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THE PURPOSE OF THIS DOCUMENT

This document was created during my first semester teaching a convex opti-
mization course. Its goals were to do a highly verbose discussion for the in-
terested student with some holes in their mathematical background. As such,
it features extended discussions on the role of optimization, as well as more
pedantic discussion of mathematical notation and ideas from real analysis and
linear algebra. It also spends time drawing intuitions for basic concepts in con-
vex analysis. This can cover anywhere from three lectures to half a semester,
depending on the depth in which the instructor wishes to delve on the review.
I found it was not necessarily worthwhile to write up notes for the rest of
the material in the semester as there were several great resources online that,
given a good understanding of the material I cover in detail here, should be
quite readable and I found I could add little value in its transcription.
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OVERVIEW

Hi. Welcome to ‘Convex Optimization’.
Broadly speaking and oversimplifying, convex optimization refers to the

minimization of convex functions, and convex functions are those that are
roughly shaped like bowls. So, this class is the graduate-level study of ‘getting
to the bottom of bowls’. We’ll define these things more formally very shortly,
but first let’s provide a bit of context for all of this.
Related reading: Boyd and Vandenberghe [2004] Ch. 1.

Why optimization?

Why do we study convex optimization? Well, optimization shows up pretty
much everywhere. Pretty much in any setting where you want to do something
as ‘good’ as possible subject to some constraints, and you can quantify ‘good’
with some cost or utility function, then you have an optimization problem.
Different utilities or cost functions can model how quickly a task is completed,
the cost of the raw materials to produce a good, how satisfied a person is with
their decisions, or any balance between these factors. Once you start thinking
like an optimization person, it becomes practically impossible to find any task
that can’t be framed as an optimization problem, and optimization begins to
feel like the tool to do anything optimally.

Here’s a few examples of optimization problems that show up in economics,
control theory, and machine learning.

Example 1: Utility maximization subject to a budget

Let’s say you have C dollars in your pocket, and the grocery store has n goods.
The ith good costs pi, and we’ll call p = (p1, . . . , pn) the price vector. Let’s
considering buying xi of good i, and let x = (x1, . . . , xn) be our consumption
vector. In that case, the cost of that consumption vector will be p⊺x = ∑

i pixi;
you’ll be able to afford it if p⊺x ≤ C.

Additionally, we associate a utility with each consumption vector, denoted
u (x). Here, the utility is a real number, and the units for this are usually
utils. Loosely, you can think of utils as a measure or preference: the more
utils associated with x, the more you prefer x. Beyond the idea of ‘utils’,
there’s a few common assumptions in economics, which we’ll go over here.
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One is the principle of non-satiation: people always want more. That is
to say: if x ≥ y, then u (x) ≥ u (y). Here, x ≥ y for vectors in Rn means that
eveny component is weakly greater, i.e. xi ≥ yi for all i. Non-satiation states
that the utility from x is greater than the utility from y if x ≥ y.

Another common assumption is diminishing returns. If you’re currently
consuming x, the instantaneous change in your utility from getting a little
bit more of good i is ∂

∂xi
u (x). This is called the marginal utility of i at x.

Diminishing returns says that the utility you get from goods is decreasing as
you have more: the utility you get from your first slice of cake is higher than
the utility you get from your 100th slice of cake. Formally, this means that
h 7→ ∂

∂xi
u (x + hei) is a decreasing function for any x, where ei is the vector

which is 1 at the ith coordinate and zero everywhere else.
So, utility maximization subject to a budget constraint looks like:

max
x

u (x)
s.t. x ≥ 0

p⊺x ≤ C

We’ll talk about how to use these assumptions of non-satiation and dimin-
ishing returns down the road. You will be able to see what the consequences
of them are, and build an intuition for what happens to common economic
models if people do get satiated at some point, or if someone’s just in love
with good i and doesn’t experience diminishing returns.

Example 2: Optimal control of a dynamical system

Suppose we have a dynamical system with state x ∈ Rn, inputs u ∈ Rm, and
the following dynamics:

xk+1 = f (xk, uk)

If you haven’t seen this before, you can think of the following.
The state captures everything needed to determine how a system will be-

have. For example, if we consider a single car on the road, the state may be
the current position, velocity, heading, and wheel orientation.

The inputs capture all the decisions we can make to influence where the
system will go. In a car, the inputs are how depressed the gas pedal and brake
pedals are, as well as the steering wheel angle.

The dynamics specify how the state will update: given the current state
and the inputs issued, what will the next state be? For a car, consider how
the future position, velocity, heading, and wheel orientation are influenced by
the current values as well as the steering wheel and pedals.
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The dynamics tell us what the system will do given the inputs u = (u0, u1, . . . ).
(Note that in this notation, uk is the input at time k and u is all the inputs
across time.) Control is about finding the inputs u that make the system do
what we want it to do.

We can frame this as an optimization problem by introducing some cost
J (x, u). For example, we can set J (x, u) = +∞ if the car crashes at some
point. We can also try to get somewhere as quickly as possible, penalizing
how long it takes the state x to be in a particular place. We can also penalize
uncomfortable rides, making J (x, u) high for trajectories that have a lot of
extreme acceleration. Then, optimal control can be written as:

min
x,u

J (x, u)

s.t. xk+1 = f (xk, uk) for all k

Some versions of this are easier to solve than others; if f is linear and J is
quadratic, then we have the linear quadratic regulator (LQR) problem,
a fundamental concept in optimal control. LQR is a convex optimization
problem! In practice, many roboticists will use LQR in some part of the
overall system, even when the dynamics are non-linear and the optimization is
non-convex, partially because LQR is so well understood and has very mature
methods. It works quite well in practice.

Example 3: Loss minimization in machine learning

We’ve been tasked with identifying the cats, street signs, and bicycles in a
sequence of photos. More generally, there’s some randomized function that we
don’t know:

y = f (x, ω)

Here, x is the input and y is the output, and ω is an element of our underlying
probability space. (If you’re not familiar with probability theory, you can just
think of it as f (x) but random, i.e. the value of y does not only depend on x
but also some randomness.) For example, x are the JPEGs and y may be the
labels.

So we’re trying to figure out a good approximation of this mapping x 7→ y.
Broadly speaking, we have some family of candidate functions to approximate
the true f . We’ll call the collection of candidate functions F , and we’ll assume
this collection is parameterized by some θ ∈ Rn, so F = {g (·; θ) : θ ∈ Rn}.

A simple example is when we’re doing linear regression, and in this case
g (x, θ) = θ⊺x, and the family of candidate functions is all linear functions
x 7→ θ⊺x.
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If we have a bunch of independent data points (xi, yi)N
i=1, then we may

want to find the function in F that most closely matches these observations.
Suppose we have some loss ℓ (y, ŷ) which tells us how much penalty we suffer
if the true value of the output is y but we guessed that it is ŷ.

This framework encapsulates a large amount of machine learning. We can
write this as the following optimization:

min
θ

N∑
i=1

ℓ (yi, g (xi; θ))

A common loss is ℓ (y, ŷ) = |y − ŷ|2, the squared error. When the loss
is the squared error and the family of functions under consideration is linear
functions, then this problem is linear regression.

If we instead consider deep learning, the candidate function set F is often
the set of all neural networks with a particular structure and the parameter θ
is the vector of all the weights connecting neurons in the network. The loss
function varies but is very frequently still the mean squared error. Things like
the backprop algorithm are methods to try and push θ towards ‘better’ values.

Yet another set of optimizations that we’ll be able to understand and
visualize a lot better at the end of this semester.

Why convex optimization?

Okay, so optimization itself is useful in a variety of applications. Pretty much
in any setting where you want to do something as ‘good’ as possible subject
to some constraints, and you can quantify ‘good’ with some cost or utility
function, then you have an optimization problem. Different utilities or cost
functions can refer to how quickly a task is completed, the cost of the raw
materials to produce a good, how satisfied a person is with their decisions, or
any balance between these factors. Once you start thinking like an optimiza-
tion person, it becomes practically impossible to find any task that can’t be
framed as an optimization problem, and optimization begins to feel like the

tool to do anything as best as possible.
Why convex optimization? Well, we’ll get into that in more detail, but, in

short, convex optimization problems have a lot of nice theoretical properties
that also provide insight into non-convex optimization problems in general.

Okay, so hopefully you’re sold that optimization is worth learning. These
days, the main line drawn between optimization problems is between ‘convex’
and ‘non-convex’ problems. If a problem is ‘convex’, we generally expect to
actually find the minimum of the function, which is nowadays often referred
to as the global minimum. Formally, x∗ is a global minimum of f if f (x∗) ≤
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f (x) for all x in the domain of f . (This coincides exactly with the definition
of minimum we gave in the review of real analysis.) This contrasts with local

minima, which are points that do not minimize the function across the entire
domain, but rather in a neighborhood, i.e. x∗ is a local minima if there exists
some neighborhood U of x∗ such that f (x∗) ≤ f (x) for all x ∈ U . Note that
we’re quantifying across the neighborhood U instead of the whole domain now.

Many convex optimization problems are effectively ‘solved’, in the sense
that it is relatively easy to use an off-the-shelf solver to find the global mini-
mum of a function. When convex problems are hard, it’s often due to the scale
of the problem being very, very large (or, in more rare cases, the curvature
being too sharp). At no point do folks consider ‘local minima’ because, as
we’ll see, all local minima are global minima in convex optimization.

In contrast, ‘non-convex’ problems are generally considered difficult. In
general, people usually have very little hope of finding global minima of these
functions. In these areas, the term ‘minima’ simply refers to local minima and
global minima are rarely discussed.

Even when an underlying problem is non-convex, there are good avenues
of research using methods from convex optimization. For example, there is
often fruitful research by finding ways to equivalently reformulate a non-convex
problem as a convex one, and this success is often viewed as essentially ‘solving
the problem’. For example, Bose et al. [2015] shows that non-convex problems
in optimal power flow are actually equivalent to certain convex relaxations.
(This is done by using a larger convex set instead of the original feasible
set, and showing that the optimizers of this relaxed problem are actually
going to be in the original feasible set.) Alternatively, one can often use
convex optimization methods to arrive at satisfactory solutions for non-convex
problems. For example, Schulman et al. [2013] solves a sequence of convex
optimization problems that approximate a non-convex problem to find feasible
robot trajectories that avoid collision.

In summary, it’s a very common viewpoint these days that the line be-
tween convex and non-convex optimization is one of the major delineations
that separate (mostly) easy problems from (mostly) hard problems. However,
this was not always the viewpoint. Prior to the 1980s, most people believed
that the delineation between ‘easy’ and ‘hard’ is the line between ‘linear pro-
gramming’ and ‘non-linear programming’. The earliest formal argument that
‘convexity’ should be the fundamental property that determines the ease of an
optimization problem was presented in Nemirovsky and Yudin [1983]. This
idea of ‘convexity’ being the main delineation in optimization is explicitly
pushed in Rockafellar [1993]. Further bibliographic details can be found in
the notes at the end of every chapter in Boyd and Vandenberghe [2004].



WHAT TO EXPECT FROM THIS COURSE 7

3

WHAT TO EXPECT FROM THIS COURSE

This is my first time teaching the course so the contents themselves are still a
little TBD.

Broadly speaking, however, this course will cover some basics of optimiza-
tion (including non-convex optimization), such as optimality conditions and
basic algorithms such as gradient descent. This course will also cover concepts
from convex analysis such as the definition of a convex set and supporting
hyperplane. Then, the course will delve into the notions of Lagrangian dual-
ity in convex optimization, from a theoretical perspective. Finally, all these
concepts will be combined to understand several algorithms for convex opti-
mization and why they work. Before all of this, though, we will recap some
key concepts from real analysis and linear algebra which should be familiar
from prerequisites.

The text that follows in this subsection are taken from the syllabus.
The expectations of the students in this course will be quite high. You

will be expected to have an understanding of convex optimization from both a
theoretical and applied perspective.

This course will be theoretical and rigorous, and you will be expected to
give valid and detailed mathematical proofs. As this is a class, for pedagogical
purposes we will expect more verbosity in proofs (e.g. explaining individual
lines in derivations and what properties are invoked) than is typical of, say, a
publication.

Additionally, some homework assignments will require programming. You
are expected to set up your programming environment prior to the first pro-
gramming homework.

If your mathematical foundations are a little rocky, it is expected that
you will strengthen them through the course of this semester. If you haven’t
implemented algorithms before, you will be expected to learn enough about
programming to be able to code up the algorithms covered in class.

You are encouraged to take this class even if your mathematical foun-
dations are a bit rocky, or if you haven’t had much experience implementing
algorithms before. It’s why I’m here as an instructor and you’re supposed to
learn from the course, not know everything prior to the course. However, if
some of these more preliminary ideas outside the scope of the class are a bit
foggy, please expect to put in a bit of extra time for ‘catch up’ and allocate
accordingly. Some resources for self-learning will be provided, but if there’s
some aspects that are not familiar to you, feel free to reach out to me so I can
try to find the appropriate resource to help fill in any gaps.
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Overall, the goal of this course is to instill an intuition and understanding
that will allow you to develop new algorithms, and not simply just implement
existing ones. Furthermore, if you have a novel algorithm in hand, you are
expected to have to tools to analyze this algorithm to see what properties it
has.

How to approach this course

One of the terms I dislike but have failed to find an alternative to is ‘mathe-
matical maturity’. Loosely speaking, this is a term that doesn’t have a formal
definition, but it’s more of a ‘you know it when you see it’ type thing. It
essentially means that you have the ability to ‘speak mathematics fluently’,
if you think of mathematics as a language. If you’re not sure if you have
mathematical maturity, I will provide some references on the course website
which should hopefully help with this. You should think of one of this course’s
objectives as building mathematical maturity, if you are lacking it.

To this end: for every concept we cover, you should be able to both

formally and intuitively understand the concept. By intuitively, I mean you
should be able to represent the concept in your head and inspect it and just see
what properties are true about it. This is often a geometric intuition for things
taking place on real vector spaces (i.e. you can close your eyes and picture it
in visual space), but people’s intuitions may vary. By formally, I mean you
should be able to precisely and pedantically write out mathematical symbols
to describe your intuition, as well as use logically valid rules of inference to
write proofs for true statements. Note that these are not the same thing, nor
does the ability to do one imply the other.

You should form this expectation of yourself. When studying any material
in the lecture notes, you should both be trying to build an intuition for what
the concepts mean, but also learning how these intuitions show up formally in
proofs. For example, you may visualize two disjoint convex sets in your mind,
and see that you can always draw a straight line between them; formally, you
should be able to verbalize this with a separating hyperplane argument. You
should expect both of yourself, and study accordingly.
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QUICK REVIEW OF SET THEORY

In this section, we’ll quickly discuss the foundational mathematical concepts
in set theory that will be required for this class. In addition, we’ll cover the
set-theory notation that will be used throughout the entire semester.

You should be comfortable with set theory and its corresponding notation.
A set is a mathematical object, which itself holds some collection of mathemat-
ical objects. Here is a quick recap of several things you should be comfortable
with:

(a) For a set A and some mathematical object x, we write x ∈ A to denote
that x is a member of A, i.e. A contains x. We will write x /∈ A to
denote that x is not a member of A.

(b) We use ∅ to denote the empty set, i.e. the set which has no members.

(c) Sets can often be defined according to some property its objects have.
The notation for this will be as follows: the set of objects in A which
satisfy a property P (·) is written {x ∈ A : P (x)}. For example, if we
consider the set of non-negative real numbers, we would write it as follows:
{x ∈ R : x ≥ 0}.

Sometimes the set A is omitted, either out of a desire for brevity or
laziness. In this case, it’ll look like: {x : x ≥ 0}.1

(d) Given two sets A and B, we say A is a subset of B if every element of A
is an element of B. This is denoted A ⊆ B.

1For those either philosophically interested or deeply pedantic, whenever we do mathe-
matical reasoning we have something called the domain of discourse. Other terms are
the universe of discourse or simply the universe. This is the set of all mathematical
objects under consideration. When nothing is specified, it is assumed that the set we are
drawing from is the domain of discourse, and then context will help restrict this further,
e.g. x ≥ 0 tells us that we’re only considering mathematical objects where writing x ≥ 0
makes sense.
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To prove A ⊆ B, we must take any arbitrary element of A and then show
that it is also an element of B. In other words, the proof will start with
some sentence like “Let x be any element of A.” Some reasoning will
follow, and then it will end with “Thus, we have shown x ∈ B. Since x
was an arbitrary element of A, we have shown that A ⊆ B.”
To prove two sets are the same, i.e. A = B, we have to show two things:
A ⊆ B and B ⊆ A. The rules for showing either of these things is given
in the previous paragraph.
If B ⊆ A, we may sometimes write A ⊇ B to indicate that A is a superset

of B, which simply means that B is a subset of A.

(e) For two sets A and B, we write A ∪ B to denote the union of A and B,
with the rule that x ∈ A ∪ B if and only if x ∈ A or x ∈ B. The union
can be thought of as the ‘OR’ operation.

(f ) Similarly, for two sets A and B, A ∩ B is the intersection and can be
thought of as the ‘AND’ operation: it is the set of all mathematical objects
in both A and B.

(g) For a set A and B such that A ⊂ B, we can define the complement of

A in B as B \ A = {x ∈ B : x /∈ A}. Sometimes, when the set B is
obvious from context, we will simply refer to this as the complement of

A and denote it Ac.

(h) Given two sets A and B, the Cartesian product of A and B is the set
of all 2-tuples (a, b) whose first element is in A and whose second element
is in B, i.e. a ∈ A and b ∈ B. This is denoted A × B, and will sometimes
be written {(a, b) : a ∈ A, b ∈ B}.
This idea generalizes to A1 ×A2 ×· · ·×An as the set of all n-tuples whose
value at the ith index comes from Ai.
When all the sets in the Cartesian product are the same, you may some-
times see this written with an exponent, e.g. R × R × R = R3.

(i) A function is a mathematical object which assigns elements of its co-

domain (output space) to elements of its domain (input space). For
example, consider:

f (x) =
 x
x + 1


f here is the function, the domain is R, and the co-domain is R2. f eats
in real numbers and spits out a 2-tuple of real numbers. We will also
sometimes refer to x as the argument of f .
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To specify the domain and co-domain of a function, we may often write
f : X → Y . Here, X is the domain and Y is the co-domain, and this
notation indicates that f maps X to Y .
Another notation that looks very similar but is different is the 7→ symbol.
It tells you what every element of the domain is assigned to. So, the
typical notation you’ve seen may be something like f (x) = x2. I will
often write f : x 7→ x2 instead. Note the difference between → and 7→.
Here, f : R → R while f : x 7→ x2. The former tells you the domain and
co-domain whereas the latter tells you exactly what assignment is being
made. I will use this notation all the time in this class.1

For two sets X and Y , we will write Y X as the set of all functions with
domain X and co-domain Y , i.e. all the functions that take elements of
X and assign elements of Y to them.
We can also define the image of f as the elements in the co-domain
that are assigned to some element of the domain, i.e. the image of f
is {y ∈ Y : y = f (x) for some x ∈ X}. We may also write this as
{f (x) : x ∈ X}, which is just shorthand for the same thing. You will
sometimes see this written as f (X), i.e. the function with the domain
itself written as the argument.
If we equate 2 with the set {0, 1} which has two elements, we can write
2A to denote the powerset of A. Note that every function from A to
{0, 1} assigns some subset of A to 1. Thus, every subset of A can also
equivalently be thought of as a function A → {0, 1}, and vice versa.2

1For those of you who code, you can think of this as analogous to lambda functions in
Python, for example.

2This is a special case of the von Neumann construction of the natural numbers. In
this system, the number 0 is represented by the empty set ∅, and the number 1 is represented
by the set containing the empty set {∅}, and the number 2 is represented by {∅, {∅}}, and so
on. The further constructions are recursively defined as n = {0, 1, . . . , n − 1}: each number
is the set of all numbers that came before. Note that each set n contains exactly n elements.

This also gives another motivation for the notation Rn: using the von Neumann construc-
tion of the natural numbers, the n-tuples of real numbers can also be thought of as the set
of functions which map a domain with n elements into the real numbers.
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QUICK REVIEW OF REAL ANALYSIS

In this section, we’ll quickly discuss the concepts from real analysis you should
already be comfortable with from your prerequisites.

As a quick recap of concepts you should be familiar with:

(a) You should be comfortable with the ruleset that governs the natural num-
bers, which we will denote N, and the real numbers, which we will denote
R. In this class, we’ll consider 0 a natural number, as I am person who
often prefers 0-indexing.

(b) Two key concepts we’ll use a lot throughout this class is the notion of
limits and extremizing. First, limits.
For a sequence of real numbers (a0, a1, . . . ), we will write limn→∞ an to
denote the limit of an as n goes to infinity. Mathematically, we say
a∗ = limn→∞ an if the following holds: for any ϵ > 0, there exists an N
such that |an − a∗| < ϵ for all n ≥ N . In words, this states that for any
tolerance ϵ, there is some point in time N after which we are within ϵ
distance of a∗ forever. This has to hold for any ϵ > 0, no matter how
small. For short, we may also just write limn an, or even lim an.
Now, let’s look at the definition above. The only real structure of the
real numbers we used was the norm, and, even then, we only used this to
define a distance between an and a∗. Thus, putting our mathematician
hats on, we can find a natural generalization for this. Framing it more
abstractly, we can say the following. Consider any sequence of elements
in a metric space (a0, a1, . . . ). We say a∗ = limn→∞ an if the following
holds: for any ϵ > 0, there exists an N such that d (an, a∗) < ϵ for all
n ≥ N . (Here, d (·, ·) denotes the metric of the space.)
We’ll try and emphasize this point a bit throughout the semester about
how to do more mathematical/theoretical thinking. First, we find an
intuitive definition of a concept or proof of a result in a very concrete
given space, e.g. the real numbers. Then, we look at this definition or
derivation and ask: “What were the key properties we actually used?”
Then, we can immediately generalize to the abstract objects that only
have the properties used, e.g. metric spaces.
Sometimes, like this case, this generalization will be easy and immediate.
Other times, the generalization may not be as obvious. One thing that
often happens is that there are multiple definitions that are equivalent in
our concrete space but may become different in a more abstract space.
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One example is the ϵ-δ definition of continuity. In metric spaces, this is
equivalent to the topological definition of continuity. However, the latter
generalizes to more abstract spaces. In particular, in this class, we will
often task ourselves with generalizing intuitions in one-dimensional spaces
to finite-dimensional spaces.

(c) We’ve discussed the limit of a sequence. A related notion is the limit as an
argument approaches a point. We write limx→a f (x) as the limit of f (x)
as x approaches a. This is a similar intuition as above but has a slightly
different formal definition. We say y∗ = limx→a f (x) if the following holds:
for any ϵ > 0, there exists a δ > 0 such that |f (x) − y∗| < ϵ for any x
such that |x − a| < δ. Again, in words, this states that for any tolerance
ϵ, if the argument is δ close to a, then f (x) is ϵ close to y∗, i.e. every
argument in this δ ball around a evaluates to something that is ϵ close to
y∗.
This may be defined in settings where f is not defined at a, and you may
also see things such as limx→a+ f (x) or limx↓a f (x), which means the limit
as x approaches a from the right/above.

(d) Next, let’s discuss extremizing. Consider any subset of the real numbers
A ⊆ R.
An upper bound of A is any number c ∈ A such that c ≥ a for every
a ∈ A. The supremum of A is the least upper bound of A, denoted
sup A. By convention, if the set A has no upper bound, then we say
sup A = +∞, and the supremum of the empty set is sup ∅ = −∞. The
existence of the supremum is a real analysis fact that we will not cover
here.
How do we use this definition? Well, if c∗ = sup A, we know that c∗ ≥ x
for all x ∈ A, since it’s an upper bound. Additionally, since it is the least
upper bound, we know that for any ϵ > 0, there exists an x ∈ A such that
x > c∗ − ϵ, i.e. for any ϵ > 0, there’s a point x in the set A that is less
than ϵ shy of c∗. If such a point didn’t exist, then we would have a lesser
upper bound c∗−ϵ. As such, we typically assume we have a supremizing

sequence (x0, x1, x2, . . . ) of points in A such that xn > (sup A) − 1/n
for each n.
It’s here I want to emphasize that, throughout this course and in most
settings, whenever we take the supremum, we are just trying to find the
least upper bound of a subset of the real numbers. What happens in
optimization to make this more and more complicated is the way we
describe this subset of real numbers.



14 MATHEMATICAL BACKGROUND

Related, we can define the maximum of a set A as follows. A point x is
the maximum of A if x is an upper bound and x ∈ A. The latter point,
that x itself is in A, is crucial. If no point in A satisfies this condition,
then the maximum does not exist. Note that when the maximum exists,
it is equal to the supremum. (The maximum is an upper bound. The least
upper bound has to bound all elements of A, including the maximum.)

For example, consider the closed interval A = [0, 1]. The supremum is 1,
and the maximum is 1. Next, consider the open interval A = (0, 1). The
supremum is 1, and the maximum does not exist.

Most frequently, we’ll talk about finding the supremum of a function f :
X → R, and, colloquially, we may sometimes refer to this as maximizing
a function, even when we haven’t done the full rigorous proof that a
maximum exists rather than just a supremum. This is sometimes denoted
sup f , or supx f (x). This is just a shorthand for referring to sup {f (x) :
x ∈ X}. That is, we’re taking the supremum of the image of f , which is
a subset of the real numbers.

Again, it’s pretty common convention to refer to this as ‘maximizing a
function’ even when we haven’t introduced all the technical assumptions
to ensure a maximum exists, so I’ll be doing this as well throughout the
semester.

Okay, so what does the distinction between supremum and maximum
mean for us when we are reasoning about things? Well, things are a
lot more straightforward when the maximum exists. Suppose y∗ is the
maximum of f . Then we can simply say: let x∗ be such that f (x∗) =
y∗. A point in the domain exists that attains y∗. We call this point x∗

an argmax of f , or maximizing argument. There can be multiple
argmaxes. We can reason about x directly.

If we do not know a maximum exists, we have to be more indirect. If y∗

is the supremum of f , we can consider a sequence of points in the domain
(x0, x1, . . . ) such that f (xn) > y∗ − 1/n. The reasoning will often involve
limits or other things, since we can’t directly refer to a point x where
f (x) = y∗. Without other conditions, we don’t know much else about
the sequence (x0, x1, . . . ); for example, it may not necessarily converge to
anything. (See Figure 1 for an example.)
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Figure 1: Consider the function f (x) = (1 − exp (−x)) | sin (x) |, defined for
x ≥ 0. On the right, we see the image of f , the set {f (x) : x ≥ 0}. The
infimum and minimum are 0, with argmins {0, π, 2π, . . . }. The supremum is
supx≥0 f (x) = 1 and the maximum does not exist. An example supremizing
sequence is (π/2, 3π/2, 5π/2, . . . ). Note that this sequence does not converge
to any particular point.

Sometimes, you’ll see quite a bit of work trying to prove that the maximum
exists. Another way to often say this is that the ‘supremum is attained’,
i.e. there is a point which attains the supremum. This point is often the
maximum. One of the nice things about this is described in the previous
paragraph: we can work with a point rather than a sequence of points.

The same idea carries over when defining lower bounds. The infimum

of a set is the greatest lower bound, and denoted inf A. By convention,
the infimum is −∞ if there is no lower bound and the infimum of the
empty set is +∞. The minimum is a lower bound that is in the set, and
we will refer to minimizing a function even when we may not have proven
a minimum exists. If x∗ is an argument that attains the infimum of the
function, we say x∗ is an argmin of f , or minimizing argument.

One thing we can directly note from these definitions is that inf f =
− sup (−f): minimizing a function is essentially the same as maximizing
its negation.1 Without loss of generality, we’ll typically take infimums
when extremizing functions; this is the convention that leads us to refer

1The equation here simply states that the values inf f and sup (−f) are negations of each
other, but there’s actually a stronger relationship. If (x0, x1, . . . ) is an infimizing sequence
for f , then it is also a supremizing sequence for (−f). Similarly, the argmins of f and the
argmaxes of (−f) are the same points.
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to this class as ‘convex optimization’ rather than ‘concave optimization’.
(Convex functions have a particularly good structure for minimization,
whereas concave functions have a particularly good structure for maxi-
mization.)

(e) You should be familiar with the topological notions of open and closed

sets. In this class, we’ll mostly only consider Rn and the topology induced
by the norm, so we can use the following definitions.

A set A ⊆ Rn is open if the following holds: for every point x ∈ A, there
exists an ϵ > 0 such that y ∈ A for all |y−x| < ϵ. Essentially, for any point
in A, you can wiggle around a bit without leaving A. As an example, the
interval (0, 1) is open, for any number you choose in this interval, there
will be some wiggle room, albeit it could be very, very small. If you take
x = 0.99999999999999, you can still wiggle by ϵ = 0.000000000000005
without leaving the set.

We’ll also define Br (x) = {y ∈ Rn : |y − x| < r} as the open ball of

radius r centered at x. So, the definition of open-ness can be written
as follows: for every x ∈ A, there exists an ϵ > 0 such that Bϵ (x) ⊆ A.

One example of where this shows up is when we consider derivatives.
Something you may not have realized before is this technical detail. Say
f : [0, 1] → R is a function we are differentiating. The derivative is only
defined on (0, 1). Note that the derivative requires one to look a little bit
in both directions to define the instantaneous rate of change. As such,
we can’t define the derivative at 0 or 1 because we can’t look before 0 or
after 1 to determine the rate of change. Here, open-ness makes sense: to
get an instantaneous rate of change, we just have to be able to wiggle a
little bit in every direction, no matter how small the wiggle is, we can still
get an instantaneous rate of change.

Another term you will see is a neighborhood of a point x. A neighbor-
hood of x is any set A such that there exists an ϵ > 0 such that Bϵ (x) ⊆ A.
In words: a neighborhood of x is any set that contains some open ball
centered at x.

A set A ⊆ Rn is closed if its complement Ac = Rn \ A is open. This
definition hints at the duality between open-ness and closed-ness. A more
directly useful definition is that a set A is closed if it contains all its limit
points. Formally, for any sequence (a0, a1, . . . ) of elements in A, if limn an

exists, then it is also in A.
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The basic idea is that you can’t take elements of a set to wind up some-
where outside the set. If you consider (0, 1), you could take the sequence
(0.9, 0.99, 0.999, . . . ) and have every element of the sequence live in the
set, whilst the end result leaves the set. Closed-ness assures us that this
won’t happen: you can safely take limits and not leave the set.
Note that the empty set ∅ is both open and closed by the definitions.
Open-ness states a property that holds for every x in the set, which is
trivially satisfied when there are no elements in the set.

(f ) A neighborhood of x is any open set U that contains x. Basically, U
doesn’t have to be particularly ‘big’, but you have to be able to go a little
bit in every direction.1 You can think of a neighborhood as just any set
which contains some open ball around x.2

(g) You should also be familiar with the definitions of a convergent se-

quence, a Cauchy sequence, and a complete space.

1There’s some caveats on the loose informality of this sentence: this intuition only really
should be used on metrizable topologies. However, we’re not really going to do stuff with
non-metrizable topologies in this course so for now we’re going to just stick to this intuition.
Also, the reason the word ‘big’ is in scare-quotes is because we don’t have a formal definition
of ‘bigness’, which is also a bit outside the scope of this class.

2Another technicality for the very pedantic students in the crowd: some textbooks will
distinguish between an ‘open neighborhood’ and a ‘neighborhood’. In these books, a ‘neigh-
borhood’ is any set which contains an open ball around x, and an ‘open neighborhood’
is a neighborhood which itself is open. Often, the distinction does not matter and many
textbooks will just use the term neighborhood for both. The reason the distinction often
does not matter is because the definition is often used because of the existence of the open
ball around x, not the open-ness of the set itself.
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6

SLIGHTLY LONGER BUT STILL QUICK REVIEW

OF LINEAR ALGEBRA

Now, we’ll quickly recap some linear algebra background which should be
familiar to you.

So, what’s matrix multiplication? Well, let’s consider the matrix A ∈
Rm×n. We can think of A as n columns in Rm:

A =

a1 a2 . . . an


If we have a vector x ∈ Rn, we can define matrix multiplication as x telling
us how much of each column to mix in:1

x =


x1
x2
...

xn



Ax = x1

a1

 + x2

a2

 + · · · + xn

an


Now, what does it mean to solve a matrix equation? Suppose we have some
vector b ∈ Rm, and we’re trying to figure out how to write b as a combination
of the columns of A. Basically, given A and b, we’re trying to find x such that
Ax = b: b

 = x1

a1

 + x2

a2

 + · · · + xn

an


Put another way, how can we take linear combinations of columns of A to get
b? How much of each ai should we mix into the linear combination?

• When does such an x exist? A set of weights x = (x1, . . . , xn) for
the columns of A exists when b is in the span of the columns of A, or,
equivalently, b is in the range of A, often denoted R (A).

1We’re going to treat vectors in Rn and Rn×1 interchangably. Most math textbooks
do this without any comment, but those who have had to program in NumPy are used
to making this distinction between a 1-dimensional vector Rn (i.e. x[0] refers to the first
element) and a 2-dimensional vector Rn×1 (i.e. x[0][0] refers to the first element).
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• When does such an x exist for all b ∈ Rm? When can we find such
weights for any b? Well, when R (A) = Rm.

• When is x unique? Okay, so suppose we’re given a b and there exists at
least one x such that Ax = b, i.e. one way to linearly combine the columns
of A to get b. When is there only one way to do so? This happens when
the columns of A are linearly independent, or, equivalently, when the
nullspace of A is trivial (i.e. contains only the zero vector). The nullspace
is often denoted N (A) and is sometimes referred to as the kernel of A.

By linearity, if Ax = b has a unique solution for some b, then Ax = b̃ has
at most one solution for all b̃.

• When does a unique x exist for all b ∈ Rm? Well, we can combine
the last two conditions, so it’s when R (A) = Rm and N (A) = {0}. Put
another way, we need the n columns to be linearly independent and span
all of Rm; the only way this can happen is when m = n and the columns
of A form a basis for Rn. When this happens, we say A ∈ Rn×n is
invertible.

This is all from the perspective of looking at Ax as taking a linear com-
bination of columns. Dually, we can look at matrix multiplication as follows.
A row vector α⊺ ∈ R1×n can be thought of as a linear functional: it eats in
vectors in Rn and spits out scalars: x 7→ α⊺x.

We can think of a matrix A ∈ Rm×n as m row vectors that eat in elements
of Rn:

A =


− α⊺

1 −
− α⊺

2 −
...

− α⊺
m −



Ax =


α⊺

1x
α⊺

2x
...

α⊺
mx


Each entry of Ax is the result of a linear functional α⊺

i acting on x, which we
will talk about in the next section on linear forms.
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So, we can put these two together to better understand the inverse ma-

trix. When A is invertible, x = AA−1x = A−1Ax for all x. What does this
mean? Well, let z = A−1x for a second and let (ai)i be the columns of A.
Then, we have x = Az:

x = z1

a1

 + z2

a2

 + · · · + zn

an


Each zi tells us how much of ai to put in to get x. Well, how much of ai should
I put in? Let α̃⊺

i denote the ith row of A−1. Then:

zi = α̃⊺
i x

So, the ith row of A−1 is the linear functional that tells us how much the ith
column of A is in x:

x =
(
α̃⊺

1x
) a1

 +
(
α̃⊺

2x
) a2

 + · · · + (α̃⊺
nx)

an


You can think of this as saying: with respect to the basis (ai)i, there is α̃⊺

i x
of the basis vector ai in x. That’s all we mean when we write x = AA−1x.
Another set of terminology for the same idea is as follows: if A is an invertible
matrix, its columns are a basis and the rows of A−1 are the dual basis of the
columns of A.

One important thing to note is that we’re answering the question: ‘How
much of ai is in x with respect to the basis

(
aj

)
j
?’ The answer to this question

depends on the other vectors as well, i.e. for the same ai and x, we may have
to mix in different amounts based on the directions of the other

(
aj

)
j

vectors.
If we try to represent any basis vector ai with respect to the basis (ai)i, we

can see that ai is the result of mixing one unit of ai and zero units of aj for
j ̸= i. In other words:

α̃⊺
j ai =

1 if j = i

0 if j ̸= i

In matrix form, this is simply A−1A = I.
The same relationship holds between the rows of A and the columns of

A−1 in the equality x = A−1Ax.
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Eigenvalues and eigenvectors

For a square matrix A ∈ Rn×n, we say λ ∈ C is an eigenvalue and a non-
zero x ∈ Cn is an eigenvector if Ax = λx. Note that the eigenvalues and
eigenvectors may be complex, even when A is real. This is because the reals
are not algebraically closed.1

The determinant of a square matrix A is the product of its eigenvalues
(with repeated multiplication for repeated eigenvalues). A matrix is invertible
if and only if zero is not an eigenvalue, i.e. the determinant is non-zero. If 0
is an eigenvalue of A, then the corresponding eigenvector x is in the nullspace
of A by definition.

Note that if λ is an eigenvalue of A, then 0 is an eigenvalue of λI − A, so
det (λI − A) = 0. (Thus, if λ is an eigenvalue of A, then det (λI − A) = 0.)
Conversely, if det (λI − A) = 0, then 0 is an eigenvalue of λI − A. If x is its
corresponding eigenvector, we can see Ax = λx, so λ is an eigenvalue of A.

Linear forms

Throughout this course, we’re going to do a lot with linear and quadratic
forms. We’ll start by covering linear forms.

Linear forms are often useful as approximations to a function:

f (x) − f (x0) ≈ ∇f (x0)⊺ (x − x0)

Loosely speaking, this approximation is good when |x − x0| is small. For
example, this is the idea behind gradient descent: to try and find a minimum
of a function, we move in a direction where the linearization decreases.

Additionally, we will see that linearizations lower-bound convex functions,
as visualized in Figure 2. We’ll define all of this more formally in the sequel.

1A set is algebraically closed if you don’t wind up leaving the set due to algebraic
operations. Consider x2 + 1 = 0. This is a polynomial with all real coefficients, but when
we do the algebraic operation of root finding, we find that there are imaginary roots. We
have left the set of real numbers by an algebraic operation, so this set is not closed under
algebraic operations. This is literally the same reason real matrices are not algebraically
closed, as eigenvalues of a real matrix are simply roots of the polynomial with real coefficients
s 7→ det (sI − A).

Generally speaking, closure is very important to mathematicians. It is the mathemat-
ics equivalent of type-mismatch errors: when programming, you want to make sure your
function returns an object of the correct type. In mathematics, without closure, you gotta
introduce a lot more stuff to analyze things properly. (In this case, when you’re taught the
quadratic formula, you also have to spend a lot of time covering imaginary numbers because
of this.) As the fable goes, Pythagoreans were so upset to find out the rationals were not
closed under geometric operations that

√
2 was discovered, they threw Hippasus off a boat.

I’ve named my Wi-Fi network after Hippasus.
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Figure 2: Convex functions are lower bounded by their linearizations at any
point (the tangent lines to the graph). Here, we see a convex function f ,
and its linearization at a point x0, given by f (x0) + ∇f (x0)⊺ (x − x0). This
visualization is an example for a function f : R → R, but this generalizes to
functions f : Rn → R. In this case, the graph is in Rn+1 and the linearization
is a hyperplane that sits below the graph of f . We will cover this in detail
once we start formalizing convexity.

There are many other uses for linear forms, but these two will be the most
common throughout the semester.

Fix a ∈ Rn and let’s consider the associated linear form:

x 7→ a⊺x

This is a pretty important concept so it’s definitely worth it to spend some
time mulling it over. The vector a points in some direction in Rn. For any
other vector x, we can break it down into the component that is in line with a,
and a component that is orthogonal to a, as depicted in Figure 3. The inner
product between a and x is determined entirely by the component that is in
line with a.

Another very important concept we’ll use throughout this semester is the
notion of hyperplanes and half-spaces.

A hyperplane in Rn is a set of the form:

{x ∈ Rn : a⊺x = b}
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Figure 3: The vector a gives a direction, and x is broken down into the
component that is in line with a (denoted x1) and orthogonal to a (denoted
x2). The inner product between a and x is the same as the inner product
between a and x1: a⊺x = a⊺x1. Pictures will typically be in ambient dimension
n = 2 so hyperplanes are often drawn in dimension n − 1 = 1, i.e. lines. In
n = 3 dimensions, hyperplanes will be n − 1 = 2 dimensional.

Here, a ∈ Rn and b ∈ R. This is a single constraint, so it is an affine space
of dimension n − 1. Put another way, it is of co-dimension 1: it is defined by
1 linear constraint, so the hyperplane has the dimension of the ambient space
minus 1.

If we have some vector x0 such that a⊺x0 = b, we can re-write the hyper-
plane as:

{x : a⊺ (x − x0) = 0} = x0 + N (a⊺)

The hyperplane can thus be thought as follows: if we start at x0 and move to
x, we should be moving orthogonal to a. We can think of a hyperplane as a
single point x0 plus the nullspace of a⊺, as in Figure 4.

Each hyperplane splits Rn into two halfspaces, which are sets of the form:

{x ∈ Rn : a⊺x ≤ b}

The gradient of the linear form f (x) = a⊺x is given by ∇f (x) = a. Intu-
itively: the direction that most increases f (x) is moving x in the direction
a.
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Figure 4: A hyperplane can be thought of as a point x0 plus any point or-
thogonal to a. Loosely speaking, a hyperplane cuts the space in ‘half’, and a
halfspace is the set of all points on one ‘side’ of a hyperplane.

Quadratic forms

Next, let’s consider quadratic forms:
x 7→ x⊺Qx

Sometimes, we’ll want to take the second-order approximation of a function:

f (x) − f (x0) ≈ ∇f (x0)⊺ (x − x0) + 1
2 (x − x0)⊺ D2f (x0) (x − x0)

(If you haven’t seen this before, D2f (x0) is the Hessian of f evaluated at x0,
i.e. the gradient of the gradient; I try to avoid the notation ∇2 because it has
different meanings, such as the Laplacian, and can be ambiguous at times.)

This is more accurate than the linear approximation near x0, with the error
being on the order of o

(
|x − x0|2

)
rather than o (|x − x0|).

Also, in general optimization settings, we’ll often find reasons to use upper
and lower quadratic bounds: a lower quadratic bound is often provided by an
assumption of strong convexity and an upper quadratic bound is often provided
by an assumption of smoothness.

Before we get there though, we should cover some other linear algebra
concepts.

First, the transpose of a matrix A ∈ Rm×n, denoted A⊺ ∈ Rn×m, is the
result of swapping the rows and columns of A, i.e. if ai is the ith column in
A, then a⊺

i is the ith row of A⊺. We can think of the transpose as taking each
column ai of A and turning it into the linear operator a⊺

i .
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A matrix is symmetric if A = A⊺ and it is skew-symmetric if A = −A⊺.
A symmetric matrix has all purely real eigenvalues, and a skew-symmetric

matrix has all purely imaginary eigenvalues. Every matrix can be broken down
into its symmetric and skew-symmetric part, as follows:

A =
(

A + A⊺

2

)
+
(

A − A⊺

2

)

Loosely speaking, this is the n-dimensional generalization of the idea that any
complex number can be broken up into a real part and an imaginary part, i.e.
x = a + ib.1

Now, note with quadratic forms, for any skew-symmetric matrix A, the
quadratic form is identically zero: x⊺Ax = 0 for all x. (I suggest you prove this
as an exercise!) So, without loss of generality, we only consider quadratic
forms where Q is symmetric in x 7→ x⊺Qx.

Now, let’s recall the intuition we were building before: we noted that
A ∈ Rn×n being invertible is the same thing as the columns of A forming a basis
for Rn. Additionally, we noted that the rows of A−1 were its corresponding
dual basis. With the notation ai for the columns of A and α̃⊺

i for the rows of
A−1, we discussed the interpretation that α̃⊺

i was a linear operator that stated
‘how much’ of ai was in x, i.e.

x =
(
α̃⊺

1x
) a1

 +
(
α̃⊺

2x
) a2

 + · · · + (α̃⊺
nx)

an


Now, we say a basis (ai)n

i=1 is orthonormal if it is both orthogonal and
normal. A basis is orthogonal if a⊺

i aj = 0 for all i ̸= j. A basis is normal if
a⊺

i ai = 1. So, they are unit norm and all point in orthogonal directions.
A nice thing to note about an orthonormal basis is that it is self-dual, i.e.

the dual basis of (ai)i is
(
a⊺

i

)
i

when (ai)i is orthonormal. Why is this? Well,
let’s apply the above intuition for inverse matrices and dual bases from above.

We can visualize the setting where the ai are orthogonal and unit norm in
Figure 5. Given these are the basis vectors, when we ask ‘how much of ai is
in x?’, we can get the answer by taking a⊺

i x: we project x onto ai and this is
our answer.

1The reason why this is loosely speaking is because we’re really only looking at square
matrices in Rn×n. The actual generalization would require us to look at matrices in Cn×n,
where we would say every complex matrix can be broken up into a Hermitian and skew-
Hermitian matrix. We won’t be doing much with complex matrices in this class, and you’ll
rarely see things in the optimization literature dealing with complex matrices.
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Figure 5: When (a1, a2) are orthonormal, for any vector x, we can write
x =

(
a⊺

1x
)

a1 +
(
a⊺

2x
)

a2. Put in other words, there is a⊺
1x of a1 in x, and

similarly a2.

The basis being orthonormal is essential for this. If the basis vectors are
not unit norm, then the inner product a⊺

i x is not the projection onto the
direction ai, but rather a re-scaled version of it. If the basis vectors are not
orthogonal, then x is not equal to the sum of the projections anymore, as
visualized in Figure 6. With a basis that is not orthogonal, ‘how much of a1
is in x?’ depends on the direction of a2 in a complicated way.

Expressing the same facts with matrix terminology, what this means is if
U is a matrix whose columns are orthonormal, then U−1 = U⊺, i.e. the inverse
of U is its transpose. We say U is an orthogonal matrix if its columns are
an orthonormal basis.

So, another thing that is nice about symmetric matrices is that there always
exists an orthonormal basis of eigenvectors, or, equivalently, any symmetric Q
can be written as Q = UΛU⊺, where U is an orthogonal basis (whose columns
are the eigenvectors of Q) and Λ is a diagonal matrix whose entries are the
eigenvalues of Q.
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Figure 6: When (a1, a2) are not orthogonal, we can still project x onto the
directions a1 and a2. However, x is no longer the sum of the two projections.
We need to use a different method to find the weights c such that x = c1a1 +
c2a2. This is why inverting a non-orthogonal matrix is much harder than
inverting an orthogonal one. On the right, we see how much of a1 and a2 are
actually in the linear combination x = c1a1 + c2a2.

So, what does this newfound intuition tell us about the action of Q? Well,
let’s break apart Qx = UΛU⊺x now. We start with a vector x. The first
multiplication gives:

U⊺x =


u⊺

1x
...

u⊺
nx


So, U⊺x is a vector whose ith entry says ‘what’s the projection of x in the
direction ui?’, which, for an orthonormal basis is the same as ‘how much of ui

is in x with respect to the basis
(
uj

)
j
?’

Next, we multiply by Λ:

ΛU⊺x =


λ1u

⊺
1x

...
λnu⊺

nx


So, Λ basically says: once you figure out how much of ui is in x, scale that
amount by λi.

Finally, the last multiplication tells us to take these as weights for how
much to mix each of the basis vectors (ui)i:

Qx = UΛU⊺x = λ1u
⊺
1x

u1

 + · · · + λnu⊺
nx

un
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So, intuitively, we can think of Q acting on x as doing the following. We first
calculate how much of each basis vector ui is in x, giving us the scalar u⊺

i x. We
scale that amount by λi, giving us the scalar λiu

⊺
i x. Then, we mix together

that amount of the basis vector ui, for each i.
Similarly, we can also analyze the quadratic form:

x⊺Qx = (U⊺x)⊺ Λ (U⊺x) =
n∑

i=1
λi

(
u⊺

i x
)2

The quadratic form evaluated at x says: for each ui, calculate how much x
points in the direction ui, square it, scale it by λi, and then sum the results
across i.

For a symmetric matrix Q, we say that Q is positive definite if all its
eigenvalues are strictly positive, and positive semi-definite if all its eigen-
values are weakly positive. We will use the notation Q ≻ 0 and Q ⪰ 0 for
this. Note that we can talk about positiveness of the eigenvalues because we
already know they will be real. (It’s not well-defined to say whether or a
complex number is positive or not.)

When Q is positive definite, the level sets of x 7→ x⊺Qx are ellipsoids:

{x : x⊺Qx = c}

Here, c > 0 is some constant.
The gradient of the quadratic form x 7→ x⊺Qx is 2Qx, which is visualized

in Figure 7. Sometimes, folks use a convention where the quadratic form is
1
2x⊺Qx so the gradient is simply Qx.

Linear programs

With this, we can do a quick review of linear programs (LPs) as well.
A linear program is an optimization problem where we wish to choose

x ∈ Rn to minimize c⊺x, subject to a bunch of linear inequality constraints,
a⊺

i x ≥ bi for i = 1, . . . , m.
Well, we’re now in a great spot to visualize LPs. We want to go as far as

possible in the −c direction, but have to lie in a bunch of given halfspaces. The
intersection of a finite number of halfspaces is called a polyhedron. Looking
at Figure 8, we can get an intuition for why optimizers of LPs sit in the corners
of the polyhedron. The one situation where this can behave strangely is when
the vector −c points right at a face of the polyhedron, where all points on the
face are optimizers and all have the same value for c⊺x. Even in this setting,
there will be optimizers which sit in the corner of the polyhedron.
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Figure 7: A visualization of the ellipsoid {x : x⊺Qx = c}, where λ1 and λ2 are
eigenvalues with orthonormal eigenvectors u1 and u2, respectively. We can see
that the basis (u1, u2) effectively just rotates our axes, and we can ‘ignore’ x1
and x2 in this visualization once we rotate to the (u1, u2) axes. The gradient
of x 7→ x⊺Qx is also visualized here, and is the vector that is the normal to
the level set, pointing in the direction of greatest increase for the quadratic
form.

This motivates simplex methods, which are algorithms that try to find
the ‘best’ next corner to check for optimality. (Duality allows us to certify a
corner is optimal when we do find it.)
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Figure 8: Visually, the blue −c lines tell us which direction we want to push
towards. The green and red lines represent two linear inequality constraints,
stating that we must lie a particular side of the hyperplane.

7

OPTIMIZATION

Unconstrained optimization

As another review, let’s consider the problem of unconstrained optimization,
and review some familiar concepts.

Let f : Rn → R. We wish to find the minimum of {f (x) : x ∈ Rn} ⊆ R,
often denoted:

min
x

f (x)

The following should be familiar from your pre-requisites, so I won’t prove
this in formal detail; however, it’s a good exercise to try and prove this rigor-
ously, using the formal definitions of limits we gave in the real analysis review.

Proposition 1. If x is a local minimum of f and f is differentiable at x, then
∇f (x) = 0.



OPTIMIZATION 31

Figure 9: If one of the linear inequality constraints lines up exactly with
the cost vector, there may be optimizers which are not in the corners of the
polyhedron; in this case, there is an entire face of optimizers and the value c⊺x
is the same for all points on the face.

This is a necessary condition of optimality, i.e. if x is a minimum, then
it necessarily must satisfy this property. Put another way: the set of optimal
points is a subset of the points that satisfy the necessary conditions. (Knowing
x is an optimal point allows us to conclude the necessary conditions.) In
practice, one of the ways we can use this is we can restrict our search for
optimum points to looking among the set of points that satisfy the necessary
conditions. For example, if we have a function f and we are able to calculate
∇f (x), sometimes we can just check all the points x such that ∇f (x) = 0.

The converse would be a sufficient condition for optimality, i.e. if we know
these conditions are true, then we can conclude that x is a minimum. There’s
sufficient information to conclude optimality. Put another way: the set of
points that satisfy the sufficient condition is a subset of the optimal points.
(Knowing we’re in the sufficient condition set is enough to conclude we’re in
the set of optimal points.) In practice, we can use sufficient conditions to
certify that a point is optimal.
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Figure 10: Consider f : R → R. We’ve pictured the graph of f , which is the
set of points {(x, f (x)) : x ∈ R}. The slope of the line tangent to the graph
at a point x is the derivative at x. If the derivative is positive, we can reduce
f (x) by moving slightly to the left; if the derivative is negative, we can reduce
f (x) by moving slightly to the right. For general f : Rn → R, if we move in
the direction of −∇f (x) we can reduce f (x).

Quadratic costs

Suppose we’re trying to find x ∈ Rn which minimizes:

x⊺Qx + c⊺x + b

Here, Q ≻ 0, c ∈ Rn, and b ∈ R are all given. We can simply set the gradient
to zero to get the solution:

2Qx + c = 0
Since Q is positive definite, we can invert it to find the answer:

x = −1
2Q−1c

Geometrically, we can also think of this as finding an x such that 2Qx = −c,
described in Figure 11.

Now, suppose we want to minimize a quadratic function subject to a linear
equality constraint:

min
x

x⊺Qx

s.t. c⊺x = b

Let f (x) = x⊺Qx and h (x) = c⊺x − b, so the problem is to minimize f (x)
subject to h (x) = 0.

The smallest level set we can get to on the hyperplane is tangent to the
hyperplane, i.e. the gradient of x⊺Qx is a scaled version of c, as shown in
Figure 12. Formally, this means there exists constant λ ∈ R such that ∇f (x)+
λ∇h (x) = 0.
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Figure 11: When minimizing x⊺Qx+c⊺x+b, we can think of taking an ellipsoid
{x : x⊺Qx = b} and finding which point on the ellipsoid has −c as its normal
vector, so that 2Qx and −c are pointing in the same direction. Then we can
scale x accordingly such that 2Qx = −c.

Now, suppose we want to minimize a quadratic function subject to a linear
inequality constraint:

min
x

x⊺Qx

s.t. c⊺x ≤ b

Let f (x) = x⊺Qx and g (x) = c⊺x − b, so the problem is to minimize f (x)
subject to g (x) ≤ 0.

Geometrically, if zero is possible (i.e. g (0) ≤ 0), then it will be an optimal
solution, in which case ∇f (x) = 0. If zero is not a feasible point, then the
smallest level set we can get to is the one that has −c as a normal vector.
Thus, there exists some constant λ ≥ 0 such that ∇f (x) = −λ∇g (x), or
∇f (x) + λ∇g (x) = 0.

We’ll develop this further but it should build some intuition for the notion
of Kalman-Kuhn-Tucker conditions for optimality, which we will discuss in
greater detail when we cover Lagrangian duality.



34 BASIC NOTIONS IN CONVEX ANALYSIS AND OPTIMIZATION

Figure 12: The level sets of f (x) = x⊺Qx and the hyperplane h (x) = c⊺x−b =
0. At optimum, the level set of f will be tangent to the hyperplane. Note that
λ can be positive or negative.

PART III

BASIC NOTIONS IN CONVEX ANALYSIS

AND OPTIMIZATION

8

CONVEX SETS, CONVEX HULLS, AND CONVEX

COMBINATIONS

Related reading: Boyd and Vandenberghe [2004] Ch. 2-3.
We’ll be living in Rn for a lot of this discussion. This section will be a

barrage of definitions, but we’re introducing the cast of characters that we’ll
be working with for the rest of the semester.

Given two points x and y, the line segment between x and y is the set
of all points:

{θx + (1 − θ) y : θ ∈ [0, 1]}
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Figure 13: The level sets of f (x) = x⊺Qx and the halfspace g (x) = c⊺x−b ≤ 0.
If zero is feasible, it is optimal, and if it is not, then the boundary hyperplane
of the halfspace is tangent to the gradient of f .

Looking at the expression θx + (1 − θ) y, we can see that at θ = 0 we’re at y
and at θ = 1 we’re at x, and all the in-between values of θ put us somewhere
in between the two points.

Another common way to write the same expression is y + θ (x − y), which
more clearly shows that we start at y at θ = 0 and go in the direction x − y
as θ increases.

Figure 14: A line segment connecting x and y.

We say C is a convex set if the line segment connecting x and y is in C
for all x, y ∈ C. If I take any two points in C, I can go from one to another
in a straight line without leaving the set C. In a sense, it means we can ‘see’
every point in the set from any other point.
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Figure 15: On the left, a convex set: if we draw the line segment between
any two points, we remain in the set. On the right, a non-convex set: as an
example, for these two points shown, the line segment is not contained within
the set.

This is where we may get really pedantic about little details, such as
whether or not the boundary is included. For example, see Figure 16.

Figure 16: This is an example of a set that is not convex just because of issues
with the boundary. It only contains some points of its boundary, and, as such,
if we draw the line depicted on the right, we technically leave the set, despite
being arbitrarily close to actually being in the set.

Note that the empty set is always convex, the entire space is always convex,
and any singleton set is always convex.

So, for emphasis, we currently should have both an intuitive understanding
of convex sets (it looks round-ish and can’t have any nooks in it) as well as
a formal understanding (if I take any two points x and y in the set I have a
property they satisfy).

Let’s use these two understandings to prove an important fact about convex
sets.
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Proposition 2. The intersection of an arbitrary set of convex sets is convex.

If we try and draw this idea out, basically if you put a bunch of round-ish
shapes down and look at where they overlap, then you’ll still wind up with
something round-ish. Hopefully you can kind of picture it; Figure 17 shows
one example.

Figure 17: The intersection of convex sets is convex.

Now, we can reason about it formally as well. Let I be an arbitrary index
set, with Ci a convex set for every i ∈ I. We wish to show that C = ∩i∈ICi is
convex.

What is the definition of convexity? Well, for any points x and y in C, we
want to show the line segment connecting them is in C.

So, let’s take any x and y in C and try to show that. Since x and y are in
C, this means x and y are in Ci for every i, by definition of the intersection.

Now, fix any i ∈ I. Since Ci is convex, this means the line segment between
x and y is in Ci. This held for arbitrary i, so we’ve shown that the line segment
containing x and y are in Ci for all i ∈ I. Thus, again by the definition of the
intersection, that means the line segment is in ∩i∈ICi. QED.

So to recap the proof, we wanted to show ∀x, y ∈ C = ∩i∈I , ∀θ ∈ [0, 1] , θx+
(1 − θ) y ∈ C. We first fixed an arbitrary pair of x, y ∈ C and then needed to
show ∀θ ∈ [0, 1] , θx + (1 − θ) y ∈ C. To show that these points were in C for
all θ ∈ [0, 1], we needed to use the definition of C. Since C is the intersection
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of a bunch of sets, we need to show that the points were in Ci for all i ∈ I.
Invoking convexity for each individual i ∈ I let us conclude that it was in Ci

for that particular i, and since we can do this for every i, we conclude it’s in
Ci for all i.1

This is... much more verbose than you will typically see in a paper. You
may see something as succinct as “Since the line segment is in each of the Ci it
will be in C.” If you’re already comfortable about mathematical reasoning and
nested quantifiers and such, feel free to be this succinct. However, if you have
any uncertainties, or if you ever look at a proof and are not entirely sure if the
reasoning is valid, I encourage you to be overly verbose and pedantic at the
beginning, in order to build up that mathematical intuition and maturity. I’ll
only do a few more proofs in this overly verbose way as a guidepost, but after
that, you’ll be expected to more or less pursue the development of rigorous
sensibilities on your own.

Some examples of convex sets include:

(a) Any normed ball {x : ∥x − x0∥ ≤ r}.

(b) Ellipsoids.

(c) The norm cone, given by {(x, t) : ∥x∥ ≤ t}.

(d) Polyhedra.

Given some set A ⊆ Rn, we can define the convex hull of A, denoted
conv (A), as the ‘smallest’ convex set containing A. Here, I’ve put ‘smallest’ in
scare-quotes because we need to rigorously define the notion of smallest. There
are several mathematical notions of ‘smallness’ which do not necessarily align.
In this context, we think of a set A as ‘smaller’ than B if A ⊆ B, i.e. A
contains weakly fewer elements than B.

Using this notion of ‘smallness’, we can define the convex hull of A is the
intersection of all convex sets containing A, sometimes denoted:

conv (A) =
⋂

C⊇A:C convex
C

Since the intersection of convex sets is convex, we know that the convex hull
will be convex. Intuitively, you can visualize the convex hull as ‘adding all the
line segments between points’.

1For a more detailed introduction to proof structures, please see the ‘how to math’
document I’ve included with the course materials.
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Figure 18: On the right, we see the convex hull of the blue set on the left.

You’ll often use the concept of convex hull when you want to ‘make a set
convex’. So, for example, if you have an optimization problem where your
cost function is convex but your feasible set is not convex, you may define
a relaxed version of your original problem where the feasible set is replaced
with the convex hull of the feasible set. This relaxed version will be a convex
optimization problem, and usually easier to solve. This is a technique used
frequently in research, and, when one does this, the ‘hard work’ consists in
showing the relaxation is useful in some way. For example, one can sometimes
show that, under certain conditions, the optimal solution is actually in the
original feasible set, in which case you have actually solved the original non-
convex optimization problem. (This is a bit of foreshadowing; if you are not
familiar with the terms ‘feasible set’ or such, please bookmark this paragraph
and come back to it after we cover these terms.)

Another important concept is the notion of convex combinations. For a
finite set of points x1, . . . , xn, we define a convex combination of (x1, . . . , xn)
as λ1x1 + · · · + λnxn for some λ ≥ 0 and ∑n

i=1 λi = 1.1 So, we’re combining
non-negative amounts of our n ingredients together, using a total amount of 1
unit of all of them. Visually, you can think of this as all the points ‘in between’
the set of points you’re mixing. This is a generalization of the θx + (1 − θ) y
expression we saw before; the latter is just the convex combination of 2 points.

Okay, so let’s use this definition to prove some stuff. (Proving small things
like this with a new definition is like the mathematician’s version of playing
with a new toy.) Let’s show the following:

1This is the first time in the notes I’ve used the notation λ ≥ 0, where λ ∈ Rn is a vector.
Throughout this course, unless otherwise noted, this simply means that every component
of λ is non-negative, i.e. λi ≥ 0 for all i ∈ {1, . . . , n}.
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Figure 19: The convex hull can be visualized as all the points ‘between’ a set
of points.

Proposition 3. If C is a convex set, then it contains all convex combinations
of points in C, i.e. for any finite number of points n, points x1 ∈ C, . . . , xn ∈
C, and valid weights λ, the point x = ∑n

i=1 λixi is in C.

What’s the intuition here? Well, if we take a convex combination of points,
we’re looking at something that’s in the ‘middle’ of all of them. In contrast,
the condition that defines a convex set looks at line segments between two
points at a time, i.e. stuff that’s in the ‘middle’ of two points. To show that a
convex set actually has convex combinations, we want to show that a convex
combination of n points can be recreated by sequentially taking points on the
line segment connecting them.

For example, suppose we have a convex combination of 3 points in C:
λ1x1 + λ2x2 + λ3x3. All the points on the line segment connecting x1 and x2
are in C, by the definition of convexity. So, we know that the following point
is in C:

y2 = λ1

λ1 + λ2
x1 + λ2

λ1 + λ2
x2 ∈ C

Since that point is in C, we know the line segment between y2 and x3 is in C.
Note that θ = λ1 + λ2 and 1 − θ = λ3 gives us a valid set of weights for two
points. So the following point must be in C:

λ1x1 + λ2x2 + λ3x3 = (λ1 + λ2) y2 + λ3x3 ∈ C

This is what we wanted to show: the convex combination of points itself is
actually in C. The argument here is visualized in Figure 20. Note what
we were doing here: we were given a convex combination of 3 points and
we showed it could be recreated by taking convex combinations of 2 points
sequentially. I’ll leave it as an exercise to show the general case for n points:
you can do so using a proof by induction.
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Figure 20: The blue dot represents a convex combination of x1, x2, and x3.
We can recreate this point by first taking a convex combination of x1 and x2,
and then taking a convex combination of the result with x3.

Great, so not only did we get some exercise with this new definition, we
actually proved a pretty useful fact!

Next, let’s use this definition again and do another proof with it. Let’s
prove the following:

Proposition 4. The convex hull of A (defined as the intersection of all convex
sets containing A) is equal to the set of all convex combinations of points in
A.

When I say the convex combination of all points in A, I mean the points x
such that x = ∑n

i=1 λixi for some number n, some valid weights λ, and points
x1 ∈ A, . . . , xn ∈ A. Note that n isn’t a fixed number here, i.e. we’re not just
looking at all convex combinations of n points, but we’re looking at all convex
combinations, of any arbitrary finite number of points.

This will be the last overly pedantic proof I do in these notes. Afterward, I
will start to use common conventions and shorthand you’ll see in proofs. If you
find it useful, it is worth the time investment to keep re-writing these proofs
in a very verbose and pedantic way. It’s the mathematical thinking equivalent
of practicing your scales on an instrument: after a while, it becomes second
nature and you can start to comfortably express yourself through the notes.
However, before that, it can be mechanical and feel a little bit like a grind.
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Before we begin, let’s note why this proof may be hard to show formally.
First, when we define the convex hull, it is the arbitrary intersection of convex
sets: we are intersecting an uncountably infinite collection of sets, and each
set itself often contains uncountably infinite many points. When we consider
convex combinations, we’re only taking finitely many points out at a time. The
thing that’s not trivial and makes this proof hard is that we somehow have to
take the finiteness of convex combinations and conclude the infiniteness of the
convex hull.

Okay, let’s do this. Let Ĉ denote the set of all convex combinations of
elements of A. We’re being asked to show two sets are equal, i.e. conv (A) = Ĉ,
so we have to show two inclusions: we need to show that the convex hull is
contained in the set of all convex combinations, i.e. conv (A) ⊆ Ĉ, and vice
versa, i.e. Ĉ ⊆ conv (A).

As hinted by the note above, one direction is easy. Let x ∈ Ĉ be any
convex combination of points in A, i.e. x = ∑n

i=1 λixi. We want to show
that x is on the convex hull of A, which is defined as the intersection of all
convex sets containing A. Thus, we want to show that x is in every convex set
containing A. Let C be any convex set containing A. Since C contains A, it
contains each point xi ∈ A. So, x is a convex combination of points in C. As
we just showed, a convex set contains all convex combinations of its points, so
x ∈ C. This held for any convex C ⊇ A, so it is in conv (A) = ∩C⊆A:C convexC.
Thus, Ĉ ⊆ conv (A).

Now, the other direction. We’re trying to show conv (A) ⊆ Ĉ, but note
that conv (A) is defined as an intersection. This means for any convex set
C containing A, we have conv (A) ⊆ C. So, it will suffice to show that
there exists some convex set C containing A such that C ⊆ Ĉ, the set of
all convex combinations of points in A, since this would give us the chain
conv (A) ⊆ C ⊆ Ĉ.

In fact, we’ll actually be able to show that Ĉ itself is a convex set, which,
by the argument above, is enough to show that conv (A) ⊆ Ĉ. What is the
definition of convexity? Well, we need to take any points x1, x2 ∈ Ĉ and show
that any convex combination of them is in Ĉ.

Okay, so let x1, x2 be any two points in Ĉ. Since Ĉ is defined as the set
of convex combinations of elements of A, this means that there exists points
y1

1, . . . , y1
m in A and valid weights λi such that x1 = ∑m

i=1 λ1
i y

1
i and similarly

points y2
1, . . . , y2

n and weights λ2 such that x2 = ∑n
i=1 λ2

i y
2
i . For any convex

combination of x1 and x2, we can write:

θx1 + (1 − θ) x2 = θ
m∑

i=1
λ1

i y
1
i + (1 − θ)

n∑
i=1

λ2
i y

2
i
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Note that the weights
(
θλ1

1, . . . , θλ1
m, (1 − θ) λ2

1, . . . , (1 − θ) λ2
n

)
give a valid

set of weights for a convex combination of m + n points, so we’ve written
θx1 + (1 − θ) x2 as a convex combination of elements of A. Thus, we’ve shown
that for any x1, x2 ∈ Ĉ, θx1 + (1 − θ) x2 ∈ Ĉ for all θ ∈ [0, 1], i.e. Ĉ is convex.
This implies that conv (A) ⊆ Ĉ.

And that’s it: we’ve shown conv (A) = Ĉ through both inclusions. QED.
Okay, so we’ve defined convex sets, convex hulls, and convex combinations.

We can use these concepts to define a convex function. Simply put, a convex
function is a function whose epigraph is a convex set.

For a function f : A → B, the graph of f is:

graphf = {(x, y) : x ∈ A, y ∈ B, y = f (x)} ⊆ A × B

When A = R and B = R, the graph is in R2, and that’s what you typically
think of when you draw x- and y-axes, and draw a line through all the points
such that y = f (x).

The epigraph of f is:

epif = {(x, y) : x ∈ A, y ∈ B, f (x) ≤ y} ⊆ A × B

The epigraph is simply all the points above a graph. In this class, we will
typically consider the domains that are a subset of Rn, i.e. A ⊆ Rn and
co-domains that are R. As such, the epigraph will live in the space Rn+1.

Note that:
f (x) = min{y : (x, y) ∈ epif}

Figure 21: A visualization of the graph (dark blue line) and the epigraph (dark
blue line and light blue shading) of a function f : R → R.
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Suppose f : A → R, where A ⊆ Rn. We say f is a convex function if
epif is a convex set.

You may have seen other definitions of convexity. In your homework, you’ll
be asked to show the following.

Proposition 5. If f : A → R is a convex function (as defined by the epigraph
being a convex set), then the domain A is a convex set, and the following holds
for all x1, x2 ∈ A and λ ∈ [0, 1].

λf (x1) + (1 − λ) (f (x2)) ≥ f (λx1 + (1 − λ) x2)

We can also define a concave function: f is concave if −f is convex.
Let’s move on to the star of the show in convex analysis: duality.
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9

HYPERPLANES IN CONVEX ANALYSIS

Let’s begin to take our first look at duality. For convex analysis, the duality
often comes from hyperplanes, so a strong intuition in this will help a lot for
understanding that which is to come.

Proposition 6. A closed, convex set is the intersection of all the halfspaces
that contain it.

Formally, let S ⊆ Rn be a closed, convex set. Let H = {H ⊆ Rn :
H is a halfspace, S ⊆ H} ⊆ 2Rn be the set of halfspaces which contain S.
Then:

S =
⋂

H∈H
H

Note that this claim is that one set equals the intersection of another set,
which tells us how to structure the proof.

One direction is easy. Suppose x ∈ S. Then x ∈ H for every H ∈ H, since
S ⊆ H for every H ∈ H. Thus, x is in the intersection. So S ⊆ ∩H∈HH is
easy to show.

The other direction can be shown with a separating hyperplane argument.
Before we formally go into those details, let’s talk about why this result is
useful to begin with.

The key thing here is that the two sets are equal. What that means is that
we can think of closed, convex sets in two equivalent ways. On one hand, we
can think of S as the set of points in it, e.g. S = {x : x ∈ S}. On the other
hand, can think of S as the hyperplanes that it sits squarely on one side of.

This may superficially seem not that interesting, but we’ll spend a lot of
time digging into this to see the surprising consequences of it.

As a preview, let’s apply Proposition 6 to the epigraph of a convex function.
As we defined before, a function f : A → R (where A ⊆ Rn) is a convex
function if its epigraph epif ⊆ Rn+1 is a convex set. Furthermore, f is a
closed convex function if the epigraph is a closed, convex set. For this
section, we’ll assume f is a closed convex function.1

1Throughout this semester, I’m going to be ignoring some of the more pedantic details
you may find in textbooks such as Rockafellar [1993]. Interested students can look up the
definition of a proper convex function. Much like Boyd and Vandenberghe [2004], I’m going
to ignore degenerate cases such as where the domain is empty.



46 BASIC NOTIONS IN CONVEX ANALYSIS AND OPTIMIZATION

Loosely speaking, every halfspace containing the epigraph has to be ‘pointed
up’ in its last coordinate, since the epigraph is all the points above the graph.
When f is continuously differentiable, the hyperplanes that push up to the
edge of the epigraph are tangent to the epigraph, and are actually the linear
approximations, giving the equation f (x) ≥ f (x0) + ∇f (x0)⊺ (x − x0). (This
isn’t a proof of this statement, but just an intuition for it.)

Figure 22: When f is continuously differentiable, the hyperplanes that are
tangent to the epigraph are actually the linear approximations. The fact that
the epigraph lies on one side of this hyperplane states that the convex function
sits above its linear approximation.

When we apply Proposition 6 to epigraphs, we get the following for closed
convex functions f : f is equal to the supremum of all linear functions that
lower bound f . Formally, let F = {(c, b) : c⊺x + b ≤ f (x) for all x ∈ A}, and
then:

f (x) = sup
(c,b)∈F

c⊺x + b (1)

This is the idea underlying the convex conjugate (or Fenchel conjugate

or Legendre transform): we start to treat slopes as the domain rather than
points. Intuitively, the conjugates ask: ‘Given a slope, how far up can I push
the hyperplane until it touches the epigraph?’ This is a dual way of thinking
to the typical differentiation, which asks: ‘Given a point, what is the slope?’
I’m getting a little ahead of myself, but we’ll cover this soon.

So, let’s talk about one way in which this insight is useful for actual al-
gorithms: cutting planes methods. When applied to minimizing a convex
function, the idea is to approximate the supremum in Equation (1) with a
finite number of linear functions:

f (x) ≈ max
i

c⊺i x + bi
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Figure 23: Things get a little weirder when f is convex but not differentiable,
as visualized here. The generalization of gradients to convex functions are
subgradients, which we’ll talk about later in the semester.

If we are attempting to minimize f , we have an approximation of min f with:

min
(x,t)

t

s.t. t ≥ c⊺i x + bi for all i

This gives us a linear program, which we have tools to solve already. After
each iteration, we intelligently add some more linear under-approximations of
f to the maximum and repeat, getting better and better at approximating
f with the maximum of a finite number of functions. In this setting, cutting
planes methods vary based on how additional linear under-approximations are
chosen. However, as I already hinted at, sometimes insights are more clear in
convex analysis when we think of things in terms of sets rather than functions
(such as the epigraph), so we’ll present cutting planes methods more generally
in a bit.
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Before that, let’s discuss separating hyperplanes. From real analysis, let
us recall the definition of a distance between two sets:1

d (A, B) = inf{∥x − y∥ : x ∈ A, y ∈ B}

As per our previous discussion, this infimum may or may not be a minimum
(e.g. there may or may not exist a pair (x, y) in A × B that attains the
infimum). The distance between two disjoint sets may be zero, even if they
are both closed, as shown in Figure 24.

Now, let’s show some separating hyperplane theorems. First, let’s look at
case that assumes away the aforementioned issues with the infimum.

Proposition 7. Let A and B be two convex sets in Rn with d (A, B) > 0, and
suppose there exists points x ∈ A and y ∈ B such that ∥x − y∥ = d (A, B).

Then, there exists c ∈ Rn and b ∈ R such that c⊺x + b ≤ 0 for all x ∈ A
and c⊺y + b ≥ 0 for all y ∈ B.

Okay, let’s draw a picture to build some intuition for this. See Figure 25.
What’s the equation for the hyperplane in Figure 25? Well, we can take

c = y−x, which is the vector from x to y. At y, we would have c⊺y = ∥y∥2−x⊺y
and at x we would have c⊺x = x⊺y − ∥x∥2. The halfway point between x

and y would be b = ∥y∥2−∥x∥2

2 . So, we have an equation for our candidate
hyperplane: z 7→ c⊺z + b. Note that this hyperplane can also be written as
z 7→ (y − x)⊺

(
z − y+x

2

)
, viewing this as first shifted z to the midpoint of the

hyperplane. This also can be written as z 7→ c⊺ (z − [x + c/2]). Let’s show
that this actually separates A and B as claimed by the proposition.

1Here’s a minor note on notation. What you’ll typically see amongst engineers is that
| · | is the absolute value of a scalar, ∥ · ∥ is a norm of a vector, be it an finite- or infinite-
dimensional underlying vector space. Mathematicians typically use |·| to denote the norm of
a vector in a finite-dimensional space (including scalars), and ∥·|| is reserved only for infinite-
dimensional spaces. For this class, I’ll try to use the former convention but I may lapse and
accidentally use the latter. In general, you should be alert as to what the arguments are for
any norm and be aware of what is the case.

My best guess as to why the communities differ in convention is as follows. For many real
applications, the choice of norm matters. If you minimize with respect to the ℓ1 norm or
the Euclidean norm, you’ll often get different answers. (This sort of stuff is crucial for this
class!) However, all norms in finite-dimensional spaces are equivalent, in the sense that they
define the same open sets. Since all norms are topologically equivalent, mathematicians
often don’t bother to distinguish between norms in finite-dimensional spaces.
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Figure 24: The distance between these two closed, disjoint sets is zero. As
they are disjoint, no pair of points from the two sets actually attains this
infimum.

The relevant properties are: 1) x and y attain the minimum distance be-
tween A and B, and 2) A and B are convex. For the sake of contradiction,
suppose this hyperplane does not separate A and B. Let’s say there’s some
x1 ∈ A such that c⊺x1 + b > 0. (The argument when there is a y1 ∈ B such
that c⊺y1 + b < 0 is exactly the same.) What would that look like? Well, let’s
see Figure 26. In light of the insight from this figure, let’s try and show that
contradiction.

x1 itself may not be closer to B than x, but if we start at x and move a
little bit in the direction x1, we will be closer to B.

First, let’s note that (x1 − x)⊺ (y − x) > 0, which visually makes sense.
Moving from x to x1, we have to move in the direction of the hyperplane
boundary for x1 to be on the other side of it. To formally show this, note that
c⊺ (x1 − [x + c/2]) > 0. (This was one of the ways to write the hyperplane we
noted above.) Re-arranging, we get:

c⊺ (x1 − x) >
∥c∥2

2 > 0



50 BASIC NOTIONS IN CONVEX ANALYSIS AND OPTIMIZATION

Figure 25: A visualization for the proof of Proposition 7. A and B are convex
sets with points x ∈ A and y ∈ B that attain the minimum distance between
sets. A reasonable candidate for a separating hyperplane would be one that’s
orthogonal to the line between x and y, placed halfway between the two.

(Recall that c = y − x.) So, as we visually already saw, c⊺ (x1 − x) > 0.
Let’s formalize this. Consider the mapping g (t) = ∥y − [x + t (x1 − x)] ∥2.

We’re starting at x and moving in the direction x1, and checking our (squared)
distance to y as we do so. Since A is convex and x and x1 are in A, all points
in between will be in A, i.e. x + t (x1 − x) ∈ A for all t ∈ [0, 1]. At t = 0, this
is simply g (0) = ∥y − x∥2 = d (A, B)2. We can expand this out:

g (t) = ∥c − t (x1 − x) ∥2 = ∥c∥2 − 2tc⊺ (x1 − x) + t2∥x − x1∥2

Considering the derivative of this mapping:

d

dt
g : t 7→ −2c⊺ (x1 − x) + 2t∥x − x1∥2

Evaluating this derivative at zero yields:

d

dt
g

∣∣∣∣∣
t=0

= −2c⊺ (x1 − x) < 0
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Figure 26: Suppose that x1 ∈ A is on the other side of the hyperplane con-
structed before. Drawing this out, we can see why a contradiction would arise:
it seems like x and y would not be a pair of distance-minimizing points any-
more.

Since the derivative is negative, there exists some point t ∈ (0, 1] where g (t) <
g (0), meaning the point x+t (x1 − x) is closer to y than x itself, contradicting
the fact that (x, y) attain the minimum distance. Thus, we conclude that such
an x1 cannot exist. QED.

Proposition 7 was proved by explicitly using the x and y that attain the
minimum distance. However, this will allow us to prove the more general
result.

Proposition 8. Let A and B be two disjoint convex sets in Rn. Then there
exists c ∈ Rn and b ∈ R such that c⊺x + b ≤ 0 for all x ∈ A and c⊺y + b ≥ 0
for all y ∈ B.

I’ll leave the proof of this as an exercise. You can first show that A − B =
{x − y : x ∈ A, y ∈ B} is a convex set, and then separate A − B from
{0}. Reformulating the problem this way makes it easier, as now we are
considering the distance between a single point and a set; even if this distance
is not attained, rather than infimizing sequences (xn, yn) with x ∈ A, y ∈ B,
we can take an infimizing sequence (zn) with z ∈ A − B and look at how far
it is from zero.
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Figure 27: Since x1 is on the other side of the hyperplane from x, we have that
x1 −x has to have some part that’s pointing in line with c = y −x. Intuitively,
going from x to x1 has to move positively in the c direction to get to the other
side.
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