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Motivation: Rat Tumor Data
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Rat Tumor Example

Rats have been used in many experiments to evaluate the effect of drugs on
development of tumors.

Tumors may develop even if no drug is administered (zero dose).

What is the baseline probability of a tumor?

A survey of 71 different experiments is conducted, recording

I Number of rats in control (zero-dose) group

I Number of control group rats developing a tumor

2



Let

nj = total number of rats in control group of experiment j

yj = number in control group of experiment j that develop a tumor

j = 1, . . . , 71

Data pairs (yj, nj):

(0, 20), (0, 20), (0, 20), . . . , (9, 24), (4, 14)
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Assume nj fixed, but yj random.

If control group rats in experiment j develop tumors independently, and with the
same probability,

yj ∼ Bin(nj, ? )

If
θj = control-group tumor probability in experiment j

then
yj | θj ∼ Bin(nj, θj)
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If there was only one experiment, could use methods described at GLM

What can we do with data from several experiments?
What assumptions should we make?

Three options:

1. Same probability for all experiments (θj = θ)

2. Completely unrelated probabilities for different experiments

3. Compromise: Distinct, but related, probabilities
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Option 1: Common Probability θ

Just pool data into one binomial sample:

y1 + · · · + y71 | θ ∼ Bin(n1 + · · ·+ n71, θ)

Give a prior to θ (e.g., beta distribution), and compute posterior.

Drawbacks:

I Contradicted by data (results not shown here)

I No way to assess variability among experiments
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Option 2: Unrelated Probabilities θj

Analyze each experiment separately (with its own prior).

Drawbacks:

I Limited by precision of each individual experiment

I No Bayesian way to answer questions about overall probability

I No way to predict result of a new experiment
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Option 3: Compromise

Allow separate tumor probabilities

θ1, . . . , θ71

but assume they have something in common.

Idea: Regard the experiments as if sampled from a population of possible
experiments.

Then the θjs are independently random from a common (population) distribution.
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Advantages:

I Can define “overall” probability of tumor

I Can assess variability among experiments

I Can possibly improve estimation of individual θjs through a more
informative prior (by pooling information across experiments – later)

But distribution of θjs is unknown.

Need a higher-level model to make inference based on the data.

Leads to idea of hierarchical models ...
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Hierarchical Model for Rat Tumors
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Recall

nj = total number of rats in control group of experiment j

yj = number in control group of experiment j that develop a tumor

θj = control-group tumor probability in experiment j

j = 1, . . . , 71

yj | θj ∼ Bin(nj, θj)

Seek to model θjs as if independent from same distribution.
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Natural parametric choice for a distribution of probabilities:

Beta(α, β) α > 0, β > 0

Continuous, and gives probability 1 to interval (0, 1)

Recall density:

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1 (1− θ)β−1 0 < θ < 1

(U(0, 1) is a special case: α = β = 1)

So try
θj ∼ Beta(α, β)
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Some
Beta(α, β)
densities:

From: Beta distribution. (2017, May 29). In Wikipedia, The Free Encyclopedia. Retrieved
June 2, 2017 from https:

//en.wikipedia.org/w/index.php?title=Beta_distribution&oldid=782786187
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Model now has two levels:

I Lower level:
yj | θj ∼ Bin(nj, θj)

I Higher level:
θj ∼ Beta(α, β)

Called a hierarchical (or multilevel) model
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Call α and β hyperparameters.

How to choose them?

I Guess (subjective)

I Use prior information (if available)

I Estimate from data (“empirical Bayes”)

I Give them a prior distribution (“hierarchical Bayes”)

A prior on hyperparameters is a hyperprior.

15



How to choose a hyperprior for α > 0 and β > 0?

No natural (conjugate) choice

Want something that is

I Convenient to specify and use

I Not too informative
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For example:
α, β ∼ iid Expon(λ) some λ > 0

so that

p(α, β) = p(α) p(β) = λe−λα · λe−λβ α > 0, β > 0

This can be made less informative (flatter) by choosing λ closer to zero.
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Alternative suggestion:

p

(
α

α + β
, (α + β)−1/2

)
∝ 1 0 <

α

α + β
< 1, (α + β)−1/2 > 0

Motivation:

α

α + β
= E(θj | α, β) = µ

(α + β)−1/2 ≈

√
var(θj | α, β)

µ(1− µ)

Note: Improper, but can be shown to give proper posterior
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Warning: Using improper hyperpriors can be dangerous (example in BDA3).

Must be able to verify posterior is proper
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Independence Assumptions

Natural to assume different experiments are independent (different times,
different places, different researchers, ...)

So pairs
(y1, θ1), (y2, θ2), . . . , (y71, θ71)

are conditionally independent of each other, given the population of experiments
(i.e., given α and β).

Thus θjs are conditionally independent, given α and β.

We also assume yj is conditionally independent of α and β, given θj.
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Can express these relationships through the joint density:

p
(
{yj}, {θj}, α, β

)
= p(α, β) p

(
{yj}, {θj} | α, β

)
= p(α, β)

71∏
j=1

p(yj, θj | α, β)

= p(α, β)
71∏
j=1

p(θj | α, β) p(yj | θj, α, β)

= p(α, β)
71∏
j=1

p(θj | α, β) p(yj | θj)
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Technically more precise to write

{yj} | {θj}, α, β ∼ indep. Bin
(
{nj}, {θj}

)

For simplicity just write
yj | θj ∼ Bin(nj, θj)

Conditional independence assumptions are implicit.
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Similarly, more precise to write

{θj} | α, β ∼ iid Beta(α, β)

For simplicity just write

θj | α, β ∼ Beta(α, β)

Conditional independence assumption is implicit.

23



Putting it all together:

yj | θj ∼ Bin(nj, θj)

θj | α, β ∼ Beta(α, β)

α, β ∼ some joint distribution

Is there a representation that makes hierarchical structure more obvious?
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Graphical Models

The figure on the right represents a graphical model.

Variables are nodes and connections are edges.

It is a directed acyclic graph (DAG): All edges are
arrows in one direction, and there are no cycles.

Each variable in a circled node is random. If the circle is
shaded, the variable is observed (data).

The rounded rectangle is a plate: All nodes on the plate
represent variables that are vectors of length J .

y

θα

β

J
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Each edge is from a parent to a child.

E.g., θ is a child of parents α and β.

In a hierarchical representation, a child’s distribution is
specified conditionally on its parents only.

Top-level variables (α and β) have distributions specified
unconditionally (marginally). They are (marginally)
independent if they occupy different nodes.

y

θα

β

J
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On a plate, different elements of the vector variables are
assumed conditionally independent (given the parents).

E.g., the θjs are conditionally independent given α and β.

A parent-child dependence on a plate usually indicates that
each child element conditionally depends only on the
corresponding parent element.

E.g., yj (conditionally) depends only on θj.

y

θα

β

J
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Compare:

yj | θj ∼ Bin(nj, θj) j = 1, . . . , J

θj | α, β ∼ Beta(α, β) j = 1, . . . , J

α, β ∼ indep. Expon(λ) y

θα

β

J
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Alternative model:

yj | θj ∼ Bin(nj, θj) j = 1, . . . , J

θj | α, β ∼ Beta(α, β) j = 1, . . . , J

φ1 =
α

α + β
∼ U(0, 1)

φ2 = (α + β)−1/2 ∼ flat on (0,∞) y

θ

α β

φ1 φ2

J
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Double arrows represent deterministic relationships.

Nodes α and β are deterministic: Defined as an exact
function of their parents.

All other nodes are stochastic: Defined in terms of a
distribution. Their parents (if any) define parameters of
the distribution.

y

θ

α β

φ1 φ2

J
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If a proper prior is used, then DAG models are well-defined – joint distribution
exists and is unique.

Advice: Always make sure your model is a DAG model (unless you really know
what you are doing).
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Bayesian Simulation Software

BUGS: Bayesian inference Using Gibbs Sampling – software project

I WinBUGS

I OpenBUGS – Windows, Linux, Mac (under Wine)

I JAGS: Just Another Gibbs Sampler

All attempt to automate posterior simulation, requiring only a DAG model to be
specified.
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BUGS Modeling Languages

BUGS project developed specialized language for model specification, based on
DAG models.

JAGS uses a variant of this language.

We will use the JAGS variant, described in manual here:
https://sourceforge.net/projects/mcmc-jags/files/
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Compare:

yj | θj ∼ Bin(nj, θj) j = 1, . . . , J

θj | α, β ∼ Beta(α, β) j = 1, . . . , J

α, β ∼ indep. Expon(0.001)

model {

for (j in 1:J) {

y[j] ~ dbin(theta[j], n[j])

theta[j] ~ dbeta(alpha, beta)

}

alpha ~ dexp(0.001)

beta ~ dexp(0.001)

}

In JAGS, “~” defines a stochastic relation: Variable on the left-hand side is a
stochastic node.

Note parameterization of dbin. Always check JAGS manual!
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Consider this alternative model:

φ1 =
α

α + β
∼ U(0, 1)

φ2 = (α + β)−1/2 ∼ U(0, 1000)

α = φ1/φ
2
2

β = (1− φ1)/φ
2
2

model {

for (j in 1:J) {

y[j] ~ dbin(theta[j], n[j])

theta[j] ~ dbeta(alpha, beta)

}

alpha <- phi1 / phi2^2

beta <- (1-phi1) / phi2^2

phi1 ~ dunif(0,1)

phi2 ~ dunif(0,1000)

}

In JAGS, “<-” defines a deterministic relation: Variable on left-hand side is a
deterministic (or logical) node.
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Notes about JAGS:

I Statements within a block may be listed in any order.

I Improper priors are not allowed.

I Data values are not allowed for deterministic nodes.

I See full manual for definitions of distributions.
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Running JAGS in R
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Rat Tumor Example

nj = total number of rats in control group of experiment j

yj = number in control group of experiment j that develop a tumor

θj = control group tumor probability in experiment j

j = 1, . . . , 71
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Data in file rattumor.txt:

# Rat tumor data from Tarone (1982). Data from Table 5.1 of Bayesian

# Data Analysis.

# From: http://www.stat.columbia.edu/~gelman/book/data/rats.asc

y N

0 20

0 20

0 20

0 20

0 20

...

9 24

4 14
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> d <- read.table("rattumor.txt", header=TRUE)

> head(d)

y N

1 0 20

2 0 20

3 0 20

4 0 20

5 0 20

6 0 20

> summary(d)

y N

Min. : 0.000 Min. :10.00

1st Qu.: 1.000 1st Qu.:19.00

Median : 3.000 Median :20.00

Mean : 3.761 Mean :24.49

3rd Qu.: 5.000 3rd Qu.:22.50

Max. :16.000 Max. :52.00
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A naive estimate of θj:

θ̂j = yj/nj

Histogram of θ̂js:

> with(d, hist(y/N, freq=FALSE, xlim=c(0,1)))
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Histogram of y/N
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Model

First try this hierarchical model:

yj | θj ∼ Bin(nj, θj)

θj | α, β ∼ Beta(α, β)

α, β ∼ indep. Expon(λ)

Choosing λ near zero makes hyperprior flatter (more diffuse).

Later: Choosing λ too small can lead to problems.
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JAGS model specification in file rattumor1.bug:

model {

for (j in 1:length(y)) {

y[j] ~ dbin(theta[j], N[j])

theta[j] ~ dbeta(alpha, beta)

}

alpha ~ dexp(0.001)

beta ~ dexp(0.001)

}

I Using λ = 0.001

I JAGS allows use of length function.
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Using rjags

First install JAGS (Windows, Mac OS X, Linux):

http://mcmc-jags.sourceforge.net

We will use R package rjags to access JAGS within R:

> install.packages("rjags")

Now make it available to use:

> library(rjags) # automatically loads coda package

Loading required package: coda

Linked to JAGS 4.3.0

Loaded modules: basemod,bugs
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Now create a JAGS model object from model in file rattumor1.bug and data in
data frame d:

> m <- jags.model("rattumor1.bug", d)

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph information:

Observed stochastic nodes: 71

Unobserved stochastic nodes: 73

Total graph size: 216

Initializing model

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100%
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Object m defines an iterative random sampling scheme (more later).

First run it for many iterations until it becomes reliable:

> update(m, 2500) # burn-in

|**************************************************| 100%

Then run it for many more iterations, storing samples from selected nodes:

> x <- coda.samples(m, c("alpha","beta"), n.iter=10000)

|**************************************************| 100%

Now x is a special object containing posterior samples of α and β.
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> head(x)

[[1]]

Markov Chain Monte Carlo (MCMC) output:

Start = 3501

End = 3507

Thinning interval = 1

alpha beta

[1,] 5.204525 33.83398

[2,] 5.092650 32.32364

[3,] 4.945052 32.34294

[4,] 5.384586 29.77359

[5,] 5.831973 29.91007

[6,] 5.660368 29.43142

[7,] 5.809329 31.59240

attr(,"class")

[1] "mcmc.list"
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Converting x to a matrix makes the variates easier to access:

> head(as.matrix(x))

alpha beta

[1,] 5.204525 33.83398

[2,] 5.092650 32.32364

[3,] 4.945052 32.34294

[4,] 5.384586 29.77359

[5,] 5.831973 29.91007

[6,] 5.660368 29.43142
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Rat Tumor Results
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Recall:

I Rat tumor hierarchical model with (diffuse) independent exponential
hyperpriors

I Run JAGS model in R using rjags package

I x has posterior samples of α and β.

Now to analyze results ...
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> summary(x)

Iterations = 3501:13500

Thinning interval = 1

Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

alpha 3.427 1.360 0.01360 0.1453

beta 20.496 8.053 0.08053 0.8360

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

alpha 1.595 2.447 3.156 4.09 6.871

beta 9.722 14.599 18.946 24.40 41.474
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Information from summary:

E(α | y) ≈ 3.4
√

var(α | y) ≈ 1.4

E(β | y) ≈ 20
√

var(β | y) ≈ 8

Approx. 95% central posterior intervals:

α : (1.6, 6.9) β : (9.7, 41)
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Get estimated posterior densities of α and β:

> require(lattice)

Loading required package: lattice

> densityplot(x)

54



D
en

si
ty

0.
0

0.
1

0.
2

0.
3

2 4 6 8 10

alpha

0.
00

0.
02

0.
04

0.
06

0 10 20 30 40 50 60

beta

55



Examine joint posterior distribution of α and β:

> alpha <- as.matrix(x)[,"alpha"]

> beta <- as.matrix(x)[,"beta"]

> plot(alpha, beta, pch=".", cex=2)
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May be more meaningful to graph α/β and α + β, and to use log scales:

> plot(log(alpha/beta), log(alpha+beta), pch=".", cex=2)

(See BDA3, Sec. 5.3.)
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Were exponential hyperpriors diffuse enough?

Try different (less informative?) prior ...
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Alternative Model

Recall flat hyperprior proposed in BDA3, Sec. 5.3:

p(φ1, φ2) ∝ 1 φ1 =
α

α + β
∈ (0, 1) φ2 = (α + β)−1/2 ∈ (0,∞)

Solving,
α = φ1/φ

2
2 β = (1− φ1)/φ

2
2

Approximate that improper hyperprior by a wide but proper one:

φ1 ∼ U(0, 1) φ2 ∼ U(0, 1000) independent
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File rattumor2.bug:

model {

for (j in 1:length(y)) {

y[j] ~ dbin(theta[j], N[j])

theta[j] ~ dbeta(alpha, beta)

}

alpha <- phi1 / phi2^2

beta <- (1-phi1) / phi2^2

phi1 ~ dunif(0,1)

phi2 ~ dunif(0,1000)

}
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Try to run JAGS (in R using rjags) as before:

> m <- jags.model("rattumor2.bug", d)

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph information:

Observed stochastic nodes: 71

Unobserved stochastic nodes: 73

Total graph size: 223

Initializing model

|+++++++++++++ | 26%

Error: Error in node phi1

Slicer stuck at value with infinite density
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Origin of error is obscure, relating to misbehavior of a built-in “sampler” in JAGS.

Three options:

I Make hyperprior on φ2 more informative:

phi2 ~ dunif(0,10)

I Truncate the beta distribution away from its problematic endpoints:

theta[j] ~ dbeta(alpha, beta) T(0.0001,0.9999)

I Turn off the sampler causing the problem.
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We choose the third option. Turning off a sampler generally causes JAGS to fall
back on another sampler that may not have the same problem.

In R:

> set.factory("bugs::BinomSlice","sampler",FALSE)
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Now try again:

> m <- jags.model("rattumor2.bug", d)

...

> update(m, 2500)

|**************************************************| 100%

> x <- coda.samples(m, c("alpha","beta"), n.iter=10000)

|**************************************************| 100%
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Plot posterior jointly distributed samples of α/β and α + β, on log scales:

> alpha <- as.matrix(x)[,"alpha"]

> beta <- as.matrix(x)[,"beta"]

> plot(log(alpha/beta), log(alpha+beta), pch=".", cex=2)

Compare BDA3, Fig. 5.3.

(Also compare with previous model results – try yourself.)
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Try also a contour plot of estimated joint posterior density:

> library(MASS)

> contour(kde2d(log(alpha/beta), log(alpha+beta)))

Compare BDA3, Fig. 5.3.

69



 0.5 

 1 

 1.5 

 2 

 2
.5

 

 3 

 3.5 

 4 

−2.2 −2.0 −1.8 −1.6 −1.4

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

70



Now consider the posterior predictive distribution of θ̃, the tumor probability for a
“new” experiment, exchangeable with the others.

Can directly simulate θ̃ using posterior α and β samples:

> thetatilde <- rbeta(10000, alpha, beta)

Then plot as histogram, on same plot with naive empirical histogram:

> with(d, hist(y/N, freq=FALSE, main="", xlim=c(0,1)))

> hist(thetatilde, freq=FALSE, density = 10, col="blue", border="blue",

+ add=TRUE)
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We can add θ̃ to the DAG.

Note that it is a single (scalar) node with no
observed descendants. It is conditionally
independent of θ, given its parents (α and β).

Since θ̃ is just another node, we can alternatively
simulate it using JAGS ...

y

θ θ̃

α β

φ1 φ2

J
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model {

for (j in 1:length(y)) {

y[j] ~ dbin(theta[j], N[j])

theta[j] ~ dbeta(alpha, beta)

}

thetatilde ~ dbeta(alpha, beta)

alpha <- phi1 / phi2^2

beta <- (1-phi1) / phi2^2

phi1 ~ dunif(0,1)

phi2 ~ dunif(0,1000)

}
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Remark:

Since JAGS uses simulation, seeded differently each time, you should expect
slightly different results in each run.

Setting an R seed does not set the JAGS seed.

To set the JAGS seed, see the JAGS manual.
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