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Statistics of Radiation and Radiation Detection

Statistical nature of radiation and radiation interaction:

F How much energy will an 1 MeV photon lose in its next collision with an atomic
electron?

F Will a 400keV photon penetrate a 2 mm lead shielding without interaction?

F When we use measured count-rate to estimate the activity of a source, and
how certain are we on the estimation?
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Exponential Radioactive Decay 

teAA l-= 0

Sample activity (A)

F True sample activity is never known.

F The best we can do is to repeat the counting process for a number of times and
use the average as an indication of the sample activity – average number of
decays in the sample per second.

F The above equation can be interpreted by implying that the probability that an
atom survives a time t without disintegration is
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The actual number of decay events is fluctuating around the average value
predicted by this equation.
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Radioactive Disintegration – Bernoulli Process
Consider the radioactive disintegration process in a sample, it follows the following
four conditions:

F It consists of N trials.

F Each trial has a binary outcome: success or failure (decay or not).

F The probability of success (decay) is a constant from trial to trial – all atoms
have equal probability to decay.

F The trials are independent.

In statistics, these four conditions characterize a Bernoulli process.
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Binomial Distribution
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Given, p, N and t, what is the probability of observing n disintegrations within a
time t?

F The number of ways to chose n atoms from a total of N atoms in the sample is

F So the probability of the n atoms chosen decayed during the time span t is
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F The above equation describes the so-called Binomial distribution.

F What are the mean and standard deviation of a Binomial distribution?
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Binomial Distribution

F What are the mean and standard deviation of a Binomial distribution?
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Binomial Distribution
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For a binomial distribution, the mean or the expectation of the number of
disintegration in time t is given by

and the fluctuation on the number of disintegrations is given by the variance or
the standard deviation of the
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Binomial Distribution
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Considering a realistic case, in which we use a detector to measure the number of
counts and use the measured count rate to infer to the activity of the source.

Given (a) each disintegration yield one single particle and (b) the detection
efficiency of the detector is e, then

The prob. of detecting a count within a time t is

Therefore, we can use the binomial distribution to describe the counting statistics
as
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Binomial Distribution
The prob. of detecting n count within a time t is

The mean number of detected counts is
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and the variance on the number of detected counts is
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An Example Binomial Distribution
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Binomial Distribution
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For a binomial distribution, the mean or the expectation of the number of
disintegration in time t is given by

and the fluctuation on the number of disintegrations is given by the variance or
the standard deviation of the
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An Example Binomial Distribution
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Radioactive Disintegration – Bernoulli Process 
(Revisited)

Consider the radioactive disintegration process in a sample, it follows the following
four conditions:

F It consists of N trials.

F Each trial has a binary outcome: success or failure (decay or not).

F The probability of success (decay) is a constant from trial to trial – all atoms
have equal probability to decay.

F The trials are independent.

In statistics, these four conditions characterize a Bernoulli process.
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Binomial Distribution (Revisited)
F The probability of exactly n decays out of a total of N atoms in the source is
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For a binomial distribution, the mean or the expectation of the number of
disintegration within the measurement period is given by

and the fluctuation on the number of disintegrations is quantified by the variance
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Binomial Distribution – An Example

Consider a particle physics experiment – estimate the flux rate (number of particles per
second across a unit solid angle) of a certain type of particle. Suppose the particles are
coming from a point source.

Note that the detection efficiency of the detector is p=0.55, and the measurement has
S·T=1.9×102 cm2 · sec.

If measurement did not register a single count, how do we estimate and
report the flux rate (number of particles coming towards the detector
surface per cm2 per second) of the particle?
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Radioactive Disintegration – Bernoulli Process
Consider the radioactive disintegration process in a sample, it follows the following
four conditions:

F It consists of N trials.

F Each trial has a binary outcome: success or failure (decay or not).

F The probability of success (decay) is a constant from trial to trial – all atoms
have equal probability to decay.

F The trials are independent.

In statistics, these four conditions characterize a Bernoulli process.
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Binomial Distribution
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Given, p, N and t, what is the probability of observing n disintegration within a time
t?

F The number of ways to chose n atoms from N atoms in the sample is

F The probability of exactly n decays is

nNn
n qp

n
N

P -
÷÷
ø

ö
çç
è

æ
=

F The above probability function characterizes the so-called Binomial
distribution.
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Radioactive Disintegration – Bernoulli Process

F The Bernoulli Process and binomial distribution provide a nice statistic model
for the decay of radioactive substances.

F In reality, we often encounter situations, in which p is very small and N is very
large …

F In such cases, the statistical description of the decay process could be
simplified …
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As in the previous example, for large N and small n, one can write

For Binomial distribution,
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Mean of Binomial Distribution for 𝑁 >> 𝑛 𝑎𝑛𝑑 𝑝 → 0

𝜇 ≡2
0

𝑛 ⋅ 𝑃0The mean of binomial distribution is given by

where

therefore
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Binomial Distribution in Extreme Case
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Using E.17 and letting p’=-p, we have the following equation
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Radioactive Disintegration – Bernoulli Process
Consider the radioactive disintegration process in a sample, it follows the following
four conditions:

F It consists of N trials.

F Each trial has a binary outcome: success or failure (decay or not).

F The probability of success (decay) is a constant from trial to trial – all atoms
have equal probability to decay.

F The trials are independent.

In statistics, these four conditions characterize a Bernoulli process.
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Poisson Process

The counting statistics related to nuclear decay processes is often more
conveniently described by the Poisson distribution, is related to situations that
involves a collection of multiple trials that satisfy the following conditions:

1. The number of trials, N, is very large, e.g. N>>1.

2. Each trial is independent.

3. The probability that each single trial is successful is a constant and approaching
zero, p<<1. So the number of successful trials is fluctuating around a finite
number.
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Binomial Distribution and Poisson Distribution

The probability of observing n successful trails 
out of a total of N  independent trails:
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Poisson Distribution

Remember the conditions for Binomial distribution to be approximated by
Poisson Distribution:

1. The number of trials, N, is very large, e.g. N>>1.

2. Each trial is independent.

3. The probability that each single trial is successful is a constant and approaching
zero, p<<1. So the number of successful trials is fluctuating around a finite
number.
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Poisson Distribution
The probability of having n successful trials can be approximated with the Poisson
distribution.
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and the mean and the variance of number of successful trial are given by
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33

detection efficiency: 𝜆 =55%.

The detector covers 10% solid angle.

The measurement takes T = 30 min.

N particles reached the detector.

detected k=0 count.

The prob. of having N particles reaching the detector would follow the Poisson 
distribution,

𝑃 𝑁 = _`

a!
𝑒8_ ,

where m is the expected number of particles that reach the detector.

Once the N particles reached the detector, the number of particles detected would
follow the Binomial distribution, so that the probability of detecting k particles is

𝑃 |𝑘 𝑁 = 𝑁
𝑘 𝜆f(1 − 𝜆)a8g.

mean 𝑁 = 𝑚

Registered k 
counts

Det.N particles 
reached the 

detector

Source
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Poisson Distribution

34

Therefore, the total probability of detecting k counts is

If we would like to have 90% chance of detecting at least 1 particle, then we could 
write

1 − 𝑃 𝑘 = 0 = e8_j = 0.9,

then the mean number of particles reaching the detector during the 30 minute 
measurement should be

𝑚 = 4.2.
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So finally, we can conclude that:

Because we did not record any count, we have 90% confidence to claim that

the source strength (average number of particles emitted per second)

should not exceed

𝐴 ≤
4.2
10% = 42 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐 = 42 𝐵𝑞

detection efficiency: 𝜆 =55%.

The detector covers 10% solid angle with 
respect to the point source.

The measurement takes T = 30 min.

N particles reached the detector.

detected k=0 count.
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Binomial Distribution and Poisson Distribution

The probability of observing n successful trails 
out of a total of N  independent trails:
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Mean of n: 
µ(n) = µ = N ⋅ p

Poisson distribution when 
N>>1, p<<1
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Effect of Fano Factor on Energy Resolution

Chapter 5: Methods for Radiation Detection – Semiconductor Detectors

à ~3eV for silicon à 100 keV gives 30000 e-h pairs à what is the standard 
deviation associated with the number of e-h pairs per 100 keV energy 
deposition?
à ~30eV for gas detectors à 100 keV gives 3000 e-ion pairs à ??
à ~1 keV for NaI(Tl) à 100 keV only gives 100 photoelectrons à ??

à The measured Fano factors: 0.143 for silicon, 0.129 for germanium, 0.1 for CdZnTe and 
~0.1 for HgI2. 
à In comparison, the Fano factors for gas and scintillators are ~1.
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Semiconductor Detector Configurations
High-purity germanium (HPGe) detectors

F Supper-pure material available, for example 1 part in 1012

F Depletion depth of >1cm à good detection volume.
F Requires cooling to liquid nitrogen temperature to reduce leakage current. 
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Signal Generation by Ionizing Radiation
in Semiconductors

Chapter 5: Methods for Radiation Detection – Semiconductor Detectors

The Fano factor.

à For a given energy deposition E in the detector and a known energy ε required to
create an e-h pair, the observed fluctuation in the number of charge carriers created
is smaller than the one predicted by the Poisson statistics.

à The measured Fano factors: 0.143 for silicon, 0.129 for germanium, 0.1 for CdZnTe
and ~0.1 for HgI2.

à In comparison, the Fano factors for scintillators are ~1.
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Poisson Distribution
The probability of having n successful trials can be approximated with the Poisson
distribution.
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and the mean and the variance of number of successful trial are given by
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The Gaussian (Normal) Distribution
As p (the prob. of an atom decay within t) is getting even smaller and N is getting
larger, both Binomial and Poisson distributions are approaching an extremely
useful form of distribution – the Gaussian distribution.
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Gaussian distribution is defined for a continuous variable x

but it is very useful for describing the counting fluctuation on discrete numbers.
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Poisson Distribution
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The Gaussian (Normal) Distribution

Binomial and Poisson distributions practically match the normal distribution when
µ >=30.
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Binomial Distribution and Poisson Distribution

The probability of observing n successful trails 
out of a total of N  independent trails:
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Poisson distribution when 
N>>1, p<<1

Gaussian distribution, If N is further increased, and p is further decreased
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The Gaussian (Normal) Distribution

Binomial and Poisson distributions practically match the normal distribution when
µ >=30.
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The Gaussian (Normal) Distribution
For a variable, x, following the normal distribution, the probability that it takes a
value between x and x is equal to the area under under the curve p(x) between
these two values:

Many common manipulations when carried out on counting data that were
originally Gaussian distributed will produce derived values that also follow
Gaussian shape:

FMultiplying or dividing the data by a constant,

FCombining two Gaussian-distributed variables through addition, subtraction, or
multiplication or,

FCalculating the average of a series of independent measurements.
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The Gaussian (Normal) Distribution

Turner, pp. 316-317.
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Central Limit Theorem

The sum or average of a large number of independent random variables follows
Gaussian (Normal) distribution.

The distribution of an average tends to be NORMAL, even when the distribution
of the underlying variables from which the average is computed is decidedly non-
Normal.

NPRE 441, Principles of Radiation Protection, Spring 2020
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Central Limit Theorem
Consider a series of independent and identically distributed (i.i.d.) random
variables, x1, x2, …, xn, whose probability density function are given by

NPRE 441, Principles of Radiation Protection, Spring 2020
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An Example of Central Limit Theorem

NPRE 441, Principles of Radiation Protection, Spring 2020
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Why Gaussian Random Variable is Important?

When a quantity is derived as the result of a large number of
accumulative effects, and each individual effect has a small
contribution to the final outcome, then the distribution of the
quantity tends to follow Gaussian distribution.

NPRE 441, Principles of Radiation Protection, Spring 2020
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Radioactive Disintegration – Bernoulli Process
Consider the radioactive disintegration process in a sample, it follows the following
four conditions:

F It consists of N trials.

F Each trial has a binary outcome: success or failure (decay or not).

F The probability of success (decay) is a constant from trial to trial – all atoms
have equal probability to decay.

F The trials are independent.

In statistics, these four conditions characterize a Bernoulli process.
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Poisson Process

The counting statistics related to nuclear decay processes is often more
conveniently described by the Poisson distribution, is related to situations that
involves a collection of multiple trials that satisfy the following conditions:

1. The number of trials, N, is very large, e.g. N>>1.

2. Each trial is independent.

3. The probability that each single trial is successful is a constant and approaching
zero, p<<1. So the number of successful trials is fluctuating around a finite
number.
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Binomial Distribution and Poisson Distribution

The probability of observing n successful trails 
out of a total of N  independent trails:
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Standard  deviation:
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Standard  deviation :  
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Mean of n: 
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Poisson distribution when 
N>>1, p<<1

Gaussian distribution, If N is further increased, and p is further decreased
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Error and Error Propagation
Two ways to express the error associated with a given measurement:

Probable error:

FThe symmetric range about the mean, within which there is 50% chance that a
measurement will fall.

FThe width of the range depends on the distribution of the variable. For example,
for Gaussian distributed error, the probable error is ±0.675 s.

Fractional standard deviation:

FThe ratio of the standard deviation and the mean of the distribution of the
random variable.

FFor Poisson distributed random variable, the fractional standard deviation is
simply

µµ
s 1
=
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In some situations, the variable of interest (Q) is not measured directly, but derived
as a function of more than one independent random variable whose values are
directly measured. The error on the measured values is propagated into the
uncertainty on the resultant quantity Q.

Suppose a quantity Q(x,y) that depends on two independent random variables x
and y.

The sample mean and variance of variables x and y are derived as sx and sy, by
repeating measurements.

The standard deviation of the indirect quantity Q is approximately given by
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Error and Error Propagation

f (x0 +Δx) = f (x0 )+ fx (x0 )Δx + 1
2!
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where 

fxx (x0 ) = d
dx

d
dx
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A Taylor series of a real function of a single variable, f(x), around a point x0 is given by

A Taylor series of a real function of two variables, f(x,y), is given by 
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Error Propagation

59



NPRE 441, Principles of Radiation Protection, Spring 2020

Chapter 6: Counting Statistics

Error Propagation
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Error and Error Propagation
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Chapter 6: Counting Statistics

Error Propagation Formula

The error propagation formula is exact only when

• the two variables, x and y, are independent to each other,

• and when Q(x,y) could be approximated as a linear function of both x
and y.
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Error Propagation Formula

The error propagation formula is exact only when

• the two variables, x and y, are independent to each other,

• and when Q(x,y) could be approximated as a linear function of both x
and y.

Note that the formula would break down when the second and third
and higher order partial derivatives are not negligible.
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Error Propagation

Case 1: Sums or differences of counts – u is the sum or difference of two random
numbers representing counts measured in two independent experiments.

Example: estimating the net counts from a sample.

65



NPRE 441, Principles of Radiation Protection, Spring 2020

Chapter 6: Counting Statistics

Error Propagation

Case 2: Multiplication or division by a constant

Example: estimating the count rate,

Assuming that the error in the measuring time is negligible, we get
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Error Propagation

Case 3: Multiplication or division of counts

Using the equation

One gets
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Error Propagation in Net Count Rate Measurement

Turner, pp. 324.

Assuming no error on t

68

where	 𝜎03I ≡ 𝜎I 𝑟0 , 𝜎zI ≡ 𝜎I 𝑛z , 𝜎zI ≡ 𝜎I 𝑛{ ,

and 𝜎z3I = 𝜎I 0}
~}

, 𝜎{3I = 𝜎I 0�
~�
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Error Propagation in Net Count Rate Measurement

Turner, pp. 324.

Assuming no error on t
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