Isotropic linear elastic response

Range of Young's modulus

What is the source of both **universality** and **range** in modulus?

Based on data in Table B2, Callister 6Ed. Composite data based on reinforced epoxy with 60 vol% of aligned carbon (CFRE), aramid (AFRE), or glass (GFRE) fibers. From Callister,

Intro to Eng. Matls., 6Ed

2

Universality of linear elastic response

Materials are made of atoms, held together by atomic interactions

- covalent and ionic bonding: ceramics, semiconductors (~200 N/m)
- metallic bonding: metals
- van der Waals interaction: polymers

Materials are made of many atoms, governed by thermodynamics

- materials choose structures, phase variables (such as density) that **minimize free energy**: A = U TS
- A: Helmholtz free energy
- U: internal energy (bonding)
- T: (absolute) temperature
- S: entropy (disorder: $k_{\rm B} \log \Omega$)

 $(\sim 20 \text{ N/m})$

 $(\sim 0.5 \text{ N/m})$

Thermodynamic "equation of state"

Universality of linear elastic response

Materials are made of atoms, held together by atomic interactions

- covalent and ionic bonding: ceramics, semiconductors (~200 N/m)
- metallic bonding: metals
- van der Waals interaction: polymers

Materials are made of many atoms, governed by thermodynamics

• materials choose structures, phase variables (such as density) that **minimize free energy**: A = U - TS

 ∂A

- A: Helmholtz free energy
- U: internal energy (bonding)
- T: (absolute) temperature
- S: entropy (disorder: $k_{\rm B} \log \Omega$)

$$P(V) = \overline{\partial V}\Big|_{V}$$

$$P(\delta V + V_{0}) = \frac{\partial A}{\partial V}\Big|_{V_{0}} + \delta V \left.\frac{\partial^{2} A}{\partial V^{2}}\right|_{V_{0}} + \frac{1}{2}\delta V^{2} \left.\frac{\partial^{3} A}{\partial V^{3}}\right|_{V_{0}} + \cdots$$

$$= 0 + \frac{\delta V}{V_{0}}\left(V_{0} \left.\frac{\partial^{2} A}{\partial V^{2}}\right|_{V_{0}}\right) + \cdots$$

$$= \epsilon_{V}K$$

 $(\sim 20 \text{ N/m})$

 $(\sim 0.5 \text{ N/m})$

Superposition principle

• For **small stresses** the strains are linearly related to stresses:

$$\epsilon_{\parallel} = \frac{1}{E}\sigma_{\parallel} \qquad \epsilon_{\perp} = -\frac{\nu}{E}\sigma_{\parallel} \qquad \gamma = \frac{1}{G}\tau$$

We can generalize these results by considering superposition
 1.Each stress component (σ_x σ_y σ_z τ_{xy} τ_{xz} τ_{yz}) is considered individually
 2.All of the strains from each stress component computed
 3.Sum of all strains = material response to stress

Material property relationships

- The superposition principle can relate our elastic moduli:
 - E: Young's modulus (normal strain from uniaxial stress)
 - v: Poisson's ratio (perpendicular normal strain from uniaxial stress)
 - G: shear modulus (shear strain from shear stress)
 - K: bulk modulus (volume change from hydrostatic pressure)

Material property relationships

- The superposition principle can relate our elastic moduli:
 - E: Young's modulus (normal strain from uniaxial stress)
 - v: Poisson's ratio (perpendicular normal strain from uniaxial stress)
 - G: shear modulus (shear strain from shear stress)
 - K: bulk modulus (volume change from hydrostatic pressure)

Anisotropic linear elastic response

9

Isotropic stress/strain relations

$$\epsilon_{x} = \frac{1}{E} [\sigma_{x} - \nu(\sigma_{y} + \sigma_{z})] \qquad \qquad \gamma_{xy} = \frac{1}{G} \tau_{xy}$$

$$\epsilon_{y} = \frac{1}{E} [\sigma_{y} - \nu(\sigma_{x} + \sigma_{z})] \qquad \qquad \gamma_{xz} = \frac{1}{G} \tau_{xz}$$

$$\epsilon_{z} = \frac{1}{E} [\sigma_{z} - \nu(\sigma_{x} + \sigma_{y})] \qquad \qquad \gamma_{yz} = \frac{1}{G} \tau_{yz}$$

$$\sigma_{x} = \frac{E}{(1+\nu)(1-2\nu)} \left[(1-\nu)\epsilon_{x} + \nu(\epsilon_{y} + \epsilon_{z}) \right]$$

$$\tau_{xy} = G\gamma_{xy}$$

$$\tau_{yz} = G\gamma_{xz}$$

$$\tau_{yz} = G\gamma_{xz}$$

$$\tau_{yz} = G\gamma_{yz}$$

$$\tau_{yz} = G\gamma_{yz}$$

Is there a way to extend this to anisotropic response?

General state of stress

- Each point in a body has *normal* and *shear* stress components.
- We can section a *cubic volume* of material that represents the state of stress acting around the chosen point.
- As the cube is at equilibrium the **total forces and moments** are zero:
 - Infinitesimal cube = equal and opposite forces on opposite sides of cube
- Note also: the values of all the components depend on how the cube is oriented in the material (we'll talk later about relating those values)
- The combination of the state of stress for every point in the domain is called the stress field.

 \mathbf{F}_2

 \mathbf{F}_1

Graphical stress tensor components

• Stress × area = force $F_i = \sum_{j=xyz} \sigma_{ij} A_j$

Defining strain

- We want to describe the *dimension and shape change* in a *continuous cohesive* body
- In a sufficiently small element, deformations of the element are all proportional to the size of the element
- length / length = unitless, % (10^{-2}), mm/mm, μ m/m (10^{-6}), or in/in
- Requires that we capture **both** the orientation of *original vector* and change in that vector
 - Original relative position is a *vector*: *one index* = 3 numbers to describe
 - New relative position is a *vector*: *one index* = 3 numbers to describe
 - Strain is a *tensor*: *two indices* (coordinates) = 3×3 numbers to describe

Normal strain and shear strain

- Normal strain describes a length change in a vector
- Shear strain describes an orientation change in a vector
 - **Be aware:** whether deformation *changes length* or *changes orientation* also depends on the *original orientation*

Normal strain and shear strain

• We can describe all the strains on an *element* in a body:

Graphical strain tensor components

• Strain × length = length change $\delta l_i = \sum_{j=xyz} \mathcal{E}_{ij} l_j$

Elastic constants: stiffnesses and compliances 17

 Just as stress relates a vector (area) to another vector (force), and strain relates a vector (position) to another vector (change in position), our elastic constants relate stresses to strains: 4th rank tensors

$$\epsilon_{ij} = \sum_{kl} S_{ijkl} \sigma_{kl} \qquad \sigma_{ij} = \sum_{kl} C_{ijkl} \epsilon_{kl}$$

compliance
[GPa⁻¹]
$$\qquad \text{stiffness}$$

[GPa]

- $3 \times 3 \times 3 \times 3 = 81$ components!
- But first two and last two are **symmetric**: xyzz = yxzz and zzxy = zzyx
- And first pair and last pair can be swapped: xyzz = zzyx
 - Stiffness is a second derivative of energy: $C_{ijkl} = d^2 U/d\epsilon_{ij} d\epsilon_{kl}$
- Results in 21 unique elastic constants. Better written with Voigt notation:

$$\begin{pmatrix} \sigma_{1} & \sigma_{6} & \sigma_{5} \\ \sigma_{6} & \sigma_{2} & \sigma_{4} \\ \sigma_{5} & \sigma_{4} & \sigma_{3} \end{pmatrix} \begin{pmatrix} e_{1} & \frac{1}{2}e_{6} & \frac{1}{2}e_{5} \\ \frac{1}{2}e_{6} & e_{2} & \frac{1}{2}e_{4} \\ \frac{1}{2}e_{5} & \frac{1}{2}e_{4} & e_{3} \end{pmatrix} e_{i} = \sum_{j=1}^{6} S_{ij}\sigma_{j}$$

1	2	3
xx	уу	ZZ
4	5	6
yz	xz	XZ

Elastic constants: stiffnesses and compliances 18

- The S and C matrices are **inverses** of each other
- The 21 stiffness and compliance matrix entries have factors of 2 and 4 to convert to tensor components:
 - $C_{ab} = C_{ijkl}$ for a = 1..6, b = 1..6
 - $S_{ab} = S_{ijkl}$ for a = 1..3 and b = 1..3
 - $S_{ab} = 2S_{ijkl}$ for a=1..3 and b=1..6 or a=4..6 and b=1..3 or
 - $S_{ab} = 4S_{ijkl}$ for a = 4..6 and b = 4..6
- Crystalline symmetry reduces the number of unique and nonzero entries

Stiffness / Compliance symmetry

$\int xx xx $	$\begin{pmatrix} xx yy\\ yy xx \end{pmatrix}$	$\begin{pmatrix} xx zz\\ zz xx \end{pmatrix}$	$\begin{pmatrix} xx yz \ xx zy \\ yz xx \ zy xx \end{pmatrix}$	$\begin{pmatrix} xx zx \ xx xz\\ zx xx \ xz xx \end{pmatrix}$	$\begin{pmatrix} xx xy \ xx yx \\ xy xx \ yx xx \end{pmatrix}$
•	<i>уу</i> <i>уу</i>	$\begin{pmatrix} yy zz\\zz yy \end{pmatrix}$	$\begin{pmatrix} yy yz \ yy zy \\ yz yy \ zy yy \end{pmatrix}$	$\begin{pmatrix} yy zx \ yy xz \\ zx yy \ xz yy \end{pmatrix}$	$\begin{pmatrix} yy xy \ yy yx \\ xy yy \ yx yy \end{pmatrix}$
•	•	ZZ ZZ	$\begin{pmatrix} zz yz \ zz zy \\ yz zz \ zy zz \end{pmatrix}$	$\begin{pmatrix} zz zx zz xz \\ zx zz xz zz \end{pmatrix}$	$\begin{pmatrix} zz xy \ zz yx \\ xy zz \ yx zz \end{pmatrix}$
•	•	•	$\begin{pmatrix} yz yz \ yz zy\\ zy yz \ zy zy \end{pmatrix}$	$\begin{pmatrix} yz zx \ yz xz \ zx yz \ xz yz \\ zy zx \ zy xz \ zx zy \ xz zy \end{pmatrix}$	$\begin{pmatrix} yz xy \ yz yx \ xy yz \ yx yz \\ zy xy \ zy yx \ xy zy \ yx zy \end{pmatrix}$
•	•	•	•	$\begin{pmatrix} zx zx \ zx xz \\ xz zx \ xz xz \end{pmatrix}$	$\begin{pmatrix} zx xy \ zx yx \ xy zx \ yx zx \\ xz xy \ xz yx \ xy xz \ yx xz \end{pmatrix}$
•	•	•	•	٠	$\begin{pmatrix} xy xy \ xy yx \\ yx xy \ yx yx \end{pmatrix}$

Symmetry operations

4-fold axis

2-fold axis

3-fold axis

Rotating a cube around the body diagonal $\langle 111 \rangle ?$

3-fold axis

mirror plane

Elastic constants: stiffnesses and compliances²¹

- The S and C matrices are **inverses** of each other
- The 21 stiffness and compliance matrix entries have factors of 2 and 4 to convert to tensor components:
 - $C_{ab} = C_{ijkl}$ for a = 1..6, b = 1..6
 - $S_{ab} = S_{ijkl}$ for a = 1..3 and b = 1..3
 - $S_{ab} = 2S_{ijkl}$ for a=1..3 and b=1..6 or a=4..6 and b=1..3 or
 - $S_{ab} = 4S_{ijkl}$ for a = 4..6 and b = 4..6
- Crystalline symmetry reduces the number of unique and nonzero entries
- **Cubic** symmetry is the most common for structural materials:
 - $C_{11} = C_{22} = C_{33}$
 - $C_{12} = C_{13} = C_{23}$
 - $C_{44} = C_{55} = C_{66}$
 - all others zero
- Isotropic materials are **cubic** and $C_{11}-C_{12} = 2C_{44}$ (or $S_{11}-S_{12} = S_{44}/2$)
- Hexagonal materials and aligned fiber composites have lower symmetry:
 - $C_{11} = C_{22} \neq C_{33}$; $C_{12} \neq C_{13} = C_{23}$; $C_{44} = C_{55} \neq C_{66}$
 - Isotropic in basal plane: $2C_{66} = C_{11} C_{12}$
 - all others zero

Voigt and Reuss averages Voigt average = **isostrain** Randomly oriented grains $\frac{\left(\overline{C}_{11} - \overline{C}_{12} + 3\overline{C}_{44}\right)\left(\overline{C}_{11} + 2\overline{C}_{12}\right)}{2\overline{C}_{11} + 3\overline{C}_{12} + \overline{C}_{44}}$ $E_{\text{Voigt}} =$ $\overline{C}_{11} = \frac{1}{3} \left(C_{11} + C_{22} + C_{33} \right)$ $\overline{C}_{12} = \frac{1}{3} \left(C_{12} + C_{13} + C_{23} \right)$ $\overline{C}_{44} = \frac{1}{3} \left(C_{44} + C_{55} + C_{66} \right)$

Voigt and Reuss averages

Reuss average = **isostress**

Grain structure and texture

Ni alloy grain structure

Each grain has a different orientation, and responds differently to applied stress

Polycrystalline response is an average of individual grain responses.

Texture is a preferential orientation of grains.

M. Groeber et al., AIP Conf. Proc. **712**, 1712 (2004).

Ti / TiB metal-matrix composite

SEM backscatter: polish

SEM secondary e⁻: deep etch

TiB: orthorhombic crystal

419 92 113 0 0 0 92 523 63 0 0 0 113 63 418 0 0 0 $C_{ij} =$ 0 0 0 196 0 0

GPa

- $E_{\text{Voigt}} = 442 \text{GPa}$
- $E_{\text{Reuss}} = 435 \text{GPa}$

 $E_{\rm Ti} = 110 {\rm GPa}$ $E_{\rm Ti+20\% vol TiB} = 153 {\rm GPa}$

S. Gorsse et al., Mat. Sci. Eng. A**340**, 80-87 (2003) D. R. Trinkle, Scripta Mater. **56**, 273-276 (2007)

Bovine femural bone: elastic constants

W. C. Buskirk et al., J. Biomech. Eng. 103, 67-72 (1981)

Composite behavior

Composite = matrix + reinforcement

29

Matrix: continuous phase

- transfers load to reinforcement
- protects reinforcement from environment

Types of matrix:

- MMC metal matrix composite: designed for plastic strain
 - better yield stress, tensile strength, creep resistance
- CMC ceramic matrix composite: designed for fracture
 - better toughness
- PMC polymer matrix composite: designed for elastic and plastic strain
 - better modulus, yield stress, tensile strength, creep
 - inexpensive, temperature range limited by polymer decomposition

Reinforcement: stronger, discontinuous phase

- carries significant portion of load
- classified by geometry

Particle reinforcements

Particle reinforcements

S. Gorsse et al., Mat. Sci. Eng. A**340**, 80-87 (2003).

Fiber reinforcements: continuous, aligned 32

p. 145 (photo by J. Davies); (b) Fig. 11.20, p. 349 (micrograph by H.S. Kim, P.S. Rodgers, and R.D. Rawlings).

W. Funk et al., Met. Trans A**19**, 987-998 (1988).

Fiber reinforcements: discontinuous, random ³³

C fibers

– C matrix

processed by laying down fibers in binder (pitch); high heat converts binder to C matrix

carbon-carbon composite

Randomly oriented fibers layered in 2D, not continuous with composite

Determining mechanical behavior

Stress / strain response depends on

- material properties (E, TS, $\sigma_{\rm Y}$) of matrix + reinforcement
- amount of matrix + reinforcement $(V_m, V_r=1-V_m)$
- orientation of reinforcement relative to load
- size and distribution of reinforcement
- geometry (length of fibers, cross-sectional shape, aspect ratio)

Two limiting cases for analysis: isoload/isostress

equal load in phases

equal strain in phases

isostrain

Isostrain

equal length/strain in phases

 $\ell_{reinforcement} = \ell_{matrix} = \ell_{composite}$ $\varepsilon_{reinforcement} = \varepsilon_{matrix} = \varepsilon_{composite}$ $F_{\rm c} = F_{\rm m} + F_{\rm r}$ shared load: $\frac{F_{\rm c}}{A} = \frac{F_{\rm m}}{A} + \frac{F_{\rm r}}{A}$ $\sigma_{\rm c} = \frac{F_{\rm m}}{A_{\rm m}} \frac{A_{\rm m}}{A} + \frac{F_{\rm r}}{A_{\rm r}} \frac{A_{\rm r}}{A}$ $\sigma_c = V_m \sigma_m + V_r \sigma_r$ ROM for stresses Similar to Voigt average

Isoload / isostress

equal load/stress in phases

 $F_{reinforcement} = F_{matrix} = F_{composite}$

 $\sigma_{reinforcement} = \sigma_{matrix} = \sigma_{composite}$

shared length: $\ell'_{c} = \ell'_{m} + \ell'_{r}$ $\ell_{c}(1 + \varepsilon_{c}) = \ell_{m}(1 + \varepsilon_{m}) + \ell_{r}(1 + \varepsilon_{r})$ $1 + \varepsilon_{c} = V_{m}(1 + \varepsilon_{m}) + V_{r}(1 + \varepsilon_{r})$ $\varepsilon_{c} = V_{m}\varepsilon_{m} + V_{r}\varepsilon_{r}$ ROM for strains

Similar to Reuss average

Rule of mixtures: Cu particles + W matrix 37

Orientation effects on tensile strength 38

Tensile stress not parallel to fibers has complex stress state:

3 limiting cases:

 $\underline{\sigma} = \begin{pmatrix} \sigma \cos^2 \theta & \sigma \cos \theta \sin \theta \\ \sigma \cos \theta \sin \theta & \sigma \sin^2 \theta \end{pmatrix}$

1.small misorientation: limited by fiber failure ($\sigma_{\parallel} = \sigma \cos^2 \theta$)

$$(T.S.)_{c} = \frac{\sigma_{\parallel}^{\star}}{\cos^{2}\theta}$$

2.large misorientation: limited by matrix tensile failure ($\sigma_{\perp} = \sigma \sin^2 \theta$)

$$(T.S.)_{c} = \frac{\sigma_{\perp}^{\star}}{\sin^{2}\theta}$$

3.medium misorientation: limited by matrix shear failure ($\tau = \sigma \cos \theta \sin \theta$)

$$(T.S.)_{c} = \frac{\tau_{m,y}}{\cos\theta\sin\theta}$$

Orientation effects on tensile strength ³⁹

Tensile stress not parallel to fibers has complex stress state:

Orientation effects on tensile strength 40

Tensile stress not parallel to fibers has complex stress state:

Some limitations:

$$\underline{\sigma} = \begin{pmatrix} \sigma \cos^2 \theta & \sigma \cos \theta \sin \theta \\ \sigma \cos \theta \sin \theta & \sigma \sin^2 \theta \end{pmatrix}$$

1.Predicts that tensile strength *increases* for small misorientation.

2.Predicts "cusps" in strength vs. misorientation angle.

3. Doesn't account for multiaxial loading effects.

Solution: Tsai-Hill failure criterion:

$$\left(\frac{\sigma_{\parallel}}{\sigma_{\parallel}^{\star}}\right)^{2} - \left(\frac{\sigma_{\parallel}\sigma_{\perp}}{\sigma_{\perp}^{\star\,2}}\right) + \left(\frac{\sigma_{\perp}}{\sigma_{\perp}^{\star}}\right)^{2} + \left(\frac{\tau}{\tau_{\mathrm{m,y}}}\right)^{2} = 1$$

$$(T.S.)_{c} = \left[\frac{\cos^{4}\theta}{\sigma_{\parallel}^{\star 2}} + \frac{\sin^{4}\theta}{\sigma_{\perp}^{\star 2}} + \cos^{2}\theta\sin^{2}\theta\left(\frac{1}{\tau_{m,y}^{2}} - \frac{1}{\sigma_{\parallel}^{\star 2}}\right)\right]^{-1/2}$$

Orientation effects on tensile strength 41

Tensile stress not parallel to fibers has complex stress state:

