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1. What is CMSE



What is CMSE?

Computational Materials Science and Engineering

Integrated Computational Materials Engineering

Integration of materials information,
captured in computational tools, with
engineering product performance analysis
and manufacturing process simulation.

- NAE ICME Report (2008)



What is CMSE?
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Does it work?

Materials are governed by (mostly known) physical laws

VWe can probe materials behavior in three ways:




The third pillar

Computation presents a third way to do science by
performing in silico experiments

Computer models of materials governed by physical laws
allow us to answer similar questions as "real’” experiments

behavior WS




MatSE is multiscale

NysIcs, chemistry, chemical engineering, mechanical
ngineering all have long-standing computational traditions

ne “action’ In these disciplines tends to be confined to a
single scale (smallest - quantum - or largest - continuum)

e

Engineering

Materials Science

‘. ) -"\ + ‘e
)

atomistic
.. o |
. e A

. AV ): - 43
electronic ,,

Discipline

Chemistry

Physics

http://www.icams.de/content/research-at-icams/index.html



http://www.icams.de/content/research-at-icams/index.html

MatSE is multiscale
MatSE Is iInherently and multiphysics

Relative latecomer to mature computational approaches
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MatSE is multiscale

Need to determine which lengths
scales are essential for the particular
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But CMSE is catching up!
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And enabling ICME
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1. Why CMSE / ICME?



Moore’s Law

Gordon Moore's 1965 prediction (just) continues to hold

Modern computation s and powerful

Microprocessor Transistor Counts 1971-2011 & Moore's Law
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What is driving CMSE?

Industry, sovernment, and academia are united (!)
CMSE will drive innovation and discovery
@ititical to:

address national goals

bring new products to market

train next-generation workforce



Public policy

Materials Genome Initiative
for Global Competitiveness

June 2011

Integrated
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Public policy

In summary, advanced materials are essential to human well-being and are the cornerstone for emerging industries.
Yet, the time frame for incorporating advanced materials into applications is remarkably long, often taking 10 to
20 years from initial research to first use. The Materials Genome Initiative is an effort that will address this problem
through the dedicated involvement of stakeholders in government, education, professional societies, and industry,
to deliver: (1) the creation of a new materials-innovation infrastructure, (2) the achievement of national goals with
advanced materials, and (3) the preparation of a next-generation materials workforce to sustain this progress. Such
a set of objectives will serve a more competitive domestic manufacturing presence — one in which the United
States will develop, manufacture, and deploy advanced materials at least two times faster than is possible today,
at a fraction of the cost.

Computational
Tools

Experimental Digital

Tools Data

Materials Innovation
Infrastructure

White House Materials Genome Initiative for Global Competitiveness (June, 201 1)



Industry

Global competitiveness of manufacturing firms requires

accelerated materials development ana

deployment

Discovery
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Development Property Systems Certification Manufacturing
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CMSE can compress development pipe

* Includes Sustainment and Recovery

ine by eliminating

laborious, costly, and lengthy experimen

Validated computational models to perform:
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White House Materials Genome Initiative for Global Competitiveness (June, 201 1)
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Industry
Case Study: Ford Motor - Virtual Aluminum Casting (VAC)

Integrated computational tools for design of Al powertrain
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Figure 6. Using VAC predictions of local fatigue strengths in the selection of a manufacturing
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Figure 7. Using VAC predictions of the local yield strength in a hypothetical cylinder block to
optimize the heat treatment process: (a) initial heat-treatment process for 5 h age at 240°C,
(b) optimized heat-treatment process for 3 h age at 250°C. (Note: Property target in bolt
boss area indicated by arrow is 220 MPa.)

process for a cylinder head: (a) casting Process A, (b) casting Process B.

Reduced experimen

al rterations and optimized processing

Development time s

Cost savings of $10-20M

J. Allison, M. Li, C.Wolverton, and X. Su Virtual Aluminum Castings: An Industrial Application of ICME JOM || 28 (201 1)

nortened by |5-20%
D.a.
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Computational Materials Education

Computational Materials Science and
Engineering Education: A Survey of
Trends and Needs

K. Thornton, Samanthule Nola, R. Edwin Garcia, Mark Asta, and G.B. Olson

demia

INSTITUTE OF PHYSICS PUBLISHING MOCELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINELRING

Modelling Stnul. Mater. Sci. Eng. 13 (2005) RS3-R69 do1: 10.1083/965-0393/1 3/2/R01

TOPICAL REVIEW

Current status and outlook of computational materials
science education in the US
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Abstract

We examine the current state of computatienal materials science education
based upon information compiled from top universities in materials science
and engineering (MSE). We find that there is a large variation in the emphasis
on computational modelling between universities. [tis reported that a relatively
large course offering is the result of changes in the curriculum made in the last
five years, showing a rapid pace in the implementation of computaticnal courses
at these departments. We also collected information from industry and national
labs regarding their current and future needs in MSE graduates, and the results
are summarized. This paper also provides a list of resources that are currently
used in computational materials science education.

1. Introduction

Materials science and engineering (MSE) is a discipline which has grown substantially from
its original roots in metallurgy and ceramic and polymer engineering. Traditionally, significant
research breakthroughs in this discipline have been driven mainly by advances in experimental
techniques, rather than theory or modelling. However, recent advances in theoretical and
numerical methods, coupled with an explosion in available computational resources, has led to
enormous progress in the development and integration of medelling techniques applicable to
the study of a wide range of materials systems and properties. Modelling and simulation tools
are thus finding increasing applications not enly in fundamental materials-science research,
but also in real-world design and optimization of new materials. The relatively new field of
computational materials science is continuing to find a growing number of practitioners not
only in academia and national labs but also, increasingly, in industry.

The growing impact of computation in materials research is clear. In surveying the
publications in Acta Materialia during 2003, one out of five articles included at least one of the
two words ‘simulat®*’ and ‘comput*’ in the key words (including the title and the abstract) [1].

09635-039305020053+17830.00  © 2005 10P Publishing Lid  Pranted in the UX RS3



Studies have 1dentr
and graduate CMS

Other key findings:

Academia

Role of academy to develop CMSE tools (research)
and train practitioners in their use (education)

el el peleter @

- training to support:

- academic / industrial mismatch in software fo
- Industry privileges software ski
- familiarity and competency wit

- "hands-on" experimental labs, but not compt
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K. Thornton and M. Asta Current status and outlook of computational materials science education in the US Modelling Simul. Mater. Sci. Eng. 13 R53 (2005)

K. Thornton, S. Nola, RE. Garcia, M. Asta and G.B> Olson COmputational Materials Science and Engineering Education: A survey of trends and needs JOM 61 10 12 (2009)
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Academia
ABET - Materials Engineering Programs:

The program must demonstrate that graduates have: the ability to apply advanced
science (such as chemistry and physics) and engineering principles to materials
systems implied by the program modifier, e.g., ceramics, metals, polymers, composite
materials, etc.; an integrated understanding of the scientific and engineering principles

underlying the four major elements of the field: structure, properties, processing, and
performance related to material systems appropriate to the field; the ability to apply
and integrate knowledge from each of the above four elements of the field to solve
materials selection and design problems; the ability to utilize experimental, statistical
and computational methods consistent with the goals of the program.

K. Thornton and M. Asta Current status and outlook of computational materials science education in the US Modelling Simul. Mater: Sci. Eng. 13 R53 (2005)
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MSE 404 CMSE

MatSE departments have / are incorporating CMSE into
the undergraduate and graduate curriculum

EiRRNEEEdte, Cornell, Berkeley, UNT, Uvay)

CMSE provision by or

MSE 458 - Atomic-Scale Simulations ofiers deep
exposure to classical simulation and statistical mechanics

MSE 404 - Computational MatSE MICRO +
MACRO, ELA + PLA offers broad hands-on exposure
to industrial CMSE tools

Jk



I1l. CMSE tools
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CMSE resources

MATERIALS
TECHNOLOG

S~ & A L —l
G V@G W@

Materials Education |
http://iweb.tms.org/forum/

NLINE SIMULATION
~ FOR NANOTECHNOLOGY
an NCN project '

http://nanohub.org/

| Materials Computation Center

University of [llinois at Urbana-Champaign

http://www.mcc.uiuc.edu/

Materials Pathway

http://matdl.org/

Jsi


http://iweb.tms.org/forum/
http://nanohub.org/
http://www.mcc.uiuc.edu/
http://matdl.org/

Software tools
SO many...

Electronic structure

(http://en.wikipedia.org/wiki/List of gquantum_chemistry and solid state physics software)

Molecular simulation

(http://en.wikipedia.org/wiki/List_of software for molecular mechanics modeling)

Finite element

(http//en.wikipedia.org/wiki/List of finite element software packages)

Phase equilibria
(FactSage, MTDATA, PANDAT, MatCalc, JMatPro, Thermo-Calc)

CAD

(http://en.wikipedia.org/wiki/Category:Computer-aided design_software)

2


http://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid_state_physics_software
http://en.wikipedia.org/wiki/List_of_software_for_molecular_mechanics_modeling
http://en.wikipedia.org/wiki/List_of_finite_element_software_packages
http://en.wikipedia.org/wiki/Category:Computer-aided_design_software
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MSE 404 CMSE (Plastic)
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V. Surveys
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Entrance Survey

https://illinois.edu/fb/sec/3019895
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