Quantum Mechanics Methods

Short Review of Quantum Mechanics

Why do we need quantum mechanics?

- Bonding and structure
- Electronic, magnetic and optical properties of materials
- Chemistry and reactions

Standard model of matter

- Matter consists of atoms
- Atoms consist of
 - Massive, point-like nuclei (protons + neutrons)
 - That are surrounded by tightly bound core electrons
 - And held together in molecules, liquid and solids by the bonds formed by valence electrons

Solute trends in Mg alloys: basal strengthening

Basal potency: increase in basal CRSS with concentration

- correlated with size and basal stacking fault energy change
- derived for dilute limit, zero temperature pinning

Η	F												He				
Li 11.65	Be 0 Basal Potency $\Delta \tau_{CRSS} / \sqrt{c_s}$ (MPa) 0 302											В	С	Ν	0	F	Ne
Na 25.55	Mg	Mg										Al 20.89	Si 44.06	Р	S	C1	Ar
K 165.11	Ca 107.13	Sc 15.77	Ti 14.13	V 49.62	Cr 78.72	Mn 101.47	Fe 116.49	Co 124.56	Ni 112.51	Cu 69.38	Zn 31.90	Ga 20.68	Ge 27.97	As 41.20	Se	Br	Kr
Rb 243.78	Sr 201.30	Y 90.62	Zr 9.76	Nb 28.45	Mo 77.47	Tc 113.74	Ru 134.74	Rh 139.53	Pd 104.84	Ag 43.65	Cd 6.97	In 5.29	Sn 12.78	Sb 23.69	Te	Ι	Xe
Cs 301.49	Ba 295.85	*	Hf 1.36	Ta 36.50	W 90.79	Re 128.77	Os 156.06	Ir 156.92	Pt 124.93	Au 66.15	Hg 12.85	Tl 12.56	Pb 31.83	Bi 51.66	Ро	At	Rn

lanides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
*lanth	185.66	172.39	122.20	149.47	111.04	112.50	117.29	109.08	93.45	85.96	77.80	72.51	76.17	101.76	

Solute trends in Mg alloys: prismatic softening

Prismatic potency: maximum possible cross-slip softening

- correlated with prismatic stacking fault energy reduction (except Li)
- strictly for random binary solute distribution

Η																	Не
Li 0.48	Be -3.2 0 15.0										В	С	Ν	Ο	F	Ne	
Na 5.29	Mg	1g hardens								ens		Al -2.59	Si -2.30	Р	S	Cl	Ar
K 8.14	Ca 10.07	Sc 4.36	Ti -2.02	V -3.19	Cr -2.83	Mn -2.29	Fe -2.27	Co -1.95	Ni -1.77	Cu -2.23	Zn -2.60	Ga -2.64	Ge -2.44	As -2.28	Se	Br	Kr
Rb 7.07	Sr 13.23	Y 11.13	Zr 4.28	Nb -2.83	Mo -2.90	Tc -2.41	Ru -1.99	Rh -1.78	Pd -1.87	Ag -2.39	Cd -2.86	In -2.94	Sn -2.65	Sb -2.29	Te	Ι	Xe
Cs 5.02	Ba 12.13	*	Hf 3.97	Ta -3.05	W -2.66	Re -2.18	Os -1.92	Ir -1.77	Pt -1.91	Au -2.23	Hg -2.67	T1 -3.08	Pb -2.77	Bi -2.45	Ро	At	Rn

Solute trends in Mg alloys: c+a softening

Change in pyramidal $(1\overline{1}01)$ stacking fault with addition of solute

- size, valency change, localization / delocalization of orbitals
- changes to Mg local electronic structure (3s and 2p)

Η	softening + hardening													Не			
Li 0.09	Be 0.35	Pyramidal misfit 2 -1.11 0 1.11											С	N	0	F	Ne
Na -0.19	Mg	Лg											Si 0.28	Р	S	Cl	Ar
K -0.65	Ca -0.39	Sc 0.08	Ti 0.42	V 0.63	Cr 0.75	Mn 0.81	Fe 0.81	Co 0.73	Ni 0.54	Cu 0.37	Zn 0.21	Ga 0.17	Ge 0.21	As 0.11	Se	Br	Kr
Rb -0.86	Sr -0.62	Y -0.19	Zr 0.28	Nb 0.64	Mo 0.89	Tc 1.00	Ru 1.00	Rh 0.84	Pd 0.57	Ag 0.31	Cd 0.09	In -0.02	Sn -0.02	Sb -0.07	Te	Ι	Xe
Cs -1.03	Ba -0.84	*	Hf 0.29	Ta 0.67	W 0.93	Re 1.08	Os 1.11	Ir 0.98	Pt 0.67	Au _{0.41}	Hg 0.12	T1 -0.10	Pb -0.14	Bi -0.20	Ро	At	Rn

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
-0.45	-0.26	-0.26	-0.30	-0.52	-0.50	-0.41	-0.50	-0.20	-0.18	-0.17	-0.16	-0.47	-0.40	

Solute trends in Mg alloys: effect on slip

Multiple misfits (changes in SFE) and potencies (changes in slip)

- pyramidal fault energies needed for (c+a) slip
- combined effects even more important

Example of high-throughput

Short Review of Quantum Mechanics

Wave-particle duality

• Planck's uncertainty relationship

$$\lambda \cdot p = h$$

Schrödinger equation

• Time dependent

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},t) + V(\mathbf{r},t)\Psi(\mathbf{r},t) = i\hbar\,\frac{\partial\Psi(\mathbf{r},t)}{\partial t}$$

Exercise for Schrödinger equation

- 1) List as many mathematical characteristics of the Schrödinger equation as you can think of.
 - Think: Quadratic?, Homogeneous? etc.

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},t) + V(\mathbf{r},t)\Psi(\mathbf{r},t) = i\hbar\,\frac{\partial\Psi(\mathbf{r},t)}{\partial t}$$

Exercise for Schrödinger equation

2) Solve the Schrödinger equation by separation of variables

$$-\frac{\hbar^2}{2m}\nabla^2\Psi(\mathbf{r},t) + V(\mathbf{r},t)\Psi(\mathbf{r},t) = i\hbar\,\frac{\partial\Psi(\mathbf{r},t)}{\partial t}$$

$$\Psi(\mathbf{r},t) = \varphi(\mathbf{r}) \cdot f(t)$$

Solutions of the Schrödinger Equation (1)

Free particle

• $V(\mathbf{r}) = 0 \implies$ Solutions are plane waves

$$\Psi_k(\mathbf{r}, t) = \exp\left(i\,\mathbf{k}\cdot\mathbf{r} - \omega t\right)$$
$$E_k = \frac{\hbar^2 k^2}{2m} = \omega\hbar$$

Harmonic oscillator

$$V(x) = \frac{1}{2}k x^{2}$$

$$\varphi_{n}(x) = c_{n} \cdot \exp\left(-\frac{m\omega^{2}x^{2}}{2\hbar}\right) \cdot H_{n}\left(\sqrt{\frac{m\omega}{\hbar}}x\right)$$

$$E_{n} = \left(n + \frac{1}{2}\right)\hbar\omega$$

Solutions of the Schrödinger Equation (2)

Infinite square well

• Plane waves that vanish at the boundary

$$V(x) = \begin{cases} 0 & \text{if } 0 < x < a & \frac{16}{14} \\ \infty & \text{otherwise} & \frac{17}{12} \\ \prod_{n=1}^{n=3} \\ E_n & = \frac{\hbar^2 \pi^2 n^2}{2ma^2} & \frac{16}{14} \\ \prod_{n=1}^{n=3} \\ \prod_{n=1}^{n=3} \\ 0 \\ \end{bmatrix} \xrightarrow{n=1} \\ n=1 \\ 0 \\ x \\ n=1 \\ n=1 \\ 0 \\ x \\ n=1 \\ n=$$

Т

Solutions of the Schrödinger Equation (3)

Metal surface

• Potential step \Rightarrow Plane wave inside metal, exponential decay outside

Spherical Symmetry

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
$$= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}$$

Separation of variables

$$\Psi_{nlm}(\mathbf{r}) = R_{nl}(r) \cdot Y_{lm}(\theta,\varphi)$$

Equation for radial wave functions

$$\left[-\frac{\hbar^2}{2m}\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr}\right) + \frac{l(l+1)\hbar^2}{2mr^2} + V(r)\right]R_{nl}(r) = ER_{nl}(r)$$

The Periodic System of Elements

http://www.orbitals.com/orb/orbtable.htm

Matrix Formulation

k

n=1

Expand wave function in set of *n* orthogonal functions $|\psi\rangle = \sum c_n |\varphi_n\rangle$

Plugging this solution into the Schrödinger equation yields and multiplying with function φ_m yields $\frac{\langle \varphi | \mathcal{H} | q \rangle}{\langle \varphi | \mathcal{H} | q \rangle} = E \langle \varphi | q \rangle$

$$\langle \varphi_m | \mathcal{H} | \psi \rangle = E \langle \varphi_m | \psi \rangle$$

$$\sum_{n=1}^k c_n \langle \varphi_m | \mathcal{H} | \varphi_n \rangle = E c_m$$

$$\left(\begin{array}{ccc} H_{11} & \cdots & H_{1k} \\ \vdots & & \vdots \\ H_{k1} & \cdots & H_{kk} \end{array} \right) \cdot \left(\begin{array}{c} c_1 \\ \vdots \\ c_k \end{array} \right) = E \left(\begin{array}{c} c_1 \\ \vdots \\ c_k \end{array} \right)$$

Atomic Units

Quantity	Name	Symbol	SI value
Energy	Hartree energy	Ha	4.359 744 17(75)×10 ⁻¹⁸ J
Length	Bohr radius	a_0	5.291 772 108(18)×10 ⁻¹¹ m
Mass	Electron rest mass	me	9.109 3826(16)×10-31 kg
Electric charge	Elementary charge	e	1.602 176 53(14)×10 ⁻¹⁹ C
Electrostatic force constant	Coulombs constant	$1/4\pi\epsilon_0$	8.9875516×10 ⁹ C ⁻² Nm ²

The Many-Electron Problem

$$\left[-\frac{1}{2}\sum_{i=1}^{n}\nabla_{i}^{2}-\sum_{i=1}^{n}\frac{Z}{r_{i}}+\sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\frac{1}{|\mathbf{r}_{i}-\mathbf{r}_{j}|}\right]\psi(\mathbf{r}_{1},\ldots,\mathbf{r}_{n})=E\psi(\mathbf{r}_{1},\ldots,\mathbf{r}_{n})$$

Example: Fe atom

- Fe has 26 electrons \Rightarrow wave function has $3 \times 26 = 78$ variables
- Store wave function on a grid
- Use a coarse grid of only 10 points along each direction
- To store wave function would require storage of **10⁷⁸ numbers**
- Single precision 1 number = 4 Bytes
- Compare that to all the data stored worldwide 1 zettabyte = 10²¹ Bytes

The Hartree Method

Independent electron method

- Assume that electrons move independently of each other
- Each electron moves in an effective potential that consists of
 - Attraction of nuclei
 - Average repulsive interaction of other electrons
- Many-body wave function as product of single-particle orbitals

$$\psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_n)=\varphi_1(\mathbf{r}_1)\,\varphi_2(\mathbf{r}_2)\,\ldots\,\varphi_n(\mathbf{r}_n)$$

The Hartree Method

$$\begin{bmatrix} -\frac{1}{2}\nabla_i^2 + \sum_I V(\mathbf{R}_I - \mathbf{r}_i) + \sum_{\substack{j \neq i}} \int |\varphi_j(\mathbf{r}_j)|^2 \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} d^3 r_j \\ \underbrace{\mathbf{Hartree potential}} \end{bmatrix} \varphi_i(\mathbf{r}_i) = \epsilon \varphi_i(\mathbf{r}_i)$$

Douglas Rayner Hartree and Porter Meccano differential analyzer built in 1934 at a cost of £20. It achieved an accuracy of about 2%.

Illustration of Electron Correlations

Uncorrelated Cars are smeared out

Correlated Cars avoid each other

Uncorrelated Electrons described by their independent density, electrons can get arbitrary close

http://www.digital-photography-school.com/how-to-shoot-light-trails

Correlated Electrons avoid each other to due to the Coulomb interaction between them

http://www.flickr.com/photos/88943727@N00/101166668/

What is missing in the Hartree approximation

- Wave function is not **antisymmetric**
- Does not include electron correlation

Antisymmetry for Fermions

• Exchanging two identical (indistinguishable) fermions changes the sign of the wave function

 $\psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_j,\ldots,\mathbf{r}_k,\ldots,\mathbf{r}_n) = -\psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_k,\ldots,\mathbf{r}_j,\ldots,\mathbf{r}_n)$

Pauli Exclusion Principle

- Two electrons cannot be in the same quantum state
- Consequence of the antisymmetry

Slater determinant

• Antisymmetric product of single particle orbitals

$$\psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_n) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \varphi_1(\mathbf{r}_1) & \varphi_2(\mathbf{r}_1) & \cdots & \varphi_n(\mathbf{r}_1) \\ \varphi_1(\mathbf{r}_2) & \varphi_2(\mathbf{r}_2) & \cdots & \varphi_n(\mathbf{r}_2) \\ \vdots & \vdots & & \vdots \\ \varphi_1(\mathbf{r}_n) & \varphi_2(\mathbf{r}_n) & \cdots & \varphi_n(\mathbf{r}_n) \end{vmatrix}$$

• Swapping rows in a determinant changes the sign

Hartree-Fock equation for orbitals ϕ_λ

- Use of variational principle leads to set of equations for $\pmb{\phi}_\lambda$

$$\begin{bmatrix} -\frac{1}{2}\nabla_i^2 + \sum_I V(\mathbf{R}_I - \mathbf{r}_i) \end{bmatrix} \varphi_{\lambda}(\mathbf{r}_i) + \\ \begin{bmatrix} \sum_{\mu} \int \varphi_{\mu}^*(\mathbf{r}_j) \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \varphi_{\mu}(\mathbf{r}_j) d^3 r_j \end{bmatrix} \varphi_{\lambda}(\mathbf{r}_i) - \\ \sum_{\mu} \begin{bmatrix} \int \varphi_{\mu}^*(\mathbf{r}_j) \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|} \varphi_{\lambda}(\mathbf{r}_j) d^3 r_j \end{bmatrix} \varphi_{\mu}(\mathbf{r}_i) = \epsilon \varphi_{\lambda}(\mathbf{r}_i)$$

The Exchange Term

$$\sum_{\mu} \left[\int \varphi_{\mu}^{*}(\mathbf{r}_{j}) \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|} \varphi_{\lambda}(\mathbf{r}_{j}) d^{3}r_{j} \right] \varphi_{\mu}(\mathbf{r}_{i})$$

- Describes effect of exchange of electrons
- *Cannot* be written in the form

$$V_{\lambda}^{x}(\mathbf{r}_{i})\varphi_{\lambda}(\mathbf{r}_{i})$$

• Instead it is of the form

$$\int V_{\lambda}^{x}(\mathbf{r}_{i},\mathbf{r}_{j})\varphi_{\lambda}(\mathbf{r}_{j})d^{3}r_{j}$$

• This is called a *non-local potential*

Successes and Limitations of Hartree-Fock

Successes

- Good for atomic properties
- Self-interaction free
- Good starting point for correlated-electron methods

Limitations

- Schrödinger equation:
- Hartree-Fock equations:
- Any effect beyond HF is called correlation
- Size of correlation energy Example: N₂ molecule:
- **However**: binding energy $N_2 \rightarrow N + N$ is

 $D_{\rm e}({\rm Hartree-Fock}) = 5.1 \text{ eV}, D_{\rm e}({\rm exp}) = 9.9 \text{ eV}$

Thus, there are large contribution from the correlation energy to relative energies, *i.e.* chemical reaction energies.

 $H \Psi = E \Psi \implies E_{exact}$ $F \phi_i = \varepsilon_i \phi_i \implies E_{HF}$ $E_{corr} = E_{exact} - E_{HF}$ $E_{corr} < 1\% \text{ of } E_{exact}$ $E_{corr} = 14.9 \text{ eV} < 1\% \text{ of } E_{exact}$

Hartree Fock configuration

• HF Slater determinant is built from lowest energy 1-e orbitals

$$\Psi_{\rm HF}^0 = |\varphi_1 \, \varphi_2 \, \dots \, \varphi_K|$$

• Slater determinant is also called a configuration since it refers to certain filled orbitals

Configuration interaction method

- Add additional configurations to the wave functions that mix in "excited" states
- Excite electron from orbital *i* to orbital *K*+1

$$\Psi_{\mathrm{HF}}^{1} = |\varphi_{1} \varphi_{2} \dots \varphi_{K+1} \dots \varphi_{K}|$$
$$\Psi_{\mathrm{CI}} = c_{0} \Psi_{0} + c_{1} \Psi_{1} + c_{2} \Psi_{2} + \dots$$

Motivation

Function of **3N** variables

Density Functional Theory

- Theory for the ground state energy of a system as a function of the *electron density* **instead** of the *wave function*
- Walter Kohn received the Nobel prize in 1998 for his development of density functional theory

Motivation

$$\Psi({f r}_1,{f r}_2,\ldots,{f r}_n)$$
 Function of **3N** variables $ho({f r})$ Function of **3** variables

The Hohenberg-Kohn Theorems

- The external potential and the number of electrons define the problem
- Schrödinger's equation in principle uniquely determines the wave functions
- All system properties follow from the wave functions

 \Rightarrow Hence the energy and everything else is a functional of V_{ext} and N_{el}

• Since the ground state density determines all properties, the ground state energy and its components are a functional of the density

$$E_{\rm tot}^0 = E_{\rm kin}[\rho^0] + V_{\rm ext}[\rho^0] + V_{\rm el-el}[\rho^0]$$

• V_{ext} is known

$$V_{\text{ext}}[\rho^0] = \int V_{ext}(\mathbf{r}) \,\rho(\mathbf{r}) d^3r$$

• For the kinetic energy and the e-e interaction

$$F[\rho^0] = E_{\rm kin}[\rho^0] + V_{\rm el-el}[\rho^0]$$

• Form of this functional is the same for any molecule or solid

 $\Rightarrow Universal functional F[\varrho]$ Functional form unknown

2nd Hohenberg-Kohn Theorem

- The groundstate energy can be obtained variationally.
- The density that minimizes the total energy is the exact groundstate density.

$$E[\rho(\mathbf{r})] = F[\rho(\mathbf{r})] + \int V_{\text{ext}}(\mathbf{r})\rho(\mathbf{r})d^3r \ge E_0$$

Mapping to a non-interacting system

$$\rho(\mathbf{r}) = \sum_{i=1}^{n} |\varphi_i(\mathbf{r})|^2$$

• Why? The kinetic energy of the non-interacting system is well defined.

$$T_S[\rho(\mathbf{r})] = -\frac{1}{2} \sum_{i=1}^N \int \varphi_i^*(\mathbf{r}) \nabla^2 \varphi_i(\mathbf{r})$$

• Universal functional now takes the form

$$F[\rho(\mathbf{r})] = T_S[\rho(\mathbf{r})] + E_H[\rho(\mathbf{r})] + E_{\mathrm{xc}}[\rho(\mathbf{r})]$$

• Electron-electron interaction is separated into two terms, the Hartree term and the unknown exchange-correlation energy term

$$E_H = \frac{1}{2} \int \int \frac{\rho(\mathbf{r}) \,\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, d^3r \, d^3r'$$

Minimize energy with respect to variations of the density

$$\frac{\delta}{\delta\rho} \left\{ F[\rho(\mathbf{r})] + \int V_{\text{ext}}(\mathbf{r})\rho(\mathbf{r})d^3r - \mu \left(\int \rho(\mathbf{r})d^3r - N\right) \right\} = 0$$
$$\frac{\delta F[\rho(\mathbf{r})}{\delta\rho(\mathbf{r})} + V_{\text{ext}} = \mu$$

• Resulting equations have a similar form as the Schrödinger equation and are known as the Kohn-Sham equations

$$\underbrace{\left[-\frac{1}{2}\nabla^2 + V_{\rm H}(\mathbf{r}) + V_{\rm xc}(\mathbf{r}) + V_{\rm ext}(\mathbf{r})\right]}_{\mathcal{H}_{\rm KS}}\varphi_i(\mathbf{r}) = \epsilon_i \,\varphi_i(\mathbf{r})$$

Summary

$$E[\{\varphi_i(\mathbf{r})\}] = \sum_{i=1}^{N} -\frac{1}{2} \int \varphi_i^*(\mathbf{r}) \nabla^2 \varphi_i(\mathbf{r}) d^3 r + E_{\mathrm{H}}[\rho(\mathbf{r})] + E_{\mathrm{xc}}[\rho(\mathbf{r})] + \int V_{\mathrm{ext}}(\mathbf{r}) \rho(\mathbf{r}) d^3 r$$
$$= \sum_{i=1}^{N} \epsilon_i - V_{\mathrm{H}}[\rho(\mathbf{r})] + E_{\mathrm{xc}}[\rho(\mathbf{r})] - \int \frac{\delta E_{\mathrm{xc}}[\rho]}{\delta \rho(\mathbf{r})} \rho(\mathbf{r}) d^3 r$$

The Local Density Approximation

D. M. Ceperley and B. J. Alder, "Ground State of the Electron Gas by a Stochastic Method" Phys. Rev. Lett. 45, 566 (1980). http://link.aps.org/abstract/PRL/v45/p566

Under pressure Si displays 11 crystal phases

• LDA correctly predicts the energetic order of all these phases

Decompression

Phys. Rev. B 24, 7210 (1981), ibid. 49, 5329 (1994), ibid. 69, 134112 (2004)

Local density approximation (LDA)

• Based on Ceperley & Alder's calculations for the uniform electron gas by quantum Monte Carlo (a stochastic method for quantum particles)

Generalized gradient approximations (GGA: PW91, PBE)

- Gradients of the density are introduced
- Preserve analytic scaling features of the unknown exact functional

Meta-GGA (TPSS)

• Include information about curvature of the density

Hybrid density functionals (B3LYP, HSE)

- Based on GGA or meta-GGA approximations
- Add some non-local Hartree-Fock exchange to the functional

Density Functional Theory in Practice

- 1. Remove tightly bound core electrons: the pseudopotential approach
- 2. Represent orbitals with a basis (plane waves or Gaussians)
- 3. Calculate total energy for trial orbitals
 - Kinetic and hartree energy in reciprocal space
 - Exchange-correlation energy and external potential in real space
 - Method can take advantage of Fast Fourier Transformations
 - Sum over all states: BZ integrations
- 4. Minimize energy and iterate charge density to self-consistency

Electrons in the inner shells do not contribute to bonding

- Core electrons are effectively frozen
- Replace Coulomb potential between electrons and nuclei with effective potential, the pseudopotential

Pseudopotentials

The pseudopotential and the wave function

- Real potential and wave function are shown in blue
- Pseudopotential and pseudo wave function in red
- Outside the cutoff region (vertical black line) the two are identical

Non-Local Pseudopotentials

- Electron states with different angular momenta scatter differently from the core
- States that have shell below them with same angular momentum feel stronger repulsion due to orthogonality constraint

Basis set choices

- Real potential and wave function are shown in blue
- For molecules: often atomic orbitals, or localized functions like Gaussians
- For solids, periodic functions such as sines and cosines (plane waves)
- Use of Bloch theorem for periodic solids

$$[\mathcal{H}, \mathcal{T}_{\mathbf{R}}] = 0 \quad \Rightarrow \quad \varphi(\mathbf{r}) = u_{nk}(\mathbf{r}) \, \exp(i\mathbf{k} \cdot \mathbf{r})$$

 \Rightarrow Remember the importance of *k*-point sampling

Convergence

• Increase size of basis set to approach completeness

Plane Wave Basis Set

• Superposition of plane waves to represent orbitals

Bloch states and Brilloin zones

- Crystal structures defined by Bravais lattice $\{a_i\}$ and basis
- Periodic density \Rightarrow Bloch theorem $\psi(\mathbf{r} + \mathbf{R}) = \psi(\mathbf{r}) \cdot \exp(i\mathbf{k} \cdot \mathbf{r})$
- Fourier transformation

• *Reciprocal lattice*

$$m(\mathbf{r}) = \sum_{\mathbf{G}} n_{\mathbf{G}} \cdot \exp(i\mathbf{G} \cdot \mathbf{r})$$
$$\mathbf{b}_{k} = 2\pi \cdot \frac{\mathbf{a}_{l} \times \mathbf{a}_{m}}{\mathbf{a}_{k} \cdot (\mathbf{a}_{l} \times \mathbf{a}_{m})}$$

• Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice

Diffraction picture for origin of the energy gap

- Start with a 1D crystal and consider diffraction of electron wave
 - $n\lambda = 2d \cdot \sin \theta \text{ with } d = a \text{ and } \sin \theta = 1$ $n\lambda = 2a$ $k = \frac{2\pi}{\lambda}$ $k = \frac{n\pi}{a}$
- Take lowest order (n = 1) and consider incident and reflected electron wave

$$\psi_i = e^{ikx} = e^{i\frac{\pi}{a}\cdot x}$$
 and $\psi_r = e^{-i\frac{\pi}{a}\cdot x}$

• Total wave function for electrons with diffracted wave length

$$\psi = \psi_i \pm \psi_r \quad \Rightarrow \quad \psi_+ = \psi_i + \psi_r = 2\cos\frac{\pi x}{a} \quad \text{and} \quad \psi_- = \psi_i - \psi_r = 2\sin\frac{\pi x}{a}$$

- Only two solutions for $k = \pi/a$: Electron density on atoms or between
- No traveling wave solution

Diffraction picture for origin of the energy gap

- If ion potential is a weak perturbation U, the electrons near diffraction condition have two possible solutions
 - Electron density between ions: $E = E_{\text{free}} U$
 - Electron density on ions: $E = E_{\text{free}} + U$
 - Near diffraction condition energy is parabolic in k, E ∝ k²
 - Electron near diffraction conditions are not free
 - Their properties can still be described as "free" with an *effective mass m**

Band Structure: Free Electron Gas and Si

$$E = \frac{\hbar^2 k^2}{2m}$$
 and $\varphi(\mathbf{r}) = \exp(i \, \mathbf{k} \cdot \mathbf{r})$

Example of metallic band structure: Cu

- Nearly free electron s-band dominates at low and high energies
- Electron near diffraction conditions have different effective mass
- *Hybridization* between *nearly-free s* and *atomic-like d* orbitals at intermediate energies
- Necking of Fermi surface in [111] directions \Rightarrow *Hume-Rothery stabilization*

Integrating the Brillouin zone

- Large real-space Wigner-Seitz cell => small Brillouin Zone (few k-points rqd)
- Small real-space Wigner-Seitz cell => large Brillouin Zone (many k-points rqd)

http://voh.chem.ucla.edu/vohtar/winter05/classes/115B/pdf/DFT_notes_Cocula_Carter.pdf

k-points

• The wavefunction (and energy) of each electron depends on both its quantum number *n* and its position *k* within the Brillouin Zone

$$\hat{h}_{\mathbf{k}} \psi_{n,\mathbf{k}}(\mathbf{r}) = \varepsilon_{n,\mathbf{k}} \psi_{n,\mathbf{k}}(\mathbf{r})$$

- Real-space quantities are computed by a **discrete sum over** *n* and **integration over** *k* **within the Brillouin Zone (approximated over a grid at finite** *k***-points**)
- e.g. density, n(**r**) $n(\mathbf{r}) = \frac{V_{\text{cell}}}{(2\pi)^3} \int_{1\text{BZ}} \left(\sum_{n=1}^{N_{\text{el}}} |\psi_{n,\mathbf{k}}(\mathbf{r})|^2 \right) d\mathbf{k}$

k-points + smearing

- The integration occurs over **occupied** electron states: energy ≤ Fermi energy
- At T = 0, equivalent to adding a step (Heaviside *H*) function:

$$\rho(\mathbf{r}) = \sum_{n} \frac{V_{\text{cell}}}{(2\pi)^3} \int_{1\text{BZ}} H(E_{\text{F}} - \varepsilon_{n,\mathbf{k}}) |\psi_{n,\mathbf{k}}|^2 d^3 \mathbf{k}$$

- For a material with a band gap (no Fermi surface), no problem.
- For a *metal*, **huge** problem: this Heaviside function is **not smooth**
- Solution: replace Heaviside function with a smooth function. Smearing.
 - Fermi-Dirac occupancy at a *finite*, *artificial temperature*
 - Integral of a Gaussian centered at Fermi energy, with a finite width
 - Polynomial expansion (Methfessel-Paxton)
- N.B.: there is *another solution* called tetrahedron method for integrating *without smoothing*; however, it can have some issues that make it less than desirable for our purposes.

k-points

Structural and elastic properties

- Lattice parameters are typically within a few percent of experimental values and often accurate to better than 1%
- \bullet The bulk modulus and other elastic constants are usually within 10%

Vibrational Properties

- Forces = 1st derivative of energy with respect to atomic displacement
- Forces are accurate to better than 10% (similar to elastic constants)
- Vibrational frequencies are the 2nd derivatives
- Their accuracy is about 1/2 the accuracy of the forces or about 5%

Defect energies

- In many cases such as for metals, vacancy and interstitial energies are highly accurate (within 0.1 eV)
- In some cases such as interstitial defects in silicon, DFT is too low by about 1 eV predicting a 3–3.5 eV formation energy instead of the 4.5 eV of experiments and QMC [Phys. Rev. B 74, 121102(R) (2006)]

Excited states and gaps

- Local density approximation fails for excited states
- Bandgaps in LDA and GGA are usually underestimated by 20–50%
- In some cases such as Ge, LDA predicts a metallic instead of semiconducting state
- Hybrid functionals (e.g. B3LYP and HSE) improve the accuracy to about 10%

• Experimental bandgap: 0.41 eV

Band gap problem: LDA and GGA yield a metallic ground state!

- Practical solution: **Hybrid functionals** B3LYP & HSE (0.39 eV)
- Better solution: GW approximation or QMC methods

Beyond DFT – The GW approximation

Summary of Density Functional Theory

LDA

- Lattice constants: 1-3% too small
- Cohesive Energies: 5-20% too strongly bound
- Bulk Modulus: 5-20% (largest errors for late TM)
- Bandgaps: too small

GGA

- Improves cohesive energies
- Often but not always better for lattice parameters
- Important for magnetic systems

Hybrid functionals

• Improved band gaps, often very accurate

Always check the accuracy of the computational method by benchmarking against experimental data or more accurate theory.

"Parameters" of a DFT calculation

What do you need to know to *reproduce* a calculation?

- Software: what code was used?
 - VASP, QuantumEspresso, Gaussian, Wien2k, ...
- Exchange-correlation potential: LDA, GGA, MetaGGA, Hybrid, ...
- **Basis functions:** what type and how many?
 - Type: Planewaves, linear combination of atomic orbital / Gaussians, APW
 - How many is often characterized by a "cutoff"
- Brillouin zone integration: how dense and what method?
 - K-point density inversely proportional to size of cell
 - Smearing to convert discrete grid into continuous integral *or* interpolation
- Treatment of atomic cores: pseudopotential / PAW / all-electron
 - If PP or PAW, what electrons are in the core vs. valence?
 - Can control the number of basis functions needed
- Self-consistency parameters: convergence (and error) in results
 - Energy change in SCF loop (accuracy of energy, wavefunctions, forces, stresses)
 - Force or energy criterion for optimization
- Optional other parameters: DFT+U, GW, etc.
 - "Beyond DFT" methods can introduce new parameters