Isotropic linear elastic response



E [GPa = 10° N/m?]

Range of Young’'s modulus

Graphite

Metal : m i
etals Ceramics Polymers Co 'PO> tes
Alloys Semicond Fibers
128 '
800 — I Diamond
600 —
Si carbide
400 —] e Tungsten Al oxide ®Carbon fibers only
® Molybdenume S;j nitride
Steel, Ni
200 — iTantaIum s111>
Platinum iSl crystal L
Cu alloys <100> ®Aramid fibers only
190, 40% cold
60 ‘Alumihum ®Glass-soda ®Glass fibers only
o Magnesium,
40— Tin
® Concrete
20 —
10 e Graphite
8 —
6 —
— olyester
4 E ET
fes
2 — PC ®Epoxy only
opp
1 — eHDPE
0.8 —
0.6— *PTFE
0.4 —
0.2 e| DPE
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source of both
universality
and range in

modulus?

Based on data in Table B2,
Callister 6Ed.

Composite data based on
reinforced epoxy with 60 vol%
of aligned

carbon (CFRE),

aramid (AFRE), or

glass (GFRE)

fibers.

From Callister,

Intro to Eng. Matls., 6Ed



Universality of linear elastic response

Materials are made of atoms, held together by atomic interactions

e covalent and ionic bonding: ceramics, semiconductors (~200 N/m)

e metallic bonding: metals (~ 20 N/m)

e van der Waals interaction: polymers (~ 0.5 N/m)
Materials are made of many atoms, governed by thermodynamics

e materials choose structures, phase variables (such as density) that
minimize free energy: A=U - TS

e A: Helmholtz free energy

e UU: internal energy (bonding)

e 7. (absolute) temperature

e S: entropy (disorder: ks log 2)



Thermodynamic “"equation of state”

Bond
energy
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Equilibrium bond length
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Universality of linear elastic response 5

Materials are made of atoms, held together by atomic interactions

e covalent and ionic bonding: ceramics, semiconductors (~200 N/m)

e metallic bonding: metals (~ 20 N/m)

e van der Waals interaction: polymers (~ 0.5 N/m)
Materials are made of many atoms, governed by thermodynamics

e materials choose structures, phase variables (such as density) that
minimize free energy: A=U - TS

e A: Helmholtz free energy

e UU: internal energy (bonding)

e 7. (absolute) temperature

e S: entropy (disorder: ks log 2)
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Superposition principle

e For small stresses the strains are linearly related to stresses:

1 1% 1
€= FOI €L = "% e

| —

e \We can generalize these results by considering superposition
1.Each stress component (ox 0y 07 Txy Txz Tyz) iS considered individually
2.All of the strains from each stress component computed
3.Sum of all strains = material response to stress

> €x = - v(oy, + 02)]
1

€y = E[Gy v(oy + 05)]
1

€, = —lo, —v(ox + 0y)]




Material property relationships

e The superposition principle can relate our elastic moduli:
e £: Young’'s modulus (normal strain from uniaxial stress)

e v: Poisson’s ratio (perpendicular normal strain from uniaxial stress)
e G: shear modulus (shear strain from shear stress)

e K: bulk modulus (volume change from hydrostatic pressure)

1
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Material property relationships 8

e The superposition principle can relate our elastic moduli:
e £: Young’'s modulus (normal strain from uniaxial stress)
e v: Poisson’s ratio (perpendicular normal strain from uniaxial stress)
e G: shear modulus (shear strain from shear stress)
e K: bulk modulus (volume change from hydrostatic pressure)

g.—p

0]

(—p
=10
L 0

7~

0 0) —& +2vL 0 0
0 -p, .0 0 —+ +2vE

AV=V(1+e)1+e)l+e)-V
=V +(ext+te,te)+--)=V

g~e+e +€
\ AR Y .

////)

A o 31-2v)  p
T E PTTK
~E

- 3(1-2v)

L

K




Anisotropic linear elastic response

9



Isotropic stress/strain relations 10

(1= v)ex +v(e, + )

(1= v)e, + v(ex + &)

o= £loe~v(y +0.)
€y = %[Gy —v(oyx + 03)]
€z = %[Gz — V(0o + Gy)]
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Oz

T 1+ v)(1 - 2v)

(1= v)e: +vie, +e,)

1
Yy = 5ty

1
Vxz = Esz

1
Vyz = ET]/Z
Ty = GYxy
Txz = nyz
Ty = GYyz

Is there a way to extend this to anisotropic response?




General state of stress 11

e Each point in a body has normal and shear stress components.

e \We can section a cubic volume of material that represents the state of
stress acting around the chosen point.

e As the cube is at equilibrium the total forces and moments are zero:
e Infinitesimal cube = equal and opposite forces on opposite sides of cube

e Note also: the values of all the components depend on how the cube is
oriented in the material (we’ll talk later about relating those values)

e The combination of the state of stress for every Z
point in the domain is called the stress field. ‘

N\ |
O.XAPT*TXY Ty’c%.‘
e N\ — y



Graphical stress tensor components

e Stress x area = force I:I = Zj:xyz Uij AJ

Oxx=0x
Oyx=Txy
EO-ZX=TX/Z
o

Oxy=Txy
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Defining strain 13

e \We want to describe the dimension and shape change in a continuous
cohesive body

e In a sufficiently small element, deformations of the element are all
proportional to the size of the element

e length / length = unitless, % (1072), mm/mm, pum/m (107°), or in/in

e Requires that we capture both the orientation of original vector and
change in that vector

e Original relative position is a vector: one index = 3 numbers to describe
e New relative position is a vector: one index = 3 numbers to describe
e Strain is a tensor: two indices (coordinates) = 3xX3 numbers to describe

1




Normal strain and shear strain

e Normal strain describes a length change in a vector
e Shear strain describes an orientation change in a vector

e Be aware: whether deformation changes length or changes orientation
also depends on the original orientation

14




Normal strain and shear strain 15

e \We can describe all the strains on an element in a body:

&

deformation

(= y2)
2 Ve (+ e_‘,)Ay

shear strains| Yy = (angle change in xy plane)

0.y = (rotation in xy plane)

— Syx — Exy
normal strains




Graphical strain tensor components 16

e Strain X length = length change 5[, — Zj=xyz Eij ZJ

e~ 3
Exx=Ex Exy=Y2Yxy Exz=12Yxz

ny=1/2ny Eyy=€Ey Eyz=1/2sz
I P
e
Ezx=Y2Yxz Ezy=12Vyz Ezz=€




Elastic constants: stiffnesses and compliances 17

e Just as stress relates a vector (area) to another vector (force), and strain
relates a vector (position) to another vector (change in position), our
elastic constants relate stresses to strains: 4th rank tensors

€ij = Z SiikiOki 0jj = Z Cijki€xi
Kl Kl

compliance stiffness
[GPa—1] [GPa]

e 3x3x3x3 = 81 components!
e But first two and last two are symmetric: xyzz = yxzz and zzxy = zzyx
e And first pair and last pair can be swapped: xyzz = zzyx
e Stiffness is a second derivative of energy: Cijw = d?U/dej;j dex
e Results in 21 unique elastic constants. Better written with Voigt notation:

6
( \ 1 1
01 O O5 ( €1 €6 235\ e; = Z Si]'(T]' 1 2 3
O¢ O O34 1 1 '
56 €2 5ey4 =1 X | VY | #2
\05 04 03 1 1
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Elastic constants: stiffnesses and compliances 18

e The S and C matrices are inverses of each other

e The 21 stiffness and compliance matrix entries have factors of 2 and 4 to
convert to tensor components:

® Cop = Cjjw for a=1..6, b=1..6
® Sop = Sy fora=1..3 and b=1..3
® Sop = 2Sjw for a=1..3 and b=1..6 or a=4..6 and b=1..3 or
® S.p = 4Sjji for a=4..6 and b=4..6
e Crystalline symmetry reduces the number of unique and nonzero entries
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Symmetry operations

L A

2-fold axis 3-fold axis 4-fold axis

: Rotating a cube around the
l l body diagonal <111)?

Y

3-fold axis

mirror plane mirror plane



Elastic constants: stiffnesses and compliances 21

e The S and C matrices are inverses of each other

e The 21 stiffness and compliance matrix entries have factors of 2 and 4 to
convert to tensor components:

® Cop = Cjjw for a=1..6, b=1..6
® Sop = Sy fora=1..3 and b=1..3
® Sop = 2Sjw for a=1..3 and b=1..6 or a=4..6 and b=1..3 or
® S.p = 4Sjji for a=4..6 and b=4..6
e Crystalline symmetry reduces the number of unique and nonzero entries
e Cubic symmetry is the most common for structural materials:
® Ci1 = Co2 = C33
® Cio = Ci3 = Cz23
® C44 = Cs5 = Ces
e all others zero
e Isotropic materials are cubic and C11—Ci12 = 2Ca4 (Or S11—S12 = S44/2)
e Hexagonal materials and aligned fiber composites have lower symmetry:
® Ci1 = Co2 # C33; Ci2 # C13 = Ca3; Cag = Css5 # Ces
e [sotropic in basal plane: 2Css = C11—Ci2
e all others zero



Graphical compliance components
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Voigt and Reuss averages
Voigt average = isostrain

—

Randomly
. (En — Elz + 3644) (En + 2612)
Voigt — — — —

a 2C11 + 3C12 + C44
— 1
Cq1 = 3 (C11 + Cxp + C33)
— 1
Cip = 3 (C12 + Ci3 + Co3)

— 1
Cy = 3 (Caa + Cs5 + Ces)



Voigt and Reuss averages
Reuss average = isostress

Randomly

grains

)

1 1
EReuSS g (3511 + 2512 + 544)
— 1
511 = 3 (511 + S0 + S33)
1
512 -3 (S12 + S13 + S23)
1

§44 = 3 (S14 + Ss5 + See)

Evoigt > Erandom polycrystal > EReuss
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Grain structure and texture

Ni alloy grain structure

Each grain has a
different orientation,
and responds differently
to applied stress

Polycrystalline response
IS an average of
individual grain
responses.

. t;-.\

- Texture is a preferential
orientation of grains.

M. Groeber et al., AIP Conf. Proc. 712, 1712 (2004).



Ti / TiB metal-matrix composite

SEM TiB: orthorhombic crystal

41992 113 0 0 0
92 52363 0 0 O
11363418 0 0 0

Ci=1 0o o 019 o0 o [©F
0 0 0 0 179 0

O 0 O 0 0 220
EReuss — 435GP21

ETi = 110GPa
ETis20%vor TiB = 153GPa

S. Gorsse et al., Mat. Sci. Eng. A340, 80-87 (2003)
D. R. Trinkle, Scripta Mater. 56, 273-276 (2007)
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Bovine femural bone: elastic constants

bone orthotropic stiffnesses:
Iongitudinal (3) 14 6348 0 0 0

? 63184700 0 0
487025 0 0 0
Ci=1 0o o 0700 o |CF2
) 0 0 0 0630
0 0 00 0523

transverse (1,2)

along length: Ez = 21.7GPa

transverse: E1 = 11.6GPa

Extracted from sound-speed measurements:

Cii=p(vi1)? Cr = p(vn)* Cas = p(v3)*

W. C. Buskirk et al., J. Biomech. Eng. 103, 67-72 (1981)



Composite behavior

28



Composite = matrix + reinforcement

Matrix: continuous phase

e transfers load to reinforcement

e protects reinforcement from environment

Types of matrix:

e MMC metal matrix composite: designed for plastic strain
e Dbetter yield stress, tensile strength, creep resistance

e CMC ceramic matrix composite: designed for fracture
e better toughness

e PMC polymer matrix composite: designed for elastic and plastic
strain

e better modulus, yield stress, tensile strength, creep

e inexpensive, temperature range limited by polymer decomposition
Reinforcement: stronger, discontinuous phase
e carries significant portion of load
e classified by geometry

29



Particle reinforcements 30

ferrite (bcc-Fe)

cementite (FesC)

Co matrix (Vm=10-15%)

WC particles

From Callister,

Intro to Eng. Matls., 6Ed



Particle reinforcements

rubber

carbon particles

alpha-Ti (hcp) —

TiB needles

From Callister,

Intro to Eng. Matls., 6Ed

S. Gorsse et al., Mat. Sci. Eng. A340, 80-87 (2003). (2)

Ti/TiB MMC

31



Fiber reinforcements: continuous, alighed 32

Glass (E=76GPa) with
) SiC fibers (E=400GPa)

y

fracture NisAl (gamma’)  alpha-Mo (bcc)
|

Mo + NisAl

From F.L. Matthews and R.L. Rawlings, Composite
Materials; Engineering and Science, Reprint ed.,
CRC Press, Boca Raton, FL, 2000. (a) Fig. 4.22,
p. 145 (photo by J. Davies); (b) Fig. 11.20, p.
349 (micrograph by H.S. Kim, P.S. Rodgers, and

" 2um
R.D. Rawlings). W. Funk et al., Met. Trans A19, 987-998 (1988).



Fiber reinforcements: discontinuous, random 33

C fibers

— C matrix

processed by laying down
fibers in binder (pitch); high
heat converts binder to C
matrix

carbon-carbon composite

Randomly oriented fibers
layered in 2D, not continuous
with composite




Determining mechanical behavior 34

Stress / strain response depends on

e material properties (E, TS, oy) of matrix +
reinforcement

amount of matrix + reinforcement (Vm, Vi=1—Vmn)
orientation of reinforcement relative to load
size and distribution of reinforcement

geometry (length of fibers, cross-sectional shape,
aspect ratio)

Two limiting cases for analysis:
iIsoload/isostress iIsostrain

MR —

equal load in phases equal strain in phases




Isostrain 35

(B

equal length/strain in phases

Lreinforcement = fmatrix = zcomposite

Ereinforcement = Ematrix = &composite
shared load: F.=F,+F,
Fe Fm  F
A A A
F., An F A,
CTA A TAA

Oc = Vmom + V.0 ROM for stresses
Similar to Voigt average



Isoload / isostress

»

&

equal load/stress in phases

Freinforcement = Fmatrix = Fcomposite

Oreinforcement = Omatrix = Ocomposite

shared length: €. ={_ +
(1 + &) =01+ &em)

£.(1

Er)

1+ée.=Vn(l+em)+ V(1 + &)

Ec = Vimém + Vi€

Similar to Reuss average

ROM for strains

36



Rule of mixtures: Cu particles + W matrix 37

Elastic moduli of
the composite are
constrained by
two limits:
iIsostrain and
isoload

300 -

isostrain

|GPaj

(1] 200

Empirical relations:
Ec. = VmEm + K. V,E,
(T.S.)c = Vin(T.S)m + KV, (T.S.),

Ke#+ Ks <1 10 | | | |
%u 20% 40% 60% 80% \%Y%

volume fraction (W)



Orientation effects on tensile strength 38

Tensile stress not parallel to fibers has complex stress state:
3 limiting cases:
gcos’0  ocosBOsin0

o= . .
— ocosBOsinb osin? 0

1.small misorientation: limited by fiber failure (o3 = o cos? 9)

oy
TS.). =
(1:5) cos? 6

2.large misorientation: limited by matrix tensile failure (o. = o sin? 0)

*

(TS). = —2
e sinZ 6

3.medium misorientation: limited by matrix shear failure (7 = o cos 6 sin 9)

Tm
(T.S.). = 2

cos O sin 6



Orientation effects on tensile strength 39

Tensile stress not parallel to fibers has complex stress state:

3 limiting cases:
0 cos? 6 o cos Osin 6

O = . .
— \ocosOsin0 o sin” 6
120
0] ﬁ — |
(T.S.)C = > QC:S Small
cos- 0 2 100 misorientatio\ N
e
80— large .
5 I misorientatipn
&) .
% 60 intermediate | TS). = 0,
e misorientation - ( y -)c — .
= sin“ 0
o9 40 -
Q A
— Tsai-Hill
A 20+ Tm, s
= (TS.). = >
ﬁ cos Osin O
0 |
0 6 90

30 0
O [degrees]



Orientation effects on tensile strength 40

Tensile stress not parallel to fibers has complex stress state:

Some limitations:
o cos” 6 g cos Osin 6

o= . .
— ocosBOsinb osin? 0

1.Predicts that tensile strength increases for small misorientation.
2.Predicts “cusps” in strength vs. misorientation angle.
3.Doesn’t account for multiaxial loading effects.

Solution: Tsai-Hill failure criterion:
2

2 2
O] 0]10 L O T
I L 1 Y

costO  sin* 0 1 1\
(T.S.). = + +cos” Osin” O [ — — —
X2 X2 2 X2
9 01 tmy O/,



Orientation effects on tensile strength 41

Tensile stress not parallel to fibers has complex stress state:

120

[
-
-

o0
-
l

I~
-
l

(\®)
-
l

Tensile strength [MPa]

small
misorientatio\
large
misorientatipn
intermediate
misorientation
Tsai-Hill
cost0 sin* 6
(T.S.). = +
(7*2 0*2
| — || | ] J_

OO

30 6
O [degree

0
S |

90

|+ cos” Osin” 0 (L — L)

o cos” 6 g cos Osin 6

o= . .
— ocosBOsinb osin? 0

Tsai-Hill smooths out cusps
Never exceeds aligned T.S.

1-1/2

2 * 2
Tm,y (7”




