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Range of Young’s modulus 2
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3

Materials are made of atoms, held together by atomic interactions 
• covalent and ionic bonding: ceramics, semiconductors (~200 N/m) 
• metallic bonding: metals                                           (~  20 N/m) 
• van der Waals interaction: polymers                           (~    0.5 N/m) 

Materials are made of many atoms, governed by thermodynamics 
• materials choose structures, phase variables (such as density) that 

minimize free energy: A = U − TS 
• A: Helmholtz free energy 
• U: internal energy (bonding) 
• T: (absolute) temperature 
• S: entropy (disorder: kB log Ω)

Universality of linear elastic response



4Thermodynamic “equation of state”
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Materials are made of atoms, held together by atomic interactions 
• covalent and ionic bonding: ceramics, semiconductors (~200 N/m) 
• metallic bonding: metals                                           (~  20 N/m) 
• van der Waals interaction: polymers                           (~    0.5 N/m) 

Materials are made of many atoms, governed by thermodynamics 
• materials choose structures, phase variables (such as density) that 

minimize free energy: A = U − TS 
• A: Helmholtz free energy 
• U: internal energy (bonding) 
• T: (absolute) temperature 
• S: entropy (disorder: kB log Ω)

Universality of linear elastic response
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• For small stresses the strains are linearly related to stresses: 

• We can generalize these results by considering superposition 
1.Each stress component (σx σy σz τxy τxz τyz) is considered individually 
2.All of the strains from each stress component computed 
3.Sum of all strains = material response to stress

Superposition principle 6
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• The superposition principle can relate our elastic moduli: 
• E: Young’s modulus (normal strain from uniaxial stress) 
• ν: Poisson’s ratio (perpendicular normal strain from uniaxial stress) 
• G: shear modulus (shear strain from shear stress) 
• K: bulk modulus (volume change from hydrostatic pressure)

Material property relationships 7
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• The superposition principle can relate our elastic moduli: 
• E: Young’s modulus (normal strain from uniaxial stress) 
• ν: Poisson’s ratio (perpendicular normal strain from uniaxial stress) 
• G: shear modulus (shear strain from shear stress) 
• K: bulk modulus (volume change from hydrostatic pressure)

Material property relationships 8
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9Anisotropic linear elastic response



10Isotropic stress/strain relations
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Is there a way to extend this to anisotropic response? 



11General state of stress
• Each point in a body has normal and shear stress components. 
• We can section a cubic volume of material that represents the state of 

stress acting around the chosen point. 
• As the cube is at equilibrium the total forces and moments are zero: 

• Infinitesimal cube = equal and opposite forces on opposite sides of cube 
• Note also: the values of all the components depend on how the cube is 

oriented in the material (we’ll talk later about relating those values) 
• The combination of the state of stress for every 

point in the domain is called the stress field.



• Stress × area = force Fi = Σj=xyz σij Aj

σxx=σx σxy=τxy σxz=τxz

σyx=τxy σyy=σy σyz=τyz

σzx=τxz σzy=τyz σzz=σz

Graphical stress tensor components 12



Defining strain 13

• We want to describe the dimension and shape change in a continuous 
cohesive body 

• In a sufficiently small element, deformations of the element are all 
proportional to the size of the element 

• length / length = unitless, % (10−2), mm/mm, µm/m (10−6), or in/in 
• Requires that we capture both the orientation of original vector and 

change in that vector 
• Original relative position is a vector: one index = 3 numbers to describe 
• New relative position is a vector: one index = 3 numbers to describe 
• Strain is a tensor: two indices (coordinates) = 3×3 numbers to describe



• Normal strain describes a length change in a vector 
• Shear strain describes an orientation change in a vector 

• Be aware: whether deformation changes length or changes orientation 
also depends on the original orientation
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• We can describe all the strains on an element in a body:

Normal strain and shear strain 15
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• Strain × length = length change

Graphical strain tensor components

εxx=ϵx εxy=½γxy εxz=½γxz

εyx=½γxy εyy=ϵy εyz=½γyz

εzx=½γxz εzy=½γyz εzz=ϵz

δℓi = Σj=xyz εij ℓj
16



17Elastic constants: stiffnesses and compliances
• Just as stress relates a vector (area) to another vector (force), and strain 

relates a vector (position) to another vector (change in position), our 
elastic constants relate stresses to strains: 4th rank tensors 

• 3×3×3×3 = 81 components! 
• But first two and last two are symmetric: xyzz = yxzz and zzxy = zzyx 
• And first pair and last pair can be swapped: xyzz = zzyx 

• Stiffness is a second derivative of energy: Cijkl = d2U/dϵij dϵkl 

• Results in 21 unique elastic constants. Better written with Voigt notation:
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18Elastic constants: stiffnesses and compliances
• The S and C matrices are inverses of each other 
• The 21 stiffness and compliance matrix entries have factors of 2 and 4 to 

convert to tensor components: 
• Cab = Cijkl for a=1..6, b=1..6 
• Sab = Sijkl for a=1..3 and b=1..3 
• Sab = 2Sijkl for a=1..3 and b=1..6 or a=4..6 and b=1..3 or 
• Sab = 4Sijkl for a=4..6 and b=4..6 

• Crystalline symmetry reduces the number of unique and nonzero entries



Stiffness / Compliance symmetry
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Symmetry operations

2-fold axis 3-fold axis 4-fold axis

mirror plane mirror plane

Rotating a cube around the 
body diagonal ⟨111⟩?

3-fold axis



21Elastic constants: stiffnesses and compliances
• The S and C matrices are inverses of each other 
• The 21 stiffness and compliance matrix entries have factors of 2 and 4 to 

convert to tensor components: 
• Cab = Cijkl for a=1..6, b=1..6 
• Sab = Sijkl for a=1..3 and b=1..3 
• Sab = 2Sijkl for a=1..3 and b=1..6 or a=4..6 and b=1..3 or 
• Sab = 4Sijkl for a=4..6 and b=4..6 

• Crystalline symmetry reduces the number of unique and nonzero entries 
• Cubic symmetry is the most common for structural materials: 

• C11 = C22 = C33 
• C12 = C13 = C23 
• C44 = C55 = C66 
• all others zero 

• Isotropic materials are cubic and C11−C12 = 2C44 (or S11−S12 = S44/2) 
• Hexagonal materials and aligned fiber composites have lower symmetry: 

• C11 = C22 ≠ C33; C12 ≠ C13 = C23; C44 = C55 ≠ C66 

• Isotropic in basal plane: 2C66 = C11−C12 

• all others zero



Graphical compliance components

εij = Σk=xyz Σl=xyz Sijkl σkl
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Voigt and Reuss averages
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Voigt and Reuss averages
Reuss average = isostress

...Randomly 
oriented 
grains 1
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Grain structure and texture
Ni alloy grain structure

Each grain has a 
different orientation, 
and responds differently 
to applied stress 

Polycrystalline response 
is an average of 
individual grain 
responses. 

Texture is a preferential 
orientation of grains.

M. Groeber et al., AIP Conf. Proc. 712, 1712 (2004). 



Ti / TiB metal-matrix composite
SEM backscatter: polish

SEM secondary e-: deep etch
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TiB: orthorhombic crystal

EVoigt = 442GPa
EReuss = 435GPa
ETi = 110GPa

ETi+20%vol TiB = 153GPa
S. Gorsse et al., Mat. Sci. Eng. A340, 80-87 (2003) 

D. R. Trinkle, Scripta Mater. 56, 273-276 (2007) 



Bovine femural bone: elastic constants

bone orthotropic stiffnesses:

along length: E3 = 21.7GPa

transverse: E1 = 11.6GPa

W. C. Buskirk et al., J. Biomech. Eng. 103, 67-72 (1981)

longitudinal (3)

transverse (1,2)
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Extracted from sound-speed measurements:
C11 = r(v11)2 C22 = r(v22)2 C44 = r(v23)2



Composite behavior 28



Composite = matrix + reinforcement
Matrix: continuous phase 
• transfers load to reinforcement 
• protects reinforcement from environment 
Types of matrix: 
• MMC metal matrix composite: designed for plastic strain 

• better yield stress, tensile strength, creep resistance 
• CMC ceramic matrix composite: designed for fracture 

• better toughness 
• PMC polymer matrix composite: designed for elastic and plastic 

strain 
• better modulus, yield stress, tensile strength, creep 
• inexpensive, temperature range limited by polymer decomposition 

Reinforcement: stronger, discontinuous phase 
• carries significant portion of load 
• classified by geometry

29



Spheroidite steel

cemented carbide

10µm

100µm

ferrite (bcc-Fe)

cementite (Fe3C)

Co matrix (Vm=10-15%)

WC particles
From Callister, 
Intro to Eng. Matls., 6Ed

Particle reinforcements 30



From Callister, 
Intro to Eng. Matls., 6Ed

100nm Tire rubber

rubber

carbon particles

S. Gorsse et al., Mat. Sci. Eng. A340, 80-87 (2003).

Ti/TiB MMC

alpha-Ti (hcp)

TiB needles

Particle reinforcements 31



fracture
surface

Mo + Ni3Al

alpha-Mo (bcc)Ni3Al (gamma’)

W. Funk et al., Met. Trans A19, 987-998 (1988).

From F.L. Matthews and R.L. Rawlings, Composite 
Materials;  Engineering and Science, Reprint ed., 
CRC Press, Boca Raton, FL, 2000. (a) Fig. 4.22, 
p. 145 (photo by J. Davies); (b) Fig. 11.20,  p. 
349 (micrograph by H.S. Kim, P.S. Rodgers, and 
R.D. Rawlings).  

Glass (E=76GPa) with 
SiC fibers (E=400GPa)

Fiber reinforcements: continuous, aligned 32



carbon-carbon composite

C matrix

C fibers

processed by laying down 
fibers in binder (pitch); high 
heat converts binder to C 
matrix

Randomly oriented fibers 
layered in 2D, not continuous 

with composite

Fiber reinforcements: discontinuous, random 33



Determining mechanical behavior

isoload/isostress isostrain

equal load in phases equal strain in phases

34

Stress / strain response depends on 
• material properties (E, TS, σY) of matrix + 

reinforcement 
• amount of matrix + reinforcement (Vm, Vr=1−Vm) 
• orientation of reinforcement relative to load 
• size and distribution of reinforcement 
• geometry (length of fibers, cross-sectional shape, 

aspect ratio) 
Two limiting cases for analysis:



equal length/strain in phases

Similar to Voigt average

ℓreinforcement = ℓmatrix = ℓcomposite

εreinforcement = εmatrix = εcomposite

shared load: Fc = Fm + Fr

Fc

A
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Fm

A
+
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A
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Ar

Ar

A
�c = Vm�m + Vr�r ROM for stresses

Isostrain 35



equal load/stress in phases

Similar to Reuss average

Freinforcement = Fmatrix = Fcomposite

σreinforcement = σmatrix = σcomposite

`0c = `
0
m + `

0
r

`c(1 + "c) = `m(1 + "m) + `r(1 + "r)
1 + "c = Vm(1 + "m) + Vr(1 + "r)
"c = Vm"m + Vr"r

shared length:

ROM for strains

Isoload / isostress 36



Cu 20% 40% 60% 80% W
volume fraction (W)

100

200

300

E 
[G

Pa
]

Elastic moduli of 
the composite are 
constrained by 
two limits: 
isostrain and 
isoload isostrain

isoload

Rule of mixtures: Cu particles + W matrix 37

Ec = VmEm + KcVpEp

(T.S.)c = Vm(T.S.)m + KsVp(T.S.)p

Empirical relations:

Kc ≠ Ks < 1



Orientation effects on tensile strength 38

Tensile stress not parallel to fibers has complex stress state: 
3 limiting cases: 

1.small misorientation: limited by fiber failure (σ‖ = σ cos2 θ) 

2.large misorientation: limited by matrix tensile failure (σ⟂ = σ sin2 θ) 

3.medium misorientation: limited by matrix shear failure (τ = σ cos θ sin θ)
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Orientation effects on tensile strength 39

Tensile stress not parallel to fibers has complex stress state: 
3 limiting cases:
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Orientation effects on tensile strength 40

Tensile stress not parallel to fibers has complex stress state: 
Some limitations: 

1.Predicts that tensile strength increases for small misorientation. 
2.Predicts “cusps” in strength vs. misorientation angle. 
3.Doesn’t account for multiaxial loading effects. 
Solution: Tsai-Hill failure criterion:
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Orientation effects on tensile strength 41

Tensile stress not parallel to fibers has complex stress state:
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Never exceeds aligned T.S.


