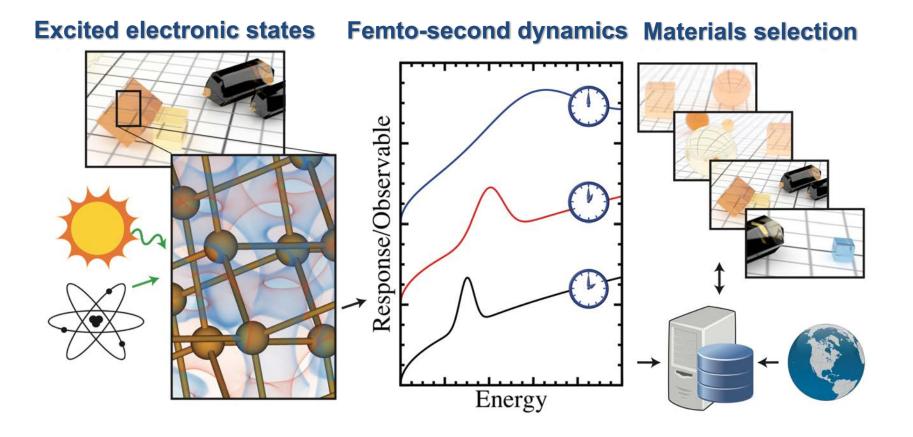

Materials Selection for Semiconductor Heterojunctions

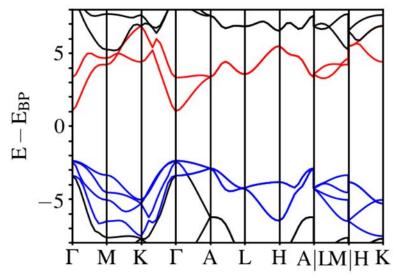

1

Energy discontinuities at interface for band offsets

Andre Schleife @ MatSE @ UIUC • Email: schleife@illinois.edu • Web: http://schleife.matse.illinois.edu • 🏏 @aschleife

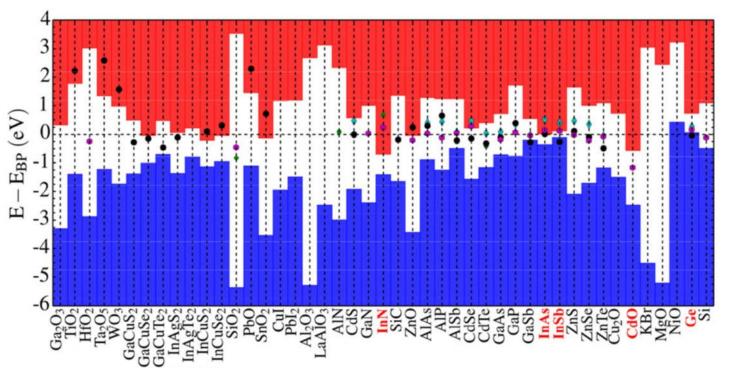
Why ... Materials selection?

"Pushing The Frontiers Of Modeling Excited Electronic States And Dynamics To Accelerate Materials Engineering And Design", K. Kang, A. Kononov, C.-W. Lee, J.A. Leveillee, E. Shapera, X. Zhang, A. Schleife, Comp. Mat. Sci. **160**, 207–216 (2019); Finalist "Rising Stars in Computational Materials Science"


Heterojunctions: Branch-point energy

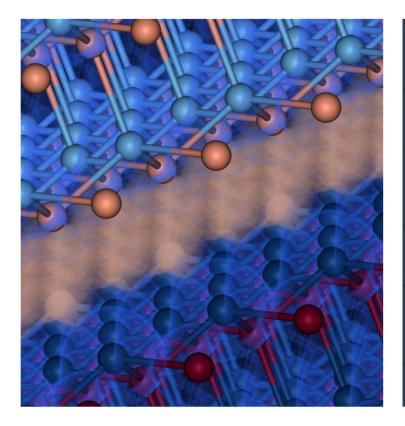
- Experimentally and computationally difficult to determine how bands bend and align at interface between materials
- Calculate alignment with branch point energy from online electronic structure data in existing databases

$$E_{BP} = \frac{1}{2N_{k}} \left(\frac{1}{N_{c}} \sum_{c_{i}}^{N_{c}} \varepsilon_{c_{i}}^{\text{QP}}(\boldsymbol{k}) + \frac{1}{N_{v}} \sum_{v_{i}}^{N_{v}} \varepsilon_{v_{i}}^{\text{QP}}(\boldsymbol{k}) \right)$$


- Band gap corrected with two-tiered scheme
 - Use experimental values if available
 - Linear band-gap correction (Curtarolo) otherwise: $E_g^{corr} = 1.348E_g^{DFT} + 0.913 \text{ eV}$
- Use Brus equation for nanocrystals: $\Delta E_g = \frac{\hbar^2 \pi^2}{2R^2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*} \right)$

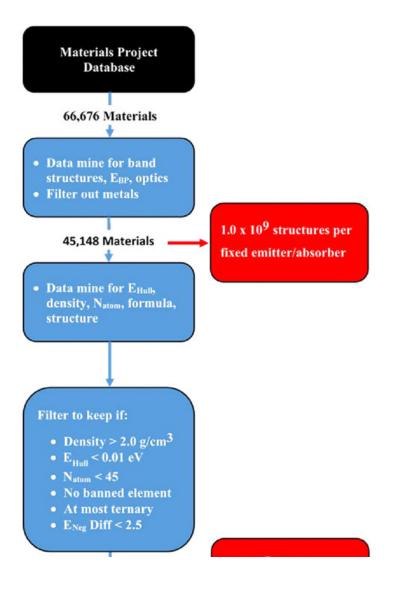
E. Shapera and A. Schleife; Adv. Theor. and Simulations 1, 1800075 (2018)

Heterojunctions: Branch-point energy

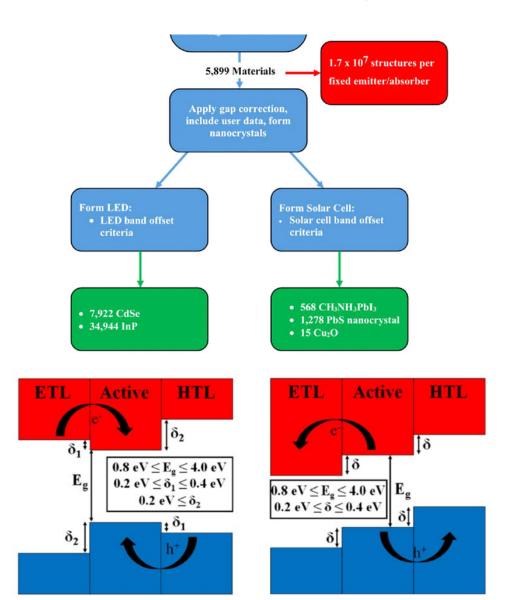


- Visual comparison of band alignment to different experimental (purple, black) and theoretical techniques (green, cyan), 45 semiconductors
- Comparing to Exp. for 21 materials: Mean absolute error = 0.19 eV
- Vacuum-level alignment for 17 materials: MAE = 0.28 eV (us: 0.12 eV)
- Hydrogen-level alignment: MAE = 0.32 eV (us: 0.31 eV)

E. Shapera and A. Schleife; Adv. Theor. and Simulations 1, 1800075 (2018)

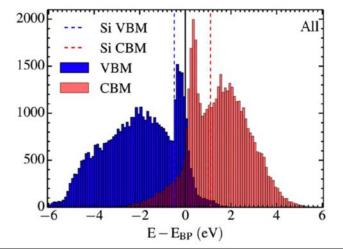

Semiconductor heterojunctions: Results

Semiconductor Heterojunctions: Materials selection



- Data-mine Materials Project database for electronic, crystal properties
- Filtering based on experimental criteria

E. Shapera and A. Schleife; Adv. Theor. and Simulations (2018)


Semiconductor Heterojunctions: Materials selection

- Impose band offset requirements, determined by application
- Layered structure of semiconductors, electron transport layer, active layer, and hole transport layer
- Rank by figure of merit: Drude model conductivity
- Published as jupyter notebook

E. Shapera and A. Schleife; Adv. Theor. and Simulations (2018)

Semiconductor Heterojunctions

•	More than 500 materials available for any
	branch-point energy between 0 and 3.5
	eV below the CBM as well as 0 and 4.3
	eV above the VBM

Many candidates! Explore?

Example	Binary	Ternary
LED (CdSe)	264	7922
LED (InP)	1764	34 944
Solar Cell (CH3NH3PbI3)	144	568
Solar Cell (PbS nanoparticle $R = 5$ nm)	212	1278
Solar Cell (Cu ₂ O HTL)	4	15

_	Example	ETL	Active	HTL
	LED	Ca ₃ N ₂ , Mg ₃ N ₂ , ZnSeO ₄	CdSe	CdS, ^[83] WO ₃ , ^[84] MoO ₃ , ^[85] SiC ^[86]
	LED	ZnSe, ^[87] Cul, NaBiS ₂ ^[88]	InP	GaSe, V ₂ O ₅ , ^[89] SrCuO ₂ ^[90]
	Solar cell	WO ₃ , In ₂ S ₃ ^[91]	CH ₃ NH ₃ PbI ₃	Mn ₃ O ₄ , Cr ₂ O ₃ ^[92]
	Solar cell	PdS, Fe ₃ Si ^[93]	PbS, $R = 5 \text{ nm}$	MnP, Cr ₃ S ₄
	Solar cell	$Ca_2Cu_2O_5$	CdS ^[94]	Cu ₂ O

- Found materials that are actually used in practice!
- Found new candidates! Test?
- Problems: Sensitively depends on band-gap correction, branchpoint energy, and alignment criteria
- Currently: Fixable by user input

E. Shapera and A. Schleife; Adv. Theor. and Simulations 1, 1800075 (2018)