Lecture 4

Previously

LPs
- 4 cases: unbounded, infeasible, unique, non-unique
- simplex algorithm

NOTE: hyperplane: \(a^Tx = b \)
\[a \in \mathbb{R} \quad b \in \mathbb{R} \]

necessary conditions for optimality:
- unconstrained optimization
- quadratic + linear \(x^TAx + c^Tx \)
- quadratic s.t. linear equality constraints
- quadratic s.t. linear inequality constraints

convex analysis:
- line segment between 2 points
- convex sets
- arbitrary intersection of convex sets is convex

examples of convex sets
- convex hull of A: \(\bigcap_{c \in C} c \subset \mathbb{R} \)

convex combinations
- convex sets contain all convex combinations
- equivalent definition of convex hull

operations that preserve convexity of sets
- graph & epigraph of functions
- convex functions
\(f: A \to \mathbb{R} \quad A \subseteq \mathbb{R}^n \)

\[\text{epi} \, f := \{ (x,y) : x \in A, \ y \in \mathbb{R}, \ y \geq f(x) \} \subseteq \mathbb{R}^{n+1} \]

What is the normal vector to the epigraph at a point \((x, f(x))\)?

\[
\begin{bmatrix}
\nabla f(x) \\
-1
\end{bmatrix}
\]

What directions can we go in and stay on the graph?

\((x, f(x)) \mapsto (x + v, f(x) + z)\)

to be on the graph (to first order)

\[f(x) + z = f(x + v) \]

\[z \approx \nabla f(x)^T (v - x) \]

\[z \approx \nabla f(x)^T v - \nabla f(x)^T x \]

\[\underbrace{\nabla f(x)}_{\\text{constant}} \begin{bmatrix} v \\ z \end{bmatrix} + c \approx 0 \]

f: A \to \mathbb{R} \quad A \subseteq \mathbb{R}^n

f is a **convex function** if \(\text{epi} \, f \) is a convex set.

f is a **closed convex function** if \(\text{epi} \, f \) is a closed convex set.
EX: \(f : (-1,1) \rightarrow \mathbb{R} \)

\[
f(x) = \begin{cases}
0 & x \in (-1,1) \\
+\infty & \text{o.w.}
\end{cases}
\]

not closed

\[f : \mathbb{R}_{>0} \rightarrow \mathbb{R} \]

\[
f(x) = \begin{cases}
1 & x > 0 \\
+\infty & \text{o.w.}
\end{cases}
\]
domain open

epi \(f \) closed

\[f : [-1,1] \rightarrow \mathbb{R} \]

\[
f(x) = \begin{cases}
0 & x \in (-1,1) \\
1 & x = 1 \\
+\infty & \text{o.w.}
\end{cases}
\]

weird boundary stuff

example

\[
f(x) = \min \{ y : (x,y) \in \text{epi} f \}
\]
Proposition: \(f: A \rightarrow \mathbb{R} \) is a convex function (as defined by epi \(f \) being convex)

then:
- \(A \) (domain of \(f \)) is a convex set
- \(\forall \ x_1, x_2 \in A \)
- \(\forall \ \theta \in [0,1] \)

\[
f(\theta x_1 + (1-\theta) x_2) \leq \theta f(x_1) + (1-\theta) f(x_2)
\]

the graph lies below the secant lines

\(f \) is a concave function if \(-f \) is convex

\(f \) is concave \(\Rightarrow\) domain of \(f \) is convex

Ex convex functions (co-domain is always \(\mathbb{R} \))

- affine: \(x \mapsto a^T x + b \)
 \(\mathbb{R}^n \rightarrow \mathbb{R} \)
- exponential: \(x \mapsto \exp(ax) \) \(a \in \mathbb{R} \)
 \(\mathbb{R} \rightarrow \mathbb{R} \)
- powers: \(x \mapsto x^\alpha \) \(\alpha \geq 1 \)
 \(\mathbb{R}_{>0} \rightarrow \mathbb{R} \) \(\alpha \leq 0 \)
- powers of abs. value: \(x \mapsto |x|^p \) \(p \geq 1 \)
 \(\mathbb{R} \rightarrow \mathbb{R} \)
\[\text{relu: } x \mapsto \max(0, x) \]

concave
- affine: \(x \mapsto a^T x + b \)
- power: \(x \mapsto x^\alpha \) \(\alpha \in [0, 1] \)
 \(\mathbb{R}_{\geq 0} \to \mathbb{R} \)
- log: \(x \mapsto \log x \)
 \(\mathbb{R}_{>0} \to \mathbb{R} \)
- entropy: \(x \mapsto -x \log x \)
 \(\mathbb{R}_{>0} \to \mathbb{R} \)

\[\text{convex functions:} \]
- norms: \(x \mapsto \|x\| \)
 \(\mathbb{R}^n \to \mathbb{R} \)
- sum of squares: \(x \mapsto \|x\|_2^2 = \sum_{i=1}^n x_i^2 \)
 \(\mathbb{R}^n \to \mathbb{R} \)
- max: \(x \mapsto \max_i x_i \)

\[\text{f convex iff restrictions to lines are all convex} \]
\[\text{f: } A \to \mathbb{R} \text{ convex iff} \]
\[t \mapsto f(x+tv) \text{ is convex for all } x \in A \quad v \in \mathbb{R}^n \]
\[\text{domain of this: } \{ t: (x+tv) \in A \} \]
Exercise 1: Let \(S^n \subseteq \mathbb{R}^{n \times n} \) be symmetric.

\(S^n_{>0} \subseteq S^n \)

P.D. matrices

\[f: S^n_{>0} \rightarrow \mathbb{R} \]

\[f(X) = \log \det X \]

using the above fact:

pick any \(X \in S^n_{>0} \), \(V \in S^n \)

\[g(t) = \log \det (X + tV) \]

\[\mathbb{R} \rightarrow \mathbb{R} \]

\[\det(AB) = \det(A) \det(B) \]

\[X + tV = X^{\frac{1}{2}} [I + tX^{-\frac{1}{2}} VX^{-\frac{1}{2}}] X^{\frac{1}{2}} \]

\[\det(X + tV) = \det(X^{\frac{1}{2}}) \det(I + tX^{-\frac{1}{2}} VX^{-\frac{1}{2}}) \]

\[= \det(X) \det(I + tX^{-\frac{1}{2}} VX^{-\frac{1}{2}}) \]

\[\lambda_i \text{ be eigenvalues of } X^{\frac{1}{2}} VX^{\frac{1}{2}} \]

\[\det(I + tX^{\frac{1}{2}} VX^{\frac{1}{2}}) \]

\[= \prod_{i=1}^{n} (1 + t\lambda_i) \]

we can that \(\lambda_i \) are constants!
\(\log \det (X + tv) = \log \det (X) + \sum_{i=1}^{n} \log (1 + t \lambda_i) \)

\(t \mapsto \sum_{i=1}^{n} \log (1 + t \lambda_i) \) concave

\(\forall X \in \mathbb{S}_{>0}^n, \forall V \in \mathbb{S}^n \),

\(\Rightarrow f(X) = \log \det X \) concave

First-order condition

\(f : \mathbb{A} \to \mathbb{R}^n \)

\(f \) is differentiable

\(f \) convex iff

\(f(x) \geq f(x_0) + \nabla f(x_0)^T (x - x_0) \)

\(\forall x, x_0 \in \mathbb{A} \)

Graph of \(f \) lies above the tangent hyperplane

intuition: tangent is the limit of secants
\(\implies \) Suppose \(f \) is convex.

\[
\text{WTS: } \forall x, x_0 \quad f(x) \geq f(x_0) + \nabla f(x_0)^T (x - x_0)
\]

by convexity: \(\forall \theta \in [0, 1] \quad \theta x + (1 - \theta) x_0 \)

\[
\theta f(x) + (1 - \theta) f(x_0) \geq f(x + \theta(x-x_0))
\]

\[
f(x) - f(x_0) \geq \frac{f(x_0 + \theta(x-x_0)) - f(x_0)}{\theta}
\]

\[
lim_{\theta \to 0} f(x) - f(x_0) \geq \nabla f(x_0)^T (x - x_0)
\]

\(\Leftarrow \) we will show later (supporting hyperplane theorem)

\[
\text{supponting hyperplane of } C \text{ at } x_0 \in C
\]

\[
a^T x \leq a^T x_0 \quad \forall x \in C
\]

\[
C : \text{ boundary of } C
\]

\[
\text{supporting hyperplane of } C \text{ at } x_0
\]

\[
\partial C \subset \text{ boundary of } C
\]

\[
\text{supporting hyperplane of } C \text{ at } x_0
\]

\[
(\partial C \cap C \setminus \text{int } C)
\]

every point on the boundary has a supporting hyperplane \(\implies \) convexity

Subgradients

\(f : A \to \mathbb{R} \)

A \(\subset \mathbb{R}^n \)

\(f \) is not necessarily differentiable

\(g \in \mathbb{R}^n \) is a subgradient of \(f \) at \(x_0 \)

if \(f(x) \geq f(x_0) + g^T (x-x_0) \) \(\forall x \)

linear global underapproximation of \(f \)
if f is differentiable at x_0, then the only subgradient is $g = \nabla f(x)$

more generally:

$$f(x) = |x|$$

$\mathbb{R} \to \mathbb{R}$

$g \in \mathbb{R} \cup \mathbb{R}$ is a subgradient at $x = 0$

function: linear global
underapproximations
set: supporting hyperplanes

x_{opt} is minimum of f if 0 is a subgradient of f
at x_{opt}

$$f(x) \geq f(x_{opt}) + g^T(x - x_{opt})$$

subdifferentials

$f: A \to \mathbb{R}$

$A \subset \mathbb{R}^n$

$\partial f: A \to 2^{\mathbb{R}^n}$

'multifunction': $\partial f: A \to 2^{\mathbb{R}^n}$
\(\partial f(x) = \text{set of all subgradients of } f \text{ at } x \quad x \in A \)

\[\frac{d \partial f(x)}{dx} = \partial f(x) \exists \forall f(x) \]

Sometimes \(\partial f(x) = \emptyset \)

EX \(f(x) = |x| \)

![Graph of |x| function](attachment:graph1.png)

\(f(x) = \frac{1}{2} \cdot \text{b}^2 \)

![Graph of \(\frac{1}{2} \cdot \text{b}^2 \) function](attachment:graph2.png)

Property: for any \(f \) (not nec. convex) \(\partial f(x) \) is convex & closed for any \(x \)