(N —n)!

% So the probability of the n atoms chosen decayed during the time span tis

N
})n — pnqN—n
n

® The above equation describes the so-called Binomial distribution.

% \What are the mean and standard deviation of a Binomial distribution?
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Binomial Distribution
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% \What are the mean and standard deviation of a Binomial distribution?
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] _ Chapter 6: Counting Statistics
Binomial Distribution

)p"q"’“". (E.1)

To evaluate this sum, we first use the binomial expansion to write, for an
arbitrary (continuous) variable x,

N S N N— N
(px + 9" = ZO pix"gN " = on"P,,. (E.2)

n= n

Differentiation with respect to x gives

N
Np(px + " ' = 2 " 'P,. (E.3)
n=0

- Letting x = 1 and remembering that p + g = 1 gives

Np = 2. nP, = p. (E.4)
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Chapter 6: Counting Statistics

Binomial Distribution

Standard Deviation

The variance is defined by Eq. (11.17):

N
o = 230 (n — p)’P,. (E.5
This definition implies that
N

o2 = ) (n*P, — 2unP, + p’P,) (E.6)

N N N
= 2 n?P, —2u 2 nP, + p* 2 P, (E.7)

n=0 n=0 n=0

The first summation gives the expected value of n2, the square of the number
of disintegrations. From Eq. (E.4) it follows that the second term is —2u°.
The sum in the last term is unity [Eq. (11.14)]. Thus, we can write in place
of Eq. (E.7)

N

N
ol =2 n’pP, — 2;1,2 4+ u? = 2 n’pP, — pz.
n=0 n=0

(E.8)

We have previously evaluated p [Eq. (E.4)]; it remains to find the sum in-
volving n°. To this end, we differentiate both sides of Eq. (E.3) with respect
to x:

N
NN — Dpi(px + gV 2 = g;on(n - Dx" %P, (E.9)

Letting x = 1 with p + g = 1, as before, implies that

N
NN — Dp? = ;()n(n — NP, (E.10)
N N N
= 2 n’P, - EO nP, = 2 n’P, —p.  (E.1D)
Thus,
N
Z]o n?P, = NN — 1)p* + p. (E.12)

Substituting this result into Eq. (E.8) and remembering that p = Np, we find

that
02 =NWN — 1)p? + Np — N*p?* =Np(1 — p) = Npq. (E.13)
The standard deviation of the binomial distribution is therefore
o = VNpq. (E.14)

(1)
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Binomial Distribution

N N N
p=2n-F = n| - |p"q" " = Np
n=0 n=0

_—-— . o S S S e e B e o oy,
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Binomial Distribution

Considering a realistic case, in which we use a detector to measure the number of
counts and use the measured count rate to infer to the activity of the source.

Given (a) each disintegration yield one single particle and (b) the detection
efficiency of the detector is ¢, then

The prob. of detecting a count within a time t is
The probability of an atom disintegrates and results in a detected count is
p =gp=el-e™)
and the probability of an atom either does not disintegrate
or the resultant particle is not detected is
g =l-gp=1-g+g™*

Therefore, we can use the binomial distribution to describe the counting statistics
as
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Binomial Distribution

The prob. of detecting n count within a time t is

7= oy -y

p :prob. of an atom disintergrates within a time t

¢ :detection efficiency of the detector

The mean number of detected counts is

e gnﬂ _ ZN:n.[Nj(p*)n(q*)Nn _ N
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An Example Binomial Distribution

Example
More realistically, consider a *°K source with an activity of 37 Bq (= 1 nCi). The
source is placed in a counter, having an efficiency of 100%, and the numbers of counts

in one-second intervals are registered.
(a) What is the mean disintegration rate?
(b} Calculate the standard deviation of the disintegration rate.
(c) What is the probability that exactly 40 counts will be observed in any second"

--
w
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Binomial Distribution

N N N
p=2n-F = n| - |p"q" " = Np
n=0 n=0

_—-— . o S S S e e B e o oy,
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An Example Binomial Distribution

Solution
(a) The mean disintegration rate is the given activity, ry = 37 s
(b) The standard deviation of the disintegration rate is given by Eq. (11.18). Wﬁ*

work with the tlme interval, t = 1 s. Since the decay constant is A = 0.0559 h™ 4«%

1.55 x 107> s~ !, we have ;

-1

g =e M = 155%X107X1 = (9999845 (11.26)
and p = 1 — g = 0.0000155.7 The number of atoms present is

ry 37 s 6
= 4 = 2.39 x 10°. 11.27
N AN 1.55 x107% 7! ( )

From Eq. (11.18), we obtain for the standard deviation of the disintegration rate

VNpg  +2.39 x 10° x 0.0000155 X 0.9999845 i,
O = —— = - =6.09s"", (11.28)

which is about 16% of the mean disintegration rate.
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(c) The probability of observing exactly n = 40 counts in 1 s is given by Eq.
(11.13). However, the factors quickly become unwieldy when N is not small (e.g., 69!
= 1.71 x 10°®. For large N and small n, as we have here, we can write for the
binomial coefficient

(N)=N(N—l)°'-(N—n+1)~N”

= — (11.29)

n n! n!’

since each of the n factors in the numerator is negligibly different from N. Equation
(11.13) then gives

_(2.39 x 109%
0 40!

_(2.39)*°(10**%(0.0000155)* (0.9999845)> ¥ '*°
- 40! ’

(0.0000155)*° (0.9999845)23% > 10°~40 (11.30)

(11.31)

where n = 40 < N has been dropped from the last exponent. The right-hand side can
be conveniently evaluated with the help of logarithms. To reduce round-off errors, we
use four decimal places:

log (2.39)* = 15.1359
log (10)**° = 240.0000
log (0.0000155)* = —192.3867

log (0.9999845)>3*1° = _16.0886
—log 40! = —47.9116
log Pyy = —1.251 . (11.32)

Thus, P,, = 107"*' = 0.0561.
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Radioactive Disintegration — Bernoulli Process
(Revisited)

Consider the radioactive disintegration process in a sample, it follows the following
four conditions:

% |t consists of N trials.
% Each trial has a binary outcome: success or failure (decay or not).

% The probability of success (decay) is a constant from trial to trial — all atoms
have equal probability to decay.

% The trials are independent.

In statistics, these four conditions characterize a Bernoulli process.

--
~
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Binomial Distribution (Revisited)

% The probability of exactly n decays out of a total of N atoms in the source is

N
})n — pnqN—n
n

For a binomial distribution, the mean or the expectation of the number of
disintegration within the measurement period is given by

N N N v
- _ n -n __
p=) n b= n| |p'q""=Np

n=0 n=0 n
and the fluctuation on the number of disintegrations is quantified by the variance

o= Y (n-u) - P, =Npg
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Binomial Distribution — An Example

Consider a particle physics experiment — estimate the flux rate (number of particles per
second across a unit solid angle) of a certain type of particle. Suppose the particles are
coming from a point source.

Note that the detection efficiency of the detector is p=0.55, and the measurement has
S-T=1.9 X 10%2 cm? - sec.

If measurement did not register a single count, how do we estimate and
report the flux rate (number of particles coming towards the detector
surface per cm? per second) of the particle?

--
()
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Radioactive Disintegration — Bernoulli Process

Consider the radioactive disintegration process in a sample, it follows the following
four conditions:

% |t consists of N trials.
% Each trial has a binary outcome: success or failure (decay or not).

% The probability of success (decay) is a constant from trial to trial — all atoms
have equal probability to decay.

% The trials are independent.

In statistics, these four conditions characterize a Bernoulli process.

N
(=]
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Binomial Distribution

Given, p, N and t, what is the probability of observing n disintegration within a time
t?

% The number of ways to chose n atoms from N atoms in the sample is

N}y N
n) n!(N —n)!

% The probability of exactly n decays is

N
I)n — pnqN—n
n

® The above probability function characterizes the so-called Binomial
distribution.

N
-
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Radioactive Disintegration — Bernoulli Process

% The Bernoulli Process and binomial distribution provide a nice statistic model
for the decay of radioactive substances.

% |n reality, we often encounter situations, in which p is very small and N is very
large ...

% |n such cases, the statistical description of the decay process could be
simplified ...

[\
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Probability Distribution Function of Binomial Distribution
forN >>n and p - 0

For Binomial distribution,

N N v
P =| |p"¢g"™", where .l
n n) nl(N-n)!

As in the previous example, for large N and small n, one can write

Binomial Expansion
n

I eat?®

L-Pp-eo
o= ke <N> _ NN-=D - (N=nt1) N

Z;(g) R . o E (11.29)
=Z<n_nr!>!r!'a”'r|'b_r_? ' "=1-Np+ N(NZ!— 1)p2 — - (E.16)
i—_-- o G o
_ Substitution of Egs. (11.29) and (E.17) into (11.13) gives
P, = IZ——:p"e—Np = (—N;p!)—n e M, (E.18)



] _ Chapter 6: Counting Statistics
Mean of Binomial Distributionfor N >>n and p - 0

The mean of binomial distribution is givenby  u = Z n- P,

where P = I_Y_pne—NP — _(_I\Q)l e Np
" n! n!

b

therefore

3 PPy, 50 nNp)

p=c n=0 n! n=1 n!
n s (ND) - Wp)
Np ( p — NpN E
nzl (n — 1)’ n=1(n — 1)!
= e ™ Np z (Np)"
n=0 n!
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] _ Chapter 6: Counting Statistics
Mean of Binomial Distributionfor N >>n and p - 0

To evaluate this sum, we first use the binomial expansion to write, for an
arbitrary (continuous) variable x,

N /N
(px + 9" = 2 ( )p”x"q"’"”

n= n
Therefore,
N NN - 1)
[+-p)]'=1-np+ > pr— - (E.16)
Np)? _
El—Np+(5)—-'°=eNp. (E.17)

Using E.17 and letting p’ =-p, we have the following equation

(Np')z 4= W

Z(Np) =1+ Np'+
5. n! 2!
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] _ Chapter 6: Counting Statistics
Mean of Binomial Distributionfor N >>n and p - 0

Now go back to the mean of a Binomial distribution given by

Since
Z::(]\Zj)n —1+Np+( p')2 +..=e,
then
u=>y n-P, =e™Np EJO (AZ;)H 7% Npe? = Np

NPRE 441, Principles of Radiation Protection, Spring 2020
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Standard Deviation and Variance of Binomial Distribution
forN >>n and p - 0

The variance of binomial distribution is given by

(00]
g’ = Z(n —w?-P, = ( nZPn> — u?
n=0 n=0

Since > > niu" > niu”

S AP, =et 2 LB e LA (E.24)
n=0 n=0 n! n=1 n!

n! n! n—1)! = - E25
n=0 - n=1 - n=1 ( 1) e ” ngl (n - 1)! e “ n=0 n! ( )
ZMZ - —H H—n=ue‘“ oo n n

(n—1)! n! n
n=1 n=0 = e—# 7 Z ( p" + “_'> - ”’(M + 1) = uz + H. (E.26)
L n=0 n! n.
) T &,
pr_
Substitute E.26 into the first equation, we have o

ol =p*+p—pt=p

And the standard deviation is given by g = \/;



Radioactive Disintegration — Bernoulli Process

Consider the radioactive disintegration process in a sample, it follows the following
four conditions:

% |t consists of N trials.
% Each trial has a binary outcome: success or failure (decay or not).

% The probability of success (decay) is a constant from trial to trial — all atoms
have equal probability to decay.

% The trials are independent.

In statistics, these four conditions characterize a Bernoulli process.

What happensift N >>n and p —> 0?

N
()
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Poisson Process

The counting statistics related to nuclear decay processes is often more
conveniently described by the Poisson distribution, is related to situations that
involves a collection of multiple trials that satisfy the following conditions:

1. The number of trials, N, is very large, e.g. N>>1.

2. Each trial is independent.

3. The probability that each single trial is successful is a constant and approaching
zero, p<<1. So the number of successful trials is fluctuating around a finite
number.

NPRE 441, Principles of Radiation Protection, Spring 2020

N

(3]



] _ Chapter 6: Counting Statistics
Binomial Distribution and Poisson Distribution

Binomial distribution : o
Poisson distribution when
The probability of observing n successful trails

, : N>>1, p<<1
out of a total of N independent trails:
7
Pln =L ¢
p=| N |prgt nlu)=",
n

mean of the observed number of successful trails:

N . N Mean of n:
uEZn-ﬂ=Z”'[n]p”qN'”=Np 2 un)y=u=N-p

n=0 n=0

Standard deviation: o
Standard deviation :

Srd<n>s\/2(n—u)2-P,, = JNpg o =Ju=/Np

n=0

Gaussian distribution, If N is further increased, and p is further decreased

1 _(x_lu)z

P(X|ﬂ»0)=m

2
820'
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Poisson Distribution

0.20 r_r oor ] 020 —— 0.15} r,’\:__o{gg o.10f
2 N=15 — N = 20
0.15 0.15 [ J 0.10
1 0.05f
0.10 E 0.10} 1
0.05
0.05 ‘l “ ' 0.05} l l
. [[ITT— .
0003 s 85612141!5'1.13‘20 » 00055 6 8101214161620 %6670 80 90 100 116 720 00
0.15 ﬁﬂ_ pN==O'5200 ] 0.15 _ %101_88 4 0.10f %-_;(:gg 0.15} ’_ﬂ ?\‘==01(1)g
0.10} T 0.10} 4 0.10} ’-1
0.05¢
o.osL l 1 0.05} J 0.05
000 2" 6 8101214161820 000534 6 8101214161830 0.00 10 20 30 0'006 E"‘Irs 8 1012141618 20
0.15}
p=005 | 0.15 p=001 | o.2of _ ] 0.4 001
N = 200 N = 1,000 p = 0.05 [ p=00t
o.10f ﬂﬂﬂ 4 ~an [lmn'ﬂ 0.15}+ ﬂﬂL N 1 03 m[ ]
..« Remember the conditions for Binomial distribution to be approximated by
.. Poisson Distribution:
o
. o 8 10
e v 1. The number of trials, N, is very large, e.g. N>>1. ) distribu.
p and Samp‘ i ach. The mean
travsnone. 2. Each trial is independent. sard)
3. The probability that each single trial is successful is a constant and approaching
zero, p<<1l. So the number of successful trials is fluctuating around a finite
number.
31
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Poisson Distribution

The probability of having n successful trials can be approximated with the Poisson
distribution.

n

P(n] u)=%e‘“

and the mean and the variance of number of successful trial are given by

Mean(n)=u=N-p

Std(n)=o =+Ju =/Np

W
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Registered k
counts

/ @ detection efficiency: A =55%.
N particles Det
reached the ® The measurement takes T = 30 min.

detector

©® The detector covers 10% solid angle.

@ N particles reached the detector.
N) =
mean(. )=m @ detected k=0 count.

The prob. of having N particles reaching the detector would follow the Poisson

distribution, N
P(N) = ——e™™,

where m is the expected number of particles that reach the detector.

Once the N particles reached the detector, the number of particles detected would
follow the Binomial distribution, so that the probability of detecting k particles is

P(k|N) = (’l\c’) k(1 = DNK,

33



Poisson Distribution

Therefore, the total probability of detecting k counts is
P(k) = Z P(k|N)P(N|m)
N=k

00 | N
=) (- VR e

Nk V—K)IK!

—DE —(m2)
k!

If we would like to have 90% chance of detecting at least 1 particle, then we could
write

1—-P(k=0)=e™ =0.9,

then the mean number of particles reaching the detector during the 30 minute
measurement should be

m = 4.2.

34



Jp,, coaats
"

Source p =m Z

The detector covers 10% solid angle with
respect to the point source.

detection efficiency: A =55%.

The measurement takes T = 30 min.

N particles reached the detector.

e G € e

detected k=0 count.

So finally, we can conclude that:

Because we did not record any count, we have 90% confidence to claim that
the source strength (average number of particles emitted per second)

should not exceed

A<
— 10%

= 42 (particles per sec) = 42 Bq

35



Binomial Distribution and Poisson Distribution

Binomial distribution

Poisson distribution when
The probability of observing n successful trails

out of a total of N independent trails: N>>1, p<<1
N n -n " —
p,= p'q" P(n|,u):‘u'e"
mean of the observed number of successful trails:
y V(N Mean of n:
wSr=3n () e =n = um=u=N-p
n=0 n=0
Standard deviation: o
Standard deviation :
N
2
Std(n)s\/ (n—u) ‘P =./Npq o=Ju=Np
n=0

W
o
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. _: Methods for Radiation Detection — Semiconductor Detectors

Effect of Fano Factor on Energy Resolution

- ~3eV for silicon = 100 keV gives 30000 e-h pairs = what is the standard
deviation associated with the number of e-h pairs per 100 keV energy
deposition?

- ~30eV for gas detectors = 100 keV gives 3000 e-ion pairs = ??
- ~1 keV for Nal(Tl) = 100 keV only gives 100 photoelectrons = ??

- The measured Fano factors: 0.143 for silicon, 0.129 for germanium, 0.1 for CdZnTe and
~0.1 for Hgl,.

- In comparison, the Fano factors for gas and scintillators are ~1.

NPRE 441, Principles of Radiation Protection, Spring 2020
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. _Methods for Radiation Detection — Semiconductor Detectors

Semiconductor Detector Configurations
High-purity germanium (HPGe) detectors
& Supper-pure material available, for example 1 part in 1012

& Depletion depth of >1cm = good detection volume.

® Requires cooling to liquid nitrogen temperature to reduce leakage current.

'3
6
4
2
18‘
6
4
2
g ¢
g 8
4
g
g 2 IBSCe
'S Yor
6 137
4 Cs FIGURE 10.29. Comparison of gamma-ray spectra from a solution containing radio-
. 88, nl{clides as measured with a Nal scintillator (upper curve) and a Ge(Li) detector. [Re-
printed with permission from A Handbook of Radioactivity Measurements, NCRP Re-
' €52n Port No. 58, p. 240, National Council on Radiation Protection and Measurements,
6 Washington, D.C. (1978). Copyright 1978 National Council on Radiation Protection
4 and Measurements.]
2 BBY h
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. _: Methods for Radiation Detection — Semiconductor Detectors

Sighal Generation by lonizing Radiation
in Semiconductors

The Fano factor.

observed statistical variance
E / €

— For a given energy deposition E in the detector and a known energy & required to
create an e-h pair, the observed fluctuation in the number of charge carriers created

F

is smaller than the one predicted by the Poisson statistics.

— The measured Fano factors: 0.143 for silicon, 0.129 for germanium, 0.1 for CdZnTe
and ~0.1 for Hgl..

= In comparison, the Fano factors for scintillators are ~1.

W
()
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NORMAL DISTRIBUTION

We begin with Eq. (E.23) for the Poisson P, and assume that p is large. We
also assume that the P, are appreciably different from zero only over a range
of values of n about the mean such that {n — u| < p. That is, the distribution
of the P, is relatively narrow about u; and both u and n are large. We change
variables by writing x = n — pu. Equation (E.23) can then be written
3 un+xe—u 3 y,",uxe_“
et Wt DR+ (pt )

(E.29)

with |x| < u. We can approximate the factorial term for large p by means of
the Stirling formula,

p! = Rappte™, (E.30)
giving
P, = a (E.31)
V2rp(p + D(p +2) -+ (g + )
1
(E.32)

I IO

Since, for small y, e’ = 1 + y, the series of factors in the denominator can
be rewritten (u is large) to give

P — 1 1
x *’21};61/”62/” e gtle -

e (1424 +0)lu

(E.33)

Chapter 6: Counting Statistics

The sum of the first x positive integers, as they appear in the exponent, is x(1
+ x)/2 = (2 + x)/2 = x%/2, where x has been neglected compared with x”.
Thus, we find that

1 2
P.=—¢e Xl

V2w

This function, which is symmetric in x, represents an approximation to the
Poisson distribution. The normal distribution is obtained when we replace the
Poisson standard deviation Vp by an independent parameter ¢ and let x be a
continuous random variable with mean value p (not necessarily zero). We then
write for the probability density in x (—o < x < o) the normal distribution

(E.34)

—(x — )22
e (x —p)yl20

1
= E.35
f@x) o ; (E.35)

with 62 > 0. It can be shown that this density function is normalized (i.e., its
integral over all x is unity) and that its mean and standard deviation are,
respectively, u and ¢. The probability that the value of x lies between x and x
+ dx is f(x) dx. Whereas the Poisson distribution has the single parameter p,
the normal distribution is characterized by the two independent parameters, u
and o.

5
(=)
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Poisson Distribution

The probability of having n successful trials can be approximated with the Poisson
distribution.

n

P(n] u)=%e‘“

and the mean and the variance of number of successful trial are given by

Mean(n)=u=N-p

Std(n)=o =+Ju =/Np
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[ _ Chapter 6: Counting Statistics
The Gaussian (Normal) Distribution

As p (the prob. of an atom decay within t) is getting even smaller and N is getting
larger, both Binomial and Poisson distributions are approaching an extremely
useful form of distribution — the Gaussian distribution.

Gaussian distribution is defined for a continuous variable x

1 _(x_lu)z

p(x | ;Uag): \/EG

2
620'

but it is very useful for describing the counting fluctuation on discrete numbers.
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Poisson Distribution
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FIGURE 11.1. Comparison of binomial (histogram) and Poisson (solid bars) distrib
tions, having the same mean, p = 10, but different values of the probability of succes}
p and sample size N. The ordinate in each panel shows the probability P, of exactlyf‘
successes, shown on the abscissa. With fixed u, the Poisson distribution is the sam§
throughout. (Courtesy james S. Bogard.) g
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FIGURE 11.2. Comparison of binomial (histogram) and Poisson (solid bars) distribu-
tions for fixed N and different p. The ordinate shows P, and the abscissa, n. The mean
of the two distributions in a given panel is the same. (Courtesy James S. Bogard.)
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The Gaussian (Normal) Distribution

Binomial and Poisson distributions practically match the normal distribution when

u >=30.
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FIGURE 11.3. Comparison of binomial (histogram) and normal (solid line) distributions,
having the same means and standard deviations. The ordinate in each panel gives the
probability P, for the former and the density f(x) [Eq. (11.37)] for the latter, the abscissd
giving n or x. (Courtesy James S. Bogard.) !
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Binomial Distribution and Poisson Distribution

Binomial distribution

Poisson distribution when
The probability of observing n successful trails

out of a total of N independent trails: N>>1, p<<1
N n -n " —
p,= p'q" P(n|,u):‘l;'e”
mean of the observed number of successful trails:
y V(N Mean of n:
“Ezn'ﬂzzn'(njp"q]v_":]vp T um=p=N-p
n=0 n=0
Standard deviation: o
Standard deviation :
N
2
Std(n)s\/z(n—u) ‘P, =\/Npq o =u=yNp
n=0

Gaussian distribution, If N is further increased, and p is further decreased

1 _(x_lu)z

P(X|ﬂ»0)=m

2
820'
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The Gaussian (Normal) Distribution

Binomial and Poisson distributions practically match the normal distribution when

u >=30.
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probability P, for the former and the density f(x) [Eq. (11.37)] for the latter, the abscissd
giving n or x. (Courtesy James S. Bogard.) !
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[ — Chapter 6: Counting Statistics
The Gaussian (Normal) Distribution

For a variable, x, following the normal distribution, the probability that it takes a
value between x and x is equal to the area under under the curve p(x) between
these two values:

1 ("
Pxis=x=sxp)= S e~ &2 gy

'V2 TOoO vYXx

Many common manipulations when carried out on counting data that were
originally Gaussian distributed will produce derived values that also follow
Gaussian shape:

= Multiplying or dividing the data by a constant,

% Combining two Gaussian-distributed variables through addition, subtraction, or
multiplication or,

% Calculating the average of a series of independent measurements.

5
~I
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The Gaussian (Normal) Distribution

Example

Repeated counts are made in 1-min intervals with a long-lived radioactive source.
The observed mean value of the number of counts is 813, with a standard devia-
tion of 28.5 counts. (a) What is the probability of observing 800 or fewer counts in a
given minute? (b) What is the probability of observing 850 or more counts in 1 min?
(c) What is the probability of observing 800 to 850 counts in a minute? (d) What is
the symmetric range of values about the mean number of counts within which 90%
of the 1-min observations are expected to fall?

1 ("
Pxi<x=<x)= S g =& W2 gy

L L L L
650 700 750 800 850 900 950 1000

Turner, pp. 316-317.

.Y
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" A
Central Limit Theorem

The sum or average of a large number of independent random variables follows

Gaussian (Normal) distribution.

The distribution of an average tends to be NORMAL, even when the distribution

of the underlying variables from which the average is computed is decidedly non-
Normal.
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"
Central Limit Theorem

Consider a series of independent and identically distributed (i.i.d.) random

variables, x4, X5, ..., X,, Whose probability density function are given by

1, 0<x<l1

X)=
P, () 0, otherwise
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" A
An Example of Central Limit Theorem

X sk i
Sr 7 Z n 01
n

1; —
0 0 0.5 1
0 0.5 1
5 %
o MNonMormal Distribution of X
NonMNormal Distribution of X
T T T
s — s — s —
02 035 043
| | /1\
%9 0.5 1 s 0.5 1 s 0.5 1
5 5 5

Distribution of Xbarwhen sample size is 2 Distribution of Xbarwhen sample size is 3 Distribution of Xbarwhen sample size is 4

| | )

085 165 225

| | |
0 0.5 1 0 0.5 1 0 0.5 1

% % %
Distribution of Xbarwhen sample size is 8 Distribution of Xbar when sample size is 16 Distribution of Xbar when sample size is 32

51
NPRE 441, Principles of Radiation Protection, Spring 2020



Why Gaussian Random Variable is Important?

When a quantity is derived as the result of a large number of
accumulative effects, and each individual effect has a small
contribution to the final outcome, then the distribution of the

guantity tends to follow Gaussian distribution.
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Radioactive Disintegration — Bernoulli Process

Consider the radioactive disintegration process in a sample, it follows the following
four conditions:

% |t consists of N trials.
% Each trial has a binary outcome: success or failure (decay or not).

% The probability of success (decay) is a constant from trial to trial — all atoms
have equal probability to decay.

% The trials are independent.

In statistics, these four conditions characterize a Bernoulli process.
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Poisson Process

The counting statistics related to nuclear decay processes is often more
conveniently described by the Poisson distribution, is related to situations that
involves a collection of multiple trials that satisfy the following conditions:

1. The number of trials, N, is very large, e.g. N>>1.

2. Each trial is independent.

3. The probability that each single trial is successful is a constant and approaching
zero, p<<1. So the number of successful trials is fluctuating around a finite
number.
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Binomial Distribution and Poisson Distribution

Binomial distribution

Poisson distribution when
The probability of observing n successful trails

out of a total of N independent trails: N>>1, p<<1
N n -n " —
p,= p'q" P(n|,u):‘l;'e”
mean of the observed number of successful trails:
y V(N Mean of n:
“Ezn'ﬂzzn'(njp"q]v_":]vp T um=p=N-p
n=0 n=0
Standard deviation: o
Standard deviation :
N
2
Std(n)s\/z(n—u) ‘P, =\/Npq o =u=yNp
n=0

Gaussian distribution, If N is further increased, and p is further decreased

1 _(x_lu)z

P(X|ﬂ»0)=m

2
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Error and Error Propagation

Two ways to express the error associated with a given measurement:

Probable error:

® The symmetric range about the mean, within which there is 50% chance that a
measurement will fall.

% The width of the range depends on the distribution of the variable. For example,
for Gaussian distributed error, the probable erroris +0.675 o.

Fractional standard deviation:

& The ratio of the standard deviation and the mean of the distribution of the
random variable.

& For Poisson distributed random variable, the fractional standard deviation is
simply

0':1
uou
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] — Chapter 6: Counting Statistics
Error Propagation

In some situations, the variable of interest (Q) is not measured directly, but derived
as a function of more than one independent random variable whose values are

directly measured. The error on the measured values is propagated into the
uncertainty on the resultant quantity Q.

Suppose a quantity Q(x,y) that depends on two independent random variables x
andy.

The sample mean and variance of variables x and y are derived as o, and c,, by
repeating measurements.

The standard deviation of the indirect quantity Q is approximately given by

o =2 =o'+ =|o0o
¢ Ox oy ) 7
50
2 2
OX. l
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Error and Error Propagation

A Taylor series of a real function of a single variable, f(x), around a point x, is given by

F(x,+Ax) = fx,)+ fx(xO)Ax+% fu(x)(Ax) +% Fre () (AX) +..ecc.

where

S (X)) = laaf(x)]

X=X
A Taylor series of a real function of two variables, f(x,y), is given by

f(xo +Ax9y0 +Ay) —
f(xoay0)+[fx(xoayo)Ax+fy(xoayo)Ay]

T :fxx(xmyo)(Ax)2 +2fxy(x09yo)AXAy+fyy(xo’yo)(Ay)z]

T :fxxx (X5 J’o)(Ax)3 T 3fxxy (%o, yo)(Ax)2 (Ay)+ 3fxyy (Xq5 Y )(AJC)(A)/)2 + fyyy (x,, yo)(Ay)3 ]+ ......
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Error Propagation

We determine the standard deviation of a quantity Q(x, y) that depends on two
independent, random variables x and y. A sample of N measurements of the
variables yields pairs of values, x; and y;, with i = 1, 2, ..., N. For the
sample one can compute the means, X and y; the standard deviations, g, and
o,; and the values Q; = Q(x;, ¥;). We assume that the scatter of the x; and y;
about their means is small. We can then write a power-series expansion for
the Q, about the point (X, y), keeping only the first powers. Thus,

d 0
0. = 0, y) = 0%, 3) + -a—Q -5 + 2y~ 3, (E36)
X ay

where the partial derivatives are evaluated atx =X andy = y.
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Error Propagation

where the partial derivatives are evaluated at x = X and y = y. The mean value
of Q; is simply

@ Qi=

||M2
||Mz

1 1 1

_ — Yy v ) = — N X. V) = X.V E.37
N N2 Q& DY) = S NO(X. Y) Q(x,y), (E.37)
since the sums of the x; — X and y; — y over all i in Eq. (E.36) are zero, by
definition of the mean values. Thus, the mean value of Q is the value of the

function Q(x, y) calculated at x = xand y = y.
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Error and Error Propagation

The variance of the Q; is given by

N
s =+ I @~ 0" (E.38)
M)
[ d
_ P DU I
Q; =00, y) = Q(x,y) + . (x; — X)|+ 3y (y; | y), (E.36)
—
Applying Eq. (E.36) with Q = Q(X, y), we find that
2
0o = %,EJI [a—Q (x; —Xx) + QQ (yi — J’)] (E.39)
B §_Q_ 21 N ~ BQ Variance OJC J/
= x) Ni;(xg—x) +(6yiz; (yi = ¥) or oY)
) (5 2 ]
2 (=) (35, |y & & - — .
+ (ax 3y J|N 2 x; — X)(y: — ¥) N Couw,‘giiol)
Cov (%, 9) g4
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Error and Error Propagation

The last term, called the covariance of x and y, vanishes for large N if the
values of x and y are uncorrelated. (The factors y; — y and x; — X are then just
as likely to be positive as negative, and the covariance also decreases as 1/N).
We are left with the first two terms, involving the variances of the x; and y;:

2 - 2
0 = (%%) o2 + (QQ-> as. (E.41)

This is one form of the error propagation formula, which is easily generalized
to a function Q of any number of independent random variables.

Assumptions 2?
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Error Propagation Formula

The error propagation formula is exact only when
e the two variables, x and y, are independent to each other,

e and when Q(x,y) could be approximated as a linear function of both x

andy.
2
x Q2 = [agj O-x2
&(/x) i ﬁxi
' Qx>
[ error
\/ Gngz a—Q (o3 ’ errey on X
—\ Ox, * on@ .
L——-—? -l~ “error f
-~ ! T oa X !
) ]
X X >




Error Propagation Formula

The error propagation formula is exact only when
e the two variables, x and y, are independent to each other,

e and when Q(x,y) could be approximated as a linear function of both x
andy.

Note that the formula would break down when the second and third
and higher order partial derivatives are not negligible.
f(xy +Ax,y, +Ay) =

F s ¥0) + [ Coor v ) Ax + £, (500 1)V
+% :fxx('xO’yO)(Ax)z + zfxy(xoayo)AXAy + fyy(xoayo)(AJ’)Z]

+§ o Gl A 431, Gl 9 YA (40431, G v Y ATNAYY + £, G,y (A0 1
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Error Propagation

Case 1: Sums or differences of counts — u is the sum or difference of two random
numbers representing counts measured in two independent experiments.

U=X+ty Or u=x-—y

Example: estimating the net counts from a sample.

net counts = total counts — background counts
or

u=x-—y
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Error Propagation

Case 2: Multiplication or division by a constant

u= Ax
o, = Ao,
Example: estimating the count rate, counting rate = r = —

Assuming that the error in the measuring time is negligible, we get

X
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Error Propagation

Case 3: Multiplication or division of counts

Using the equation

One gets

au_ au_
ax_y *

u==Xxy, ‘g—

2
o, =y 09 o

Xj
—\ Ox,
2 2 2
o\ _(aV, (%
u X y

NPRE 441, Principles of Radiation Protection, Spring 2020

(=1]

~



Error Propagation in Net Count Rate Measurement

As an application of the error-propagation formula, Eq. (11.46), we find the stan-
dard deviation of the net count rate of a sample, obtained experimentally as the
difference between gross and background count rates, r, and r,. As with gross
counting, one also measures the number n;, of background counts in a time t,.
The net count rate ascribed to the sample is then the difference
n hp 2 a0\’ 2 L (9 2

rn:rg—rb: —E——-—-, Op = <5}Q‘> +. <a§> Oy. (1149)
To find the standard deviation of r,, we apply Eq. (11.46) with Q =r,, x = ng, and
y = ny,. From Eq. (11.49) we have 0r,/dng =1/t; and dr,/dm, = —1/t;,. Thus, the
standard deviation of the net count rate is given by

7 7 Assuming no error on t
o (0f
= |2 +2= /o2 +0? 11.50
Onr = t2 + tlZ) Ogr + O (11.50)

where of,. = 0%(r,), 02 =0d%(ny), of =0%(np),
— n _ Mp
and 0}, =0 (tg>, of =0 ( )

g th

Turner, pp. 324.
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] — Chapter 6: Counting Statistics
Error Propagation in Net Count Rate Measurement

To find the standard deviation of r,, we apply Eq. (11.46) with Q =r,, x = ng, and
y = np. From Eq. (11.49) we have 0r,/dng = l/t; and dr,/dn, = —1/t,. Thus, the
standard deviation of the net count rate is given by

2 2
Og Oy

One =[5+ E = /0 + o (11.50)

g
Here o, and oy, are the standard deviations of the numbers of gross and background
counts, and oy and oy, are the standard deviations of the gross and background
count rates. Equation (11.50) expresses the well-known result for the standard de-
viation of the sum or difference of two Poisson or normally distributed random
variables. Using n, and nj, as the bes(i estdfm:{te‘g of the n}%ar@ of the gross and

P - . N A

N’ N ™ ™™ -

background distributions and assuming that the numbers of counts obey Poisson

o= [+ = [+, (11.51)

(= 1]
(1)
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Error Propagation in Net Count Rate Measurement

As an application of the error-propagation formula, Eq. (11.46), we find the stan-
dard deviation of the net count rate of a sample, obtained experimentally as the
difference between gross and background count rates, r, and r,. As with gross
counting, one also measures the number n;, of background counts in a time t,.
The net count rate ascribed to the sample is then the difference
n nb 2 9 ’ 2 B 9 ? 2

= rg—tp = & — 2. b= (2) i+ (2) o (11.49)
To find the standard deviation of r,, we apply Eq. (11.46) with Q =r,, x = ng, and
y = ny,. From Eq. (11.49) we have 0r,/dng =1/t; and dr,/dm, = —1/t;,. Thus, the
standard deviation of the net count rate is given by

7 7 Assuming no error on t
Gg Oy 2 2
Onr = t_z + D = O'gr + O'br. (1150)
g b
or
n np r 140
o= [S+—5= |2+,
tg N te 1t

Turner, pp. 324.
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