Range of Young's modulus

What is the source of both universality and range in modulus?

Based on data in Table B2, Callister 6Ed.
Composite data based on
reinforced epoxy with 60 vol\%
of aligned
carbon (CFRE),
aramid (AFRE), or
glass (GFRE)
fibers.

Universality of linear elastic response

Materials are made of atoms, held together by atomic interactions

- covalent and ionic bonding: ceramics, semiconductors ($\sim 200 \mathrm{~N} / \mathrm{m}$)
- metallic bonding: metals (~ $20 \mathrm{~N} / \mathrm{m}$)
- van der Waals interaction: polymers (~ $0.5 \mathrm{~N} / \mathrm{m}$)
Materials are made of many atoms, governed by thermodynamics
- materials choose structures, phase variables (such as density) that minimize free energy: $A=U-T S$
- A: Helmholtz free energy
- U: internal energy (bonding)
- T: (absolute) temperature
- S : entropy (disorder: $k_{\mathrm{B}} \log \Omega$)

Universality of linear elastic response

Materials are made of atoms, held together by atomic interactions

- covalent and ionic bonding: ceramics, semiconductors ($\sim 200 \mathrm{~N} / \mathrm{m}$)
- metallic bonding: metals (~ $20 \mathrm{~N} / \mathrm{m}$)
- van der Waal interaction: polymers
($\sim 0.5 \mathrm{~N} / \mathrm{m}$)

Materials are made of many atoms, governed by thermodynamics

- materials choose structures, phase variables (such as density) that minimize free energy: $A=U$ - TS
- A: Helmholtz free energy
- U: internal energy (bonding)
- T : (absolute) temperature
- S: entropy (disorder: $k_{\mathrm{B}} \log \Omega$)

$$
\begin{aligned}
\text { der: } K_{\mathrm{B}} \log \Omega() & \begin{aligned}
P(V) & =\left.\frac{\partial A}{\partial V}\right|_{V} \\
P\left(\delta V+V_{0}\right) & =\left.\frac{\partial A}{\partial V}\right|_{V_{0}}+\left.\delta V \frac{\partial^{2} A}{\partial V^{2}}\right|_{V_{0}}+\left.\frac{1}{2} \delta V^{2} \frac{\partial^{3} A}{\partial V^{3}}\right|_{V_{0}}+\cdots \\
& =0+\frac{\delta V}{V_{0}}\left(\left.V_{0} \frac{\partial^{2} A}{\partial V^{2}}\right|_{V_{0}}\right)+\cdots \\
& =\epsilon_{V} K
\end{aligned}
\end{aligned}
$$

Superposition principle

- For small stresses the strains are linearly related to stresses:

$$
\epsilon_{\|}=\frac{1}{E} \sigma_{\|} \quad \epsilon_{\perp}=-\frac{v}{E} \sigma_{\|} \quad \gamma=\frac{1}{G} \tau
$$

- We can generalize these results by considering superposition

1. Each stress component ($\sigma_{x} \sigma_{y} \sigma_{z} T_{x y} T_{x z} T_{y z}$) is considered individually
2.All of the strains from each stress component computed
3.Sum of all strains = material response to stress

$$
\begin{array}{ll}
\epsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] & \gamma_{x y}=\frac{1}{G} \tau_{x y} \\
\epsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right] & \gamma_{x z}=\frac{1}{G} \tau_{x z} \\
\epsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right] & \gamma_{y z}=\frac{1}{G} \tau_{y z}
\end{array}
$$

Material property relationships

- The superposition principle can relate our elastic moduli:
- E: Young's modulus (normal strain from uniaxial stress)
- v: Poisson's ratio (perpendicular normal strain from uniaxial stress)
- G: shear modulus (shear strain from shear stress)
- K: bulk modulus (volume change from hydrostatic pressure)

$$
\begin{array}{ccc}
\left(\begin{array}{ll}
0 & \tau \\
\tau & 0
\end{array}\right) \leftrightarrow\left(\begin{array}{cc}
\tau & 0 \\
0 & -\tau
\end{array}\right) & \left(\begin{array}{cc}
0 & \gamma / 2 \\
\gamma / 2 & 0
\end{array}\right) \leftrightarrow\left(\begin{array}{cc}
\gamma / 2 & 0 \\
0 & -\gamma / 2
\end{array}\right) \\
\gamma=\frac{1}{G} \tau & \frac{\gamma}{2}=\frac{1}{E} \tau-\frac{v}{E}(-\tau) & G=\frac{E}{2(1+v)} \\
\gamma=\frac{2(1+v)}{E} \tau &
\end{array}
$$

Material property relationships

- The superposition principle can relate our elastic moduli:
- E: Young's modulus (normal strain from uniaxial stress)
- v: Poisson's ratio (perpendicular normal strain from uniaxial stress)
- G: shear modulus (shear strain from shear stress)
- K : bulk modulus (volume change from hydrostatic pressure)

$$
\begin{aligned}
& \sigma=\left(\begin{array}{ccc}
-p & 0 & 0 \\
0 & -p & 0 \\
0 & 0 & -p
\end{array}\right)\left.\epsilon=\begin{array}{ccc}
-\frac{p}{E}+2 v \bar{E} & 0 & 0 \\
0 & -\frac{p}{E}+2 v \frac{p}{E} & 0 \\
0 & 0 & -\frac{p}{E}+2 v \frac{p}{\bar{E}}
\end{array}\right) \\
& \begin{aligned}
\Delta V & =V\left(1+\epsilon_{x}\right)\left(1+\epsilon_{y}\right)\left(1+\epsilon_{z}\right)-V \\
& =V\left(1+\left(\epsilon_{x}+\epsilon_{y}+\epsilon_{z}\right)+\cdots\right)-V \\
\frac{\Delta V}{V} & \approx \epsilon_{x}+\epsilon_{y}+\epsilon_{z} \\
& =-\frac{3(1-2 v)}{E} p=-\frac{p}{K}
\end{aligned} \\
& K=\frac{E}{3(1-2 v)}
\end{aligned}
$$

Isotropic stress/strain relations

$$
\begin{array}{ll}
\epsilon_{x}=\frac{1}{E}\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] & \gamma_{x y}=\frac{1}{G} \tau_{x y} \\
\epsilon_{y}=\frac{1}{E}\left[\sigma_{y}-v\left(\sigma_{x}+\sigma_{z}\right)\right] & \gamma_{x z}=\frac{1}{G} \tau_{x z} \\
\epsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right] & \gamma_{y z}=\frac{1}{G} \tau_{y z} \\
\sigma_{x}=\frac{E}{(1+v)(1-2 v)}\left[(1-v) \epsilon_{x}+v\left(\epsilon_{y}+\epsilon_{z}\right)\right] & \\
\sigma_{y}=\frac{E}{(1+v)(1-2 v)}\left[(1-v) \epsilon_{y}+v\left(\epsilon_{x}+\epsilon_{z}\right)\right] & \tau_{x y}=G \gamma_{x y} \\
\sigma_{z}=\frac{E}{(1+v)(1-2 v)}\left[(1-v) \epsilon_{z}+v\left(\epsilon_{x}+\epsilon_{y}\right)\right] & \tau_{y z}=G \gamma_{x z} \\
&
\end{array}
$$

Is there a way to extend this to anisotropic response?

General state of stress

- Each point in a body has normal and shear stress components.
- We can section a cubic volume of material that represents the state of stress acting around the chosen point.
- As the cube is at equilibrium the total forces and moments are zero:
- Infinitesimal cube = equal and opposite forces on opposite sides of cube
- Note also: the values of all the components depend on how the cube is oriented in the material (we'll talk later about relating those values)
- The combination of the state of stress for every point in the domain is called the stress field.

Graphical stress tensor components

- Stress \times area $=$ force $F_{i}=\sum_{j=x y z} \sigma_{i j} A_{j}$

- We want to describe the dimension and shape change in a continuous cohesive body
- In a sufficiently small element, deformations of the element are all proportional to the size of the element
- length $/$ length $=$ unitless, $\%\left(10^{-2}\right), \mathrm{mm} / \mathrm{mm}, \mu \mathrm{m} / \mathrm{m}\left(10^{-6}\right)$, or $\mathrm{in} / \mathrm{in}$
- Requires that we capture both the orientation of original vector and change in that vector
- Original relative position is a vector: one index $=3$ numbers to describe
- New relative position is a vector: one index $=3$ numbers to describe
- Strain is a tensor: two indices (coordinates) $=3 \times 3$ numbers to describe

Normal strain and shear strain

- Normal strain describes a length change in a vector
- Shear strain describes an orientation change in a vector
- Be aware: whether deformation changes length or changes orientation also depends on the original orientation

Normal strain and shear strain

- We can describe all the strains on an element in a body:

$$
\varepsilon_{i j}=\left(\begin{array}{ccc}
\epsilon_{x} & \frac{1}{2} \gamma_{x y} & \frac{1}{2} \gamma_{x z} \\
\frac{1}{2} \gamma_{x y} & \epsilon_{y} & \frac{1}{2} \gamma_{y z} \\
\frac{1}{2} \gamma_{x z} & \frac{1}{2} \gamma_{y z} & \epsilon_{z}
\end{array}\right) \quad \begin{aligned}
\gamma_{x y} & =\text { (angle change in } x y \text { plane }) \\
& =\varepsilon_{x y}+\varepsilon_{y x} \\
\theta_{x y} & =\text { (rotation in } x y \text { plane) } \\
& =\varepsilon_{y x}-\varepsilon_{x y}
\end{aligned}
$$

Graphical strain tensor components

- Strain \times length $=$ length change $\delta \ell_{i}=\sum_{j=x y z} \varepsilon_{i j} \ell_{j}$

Elastic constants: stiffnesses and compliances 17

- Just as stress relates a vector (area) to another vector (force), and strain relates a vector (position) to another vector (change in position), our elastic constants relate stresses to strains: 4th rank tensors

$$
\epsilon_{i j}=\sum_{k l} S_{i j k l} \sigma_{k l} \quad \sigma_{i j}=\sum_{k l} C_{i j k l} \epsilon_{k l}
$$

- $3 \times 3 \times 3 \times 3=81$ components!
- But first two and last two are symmetric: $x y z z=y x z z$ and $z z x y=z z y x$
- And first pair and last pair can be swapped: xyzz = zzyx
- Stiffness is a second derivative of energy: $C_{i j k l}=d^{2} U / d \epsilon_{i j} d \epsilon_{k l}$
- Results in 21 unique elastic constants. Better written with Voigt notation:

$$
\begin{array}{lll}
\left(\begin{array}{lll}
\sigma_{1} & \sigma_{6} & \sigma_{5} \\
\sigma_{6} & \sigma_{2} & \sigma_{4} \\
\sigma_{5} & \sigma_{4} & \sigma_{3}
\end{array}\right) \quad\left(\begin{array}{ccc}
e_{1} & \frac{1}{2} e_{6} & \frac{1}{2} e_{5} \\
\frac{1}{2} e_{6} & e_{2} & \frac{1}{2} e_{4} \\
\frac{1}{2} e_{5} & \frac{1}{2} e_{4} & e_{3}
\end{array}\right) \quad e_{i}=\sum_{j=1}^{6} S_{i j} \sigma_{j} \\
\sigma_{i}=\sum_{j=1}^{6} C_{i j} e_{j}
\end{array}
$$

1	2	3
$x x$	$y y$	$z z$
4	5	6
$y z$	$x z$	$x z$

Elastic constants: stiffnesses and compliances 18

- The S and C matrices are inverses of each other
- The 21 stiffness and compliance matrix entries have factors of 2 and 4 to convert to tensor components:
- $C_{a b}=C_{i j k l}$ for $a=1 . .6, b=1 . .6$
- $S_{a b}=S_{i j k l}$ for $a=1 . .3$ and $b=1 . .3$
- $S_{a b}=2 S_{i j k l}$ for $a=1 . .3$ and $b=1 . .6$ or $a=4 . .6$ and $b=1 . .3$ or
- $S_{a b}=4 S_{i j k l}$ for $a=4 . .6$ and $b=4 . .6$
- Crystalline symmetry reduces the number of unique and nonzero entries

Stiffness / Compliance symmetry

$$
\begin{aligned}
& \left(\begin{array}{lll}
z x \mid z x & z x \mid x z \\
x z \mid z x & x z \mid x z
\end{array}\right) \quad\left(\left.\begin{array}{lll}
z x \mid x y & z x \mid y x & x y \mid z x \\
x z \mid x y & x|\mid z x \\
x & x & x y \mid x z
\end{array} \quad y x \right\rvert\, x z\right) \\
& \left(\begin{array}{l}
x y \mid x y \\
y x \mid x y \\
y x \mid y x
\end{array}\right)
\end{aligned}
$$

Symmetry operations

2-fold axis

mirror plane

3-fold axis

mirror plane

4-fold axis
Rotating a cube around the body diagonal <111〉?

3-fold axis

Elastic constants: stiffnesses and compliances 21

- The S and C matrices are inverses of each other
- The 21 stiffness and compliance matrix entries have factors of 2 and 4 to convert to tensor components:
- $C_{a b}=C_{i j k l}$ for $a=1 . .6, b=1 . .6$
- $S_{a b}=S_{i j k l}$ for $a=1 . .3$ and $b=1 . .3$
- $S_{a b}=2 S_{i j k l}$ for $a=1 . .3$ and $b=1 . .6$ or $a=4 . .6$ and $b=1 . .3$ or
- $S_{a b}=4 S_{i j k l}$ for $a=4 . .6$ and $b=4 . .6$
- Crystalline symmetry reduces the number of unique and nonzero entries
- Cubic symmetry is the most common for structural materials:
- $\mathrm{C}_{11}=\mathrm{C}_{22}=\mathrm{C}_{33}$
- $\mathrm{C}_{12}=\mathrm{C}_{13}=\mathrm{C}_{23}$
- $\mathrm{C}_{44}=\mathrm{C}_{55}=\mathrm{C}_{66}$
- all others zero
- Isotropic materials are cubic and $\mathrm{C}_{11}-\mathrm{C}_{12}=2 \mathrm{C}_{44}$ (or $\mathrm{S}_{11}-\mathrm{S}_{12}=\mathrm{S}_{44} / 2$)
- Hexagonal materials and aligned fiber composites have lower symmetry:
- $\mathrm{C}_{11}=\mathrm{C}_{22} \neq \mathrm{C}_{33} ; \mathrm{C}_{12} \neq \mathrm{C}_{13}=\mathrm{C}_{23} ; \mathrm{C}_{44}=\mathrm{C}_{55} \neq \mathrm{C}_{66}$
- Isotropic in basal plane: $2 \mathrm{C}_{66}=\mathrm{C}_{11}-\mathrm{C}_{12}$
- all others zero

Graphical compliance components

$$
\varepsilon_{i j}=\Sigma_{k=x y z} \sum_{l=x y z} S_{i j k l} \sigma_{k l}
$$

$$
\begin{gathered}
S_{x x x x}=1 / E \quad S_{x x y y}=-v / E \quad S_{x x z z}=-v / E \\
S_{x x k l}=0 \text { for all other } \mathrm{kl}
\end{gathered}
$$

Voigt and Reuss averages

Voigt average = isostrain

Randomly oriented grains

$$
\begin{aligned}
E_{\text {Voigt }}= & \frac{\left(\bar{C}_{11}-\bar{C}_{12}+3 \bar{C}_{44}\right)\left(\bar{C}_{11}+2 \bar{C}_{12}\right)}{2 \bar{C}_{11}+3 \bar{C}_{12}+\bar{C}_{44}} \\
& \bar{C}_{11}=\frac{1}{3}\left(C_{11}+C_{22}+C_{33}\right) \\
& \bar{C}_{12}=\frac{1}{3}\left(C_{12}+C_{13}+C_{23}\right) \\
& \bar{C}_{44}=\frac{1}{3}\left(C_{44}+C_{55}+C_{66}\right)
\end{aligned}
$$

Voigt and Reuss averages

Reuss average $=$ isostress

Evoigt $>E_{\text {random polycrystal }}>E_{\text {Reuss }}$

Grain structure and texture

Ti / TiB metal-matrix composite

SEM backscatter: polish

(a)

SEM secondary e^{-}: deep etch

(b)

TiB: orthorhombic crystal

$$
C_{i j}=\left(\begin{array}{cccccc}
419 & 92 & 113 & 0 & 0 & 0 \\
92 & 523 & 63 & 0 & 0 & 0 \\
113 & 63 & 418 & 0 & 0 & 0 \\
0 & 0 & 0 & 196 & 0 & 0 \\
0 & 0 & 0 & 0 & 179 & 0 \\
0 & 0 & 0 & 0 & 0 & 220
\end{array}\right) \mathrm{GPa}
$$

$$
E_{\text {Voigt }}=442 \mathrm{GPa}
$$

$$
E_{\text {Reuss }}=435 \mathrm{GPa}
$$

$$
E_{\mathrm{Ti}}=110 \mathrm{GPa}
$$

$$
E_{\mathrm{Ti}+20 \% \mathrm{vol} \mathrm{TiB}}=153 \mathrm{GPa}
$$

S. Gorsse et al., Mat. Sci. Eng. A340, 80-87 (2003)
D. R. Trinkle, Scripta Mater. 56, 273-276 (2007)

Bovine femural bone: elastic constants

W. C. Buskirk et al., J. Biomech. Eng. 103, 67-72 (1981)

Composite $=$ matrix + reinforcement

Matrix: continuous phase

- transfers load to reinforcement
- protects reinforcement from environment

Types of matrix:

- MMC metal matrix composite: designed for plastic strain
- better yield stress, tensile strength, creep resistance
- CMC ceramic matrix composite: designed for fracture
- better toughness
- PMC polymer matrix composite: designed for elastic and plastic strain
- better modulus, yield stress, tensile strength, creep
- inexpensive, temperature range limited by polymer decomposition

Reinforcement: stronger, discontinuous phase

- carries significant portion of load
- classified by geometry

$\frac{10 y}{10 \mu \mathrm{~m}}$

Co matrix ($\mathrm{V}_{\mathrm{m}}=10-15 \%$)
WC particles
Spheroidite steel

Particle reinforcements

Ti/TiB MMC

$\overline{100 \mathrm{~nm}}$
Tire rubber
alpha-Ti (hcp)
TiB needles
S. Gorsse et al., Mat. Sci. Eng. A340, 80-87 (2003).

Fiber reinforcements: continuous, aligned

fracture surface

From F.L. Matthews and R.L. Rawlings, Composite Materials; Engineering and Science, Reprint ed., CRC Press, Boca Raton, FL, 2000. (a) Fig. 4.22, p. 145 (photo by J. Davies); (b) Fig. 11.20, p. 349 (micrograph by H.S. Kim, P.S. Rodgers, and R.D. Rawlings).

W. Funk et al., Met. Trans A19, 987-998 (1988).

Fiber reinforcements: discontinuous, random 33

carbon-carbon composite
Randomly oriented fibers layered in 2D, not continuous with composite

Determining mechanical behavior

Stress / strain response depends on

- material properties ($E, \mathrm{TS}, \sigma_{\mathrm{Y}}$) of matrix + reinforcement
- amount of matrix + reinforcement $\left(V_{\mathrm{m}}, V_{\mathrm{r}}=1-V_{\mathrm{m}}\right)$
- orientation of reinforcement relative to load
- size and distribution of reinforcement
- geometry (length of fibers, cross-sectional shape, aspect ratio)
Two limiting cases for analysis: isoload/isostress
isostrain

equal load in phases

equal strain in phases

Isostrain

equal length/strain in phases

$$
\begin{aligned}
\ell_{\text {reinforcement }} & =\ell_{\text {matrix }}=\ell_{\text {composite }} \\
\varepsilon_{\text {reinforcement }} & =\varepsilon_{\text {matrix }}=\varepsilon_{\text {composite }}
\end{aligned}
$$

shared load:

$$
\begin{aligned}
& F_{\mathrm{c}}=F_{\mathrm{m}}+F_{\mathrm{r}} \\
& \frac{F_{\mathrm{c}}}{A}=\frac{F_{\mathrm{m}}}{A}+\frac{F_{\mathrm{r}}}{A} \\
& \sigma_{\mathrm{c}}=\frac{F_{\mathrm{m}}}{A_{\mathrm{m}}} \frac{A_{\mathrm{m}}}{A}+\frac{F_{\mathrm{r}}}{A_{\mathrm{r}}} \frac{A_{\mathrm{r}}}{A} \\
& \sigma_{\mathrm{c}}=V_{\mathrm{m}} \sigma_{\mathrm{m}}+V_{\mathrm{r}} \sigma_{\mathrm{r}} \quad \text { ROM for stresses }
\end{aligned}
$$

Similar to Voigt average

Isoload / isostress

equal load/stress in phases

$$
\begin{aligned}
& F_{\text {reinforcement }}=F_{\text {matrix }}=F_{\text {composite }} \\
& \sigma_{\text {reinforcement }}=\sigma_{\text {matrix }}=\sigma_{\text {composite }}
\end{aligned}
$$

shared length: $\quad \ell_{\mathrm{c}}^{\prime}=\ell_{\mathrm{m}}^{\prime}+\ell_{\mathrm{r}}^{\prime}$

$$
\begin{aligned}
\ell_{\mathrm{c}}\left(1+\varepsilon_{\mathrm{c}}\right) & =\ell_{\mathrm{m}}\left(1+\varepsilon_{\mathrm{m}}\right)+\ell_{\mathrm{r}}\left(1+\varepsilon_{\mathrm{r}}\right) \\
1+\varepsilon_{\mathrm{c}} & =V_{\mathrm{m}}\left(1+\varepsilon_{\mathrm{m}}\right)+V_{\mathrm{r}}\left(1+\varepsilon_{\mathrm{r}}\right) \\
\varepsilon_{\mathrm{c}} & =V_{\mathrm{m}} \varepsilon_{\mathrm{m}}+V_{\mathrm{r}} \varepsilon_{\mathrm{r}} \quad \text { ROM for strains }
\end{aligned}
$$

Similar to Reuss average

Elastic moduli of the composite are constrained by two limits: isostrain and isoload

Empirical relations:

$$
E_{\mathrm{c}}=V_{\mathrm{m}} E_{\mathrm{m}}+K_{\mathrm{c}} V_{\mathrm{p}} E_{\mathrm{p}}
$$

$$
(\text { T.S. })_{\mathrm{c}}=V_{\mathrm{m}}(\text { T.S. })_{\mathrm{m}}+K_{\mathrm{s}} V_{\mathrm{p}}(\text { T.S. })_{\mathrm{p}}
$$

$$
K_{\mathrm{c}} \neq K_{\mathrm{s}}<1
$$

Orientation effects on tensile strength

Tensile stress not parallel to fibers has complex stress state:

3 limiting cases:

$$
\underline{\sigma}=\left(\begin{array}{cc}
\sigma \cos ^{2} \theta & \sigma \cos \theta \sin \theta \\
\sigma \cos \theta \sin \theta & \sigma \sin ^{2} \theta
\end{array}\right)
$$

1.small misorientation: limited by fiber failure ($\sigma_{\|}=\sigma \cos ^{2} \theta$)

$$
(\text { T.S. })_{\mathrm{c}}=\frac{\sigma_{\|}^{\star}}{\cos ^{2} \theta}
$$

2.large misorientation: limited by matrix tensile failure ($\sigma_{\perp}=\sigma \sin ^{2} \theta$)

$$
(\text { T.S. })_{\mathrm{c}}=\frac{\sigma_{\perp}^{\star}}{\sin ^{2} \theta}
$$

3.medium misorientation: limited by matrix shear failure ($\tau=\sigma \cos \theta \sin \theta$)

$$
(\text { T.S. })_{c}=\frac{\tau_{\mathrm{m}, \mathrm{y}}}{\cos \theta \sin \theta}
$$

Orientation effects on tensile strength

Tensile stress not parallel to fibers has complex stress state:
3 limiting cases:

$$
\underline{\sigma}=\left(\begin{array}{cc}
\sigma \cos ^{2} \theta & \sigma \cos \theta \sin \theta \\
\sigma \cos \theta \sin \theta & \sigma \sin ^{2} \theta
\end{array}\right)
$$

Orientation effects on tensile strength

Tensile stress not parallel to fibers has complex stress state:

Some limitations:

$$
\underline{\sigma}=\left(\begin{array}{cc}
\sigma \cos ^{2} \theta & \sigma \cos \theta \sin \theta \\
\sigma \cos \theta \sin \theta & \sigma \sin ^{2} \theta
\end{array}\right)
$$

1.Predicts that tensile strength increases for small misorientation.
2. Predicts "cusps" in strength vs. misorientation angle.
3.Doesn't account for multiaxial loading effects.

Solution: Tsai-Hill failure criterion:

$$
\begin{gathered}
\left(\frac{\sigma_{\|}}{\sigma_{\|}^{\star}}\right)^{2}-\left(\frac{\sigma_{\|} \sigma_{\perp}}{\sigma_{\perp}^{\star 2}}\right)+\left(\frac{\sigma_{\perp}}{\sigma_{\perp}^{\star}}\right)^{2}+\left(\frac{\tau}{\tau_{\mathrm{m}, \mathrm{y}}}\right)^{2}=1 \\
(\text { T.S. })_{\mathrm{c}}= \\
{\left[\frac{\cos ^{4} \theta}{\sigma_{\|}^{\star 2}}+\frac{\sin ^{4} \theta}{\sigma_{\perp}^{\star 2}}+\cos ^{2} \theta \sin ^{2} \theta\left(\frac{1}{\tau_{\mathrm{m}, \mathrm{y}}^{2}}-\frac{1}{\sigma_{\|}^{\star 2}}\right)\right]^{-1 / 2}}
\end{gathered}
$$

Orientation effects on tensile strength

