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ABSTRACT

Persistent memory is an emerging technology which allows
in-memory persistent data objects to be updated at much
higher throughput than when using disks as persistent stor-
age. Previous persistent memory designs use logging or
copy-on-write mechanisms to update persistent data, which
unfortunately reduces the system performance to roughly
half that of a native system with no persistence support.
One of the great challenges in this application class is there-
fore how to efficiently enable atomic, consistent, and durable
updates to ensure data persistence that survives applica-
tion and/or system failures. Our goal is to design a per-
sistent memory system with performance very close to that
of a native system. We propose Kiln, a persistent mem-
ory design that adopts a nonvolatile cache and a nonvolatile
main memory to enable atomic in-place updates without
logging or copy-on-write. Our evaluation shows that Kiln
can achieve 2x performance improvement compared with
NVRAM-based persistent memory with write-ahead logging.
In addition, our design has numerous practical advantages:
a simple and intuitive abstract interface, microarchitecture-
level optimizations, fast recovery from failures, and elimi-
nating redundant writes to nonvolatile storage media.

Categories and Subject Descriptors
B.3.2 [Hardware|: Memory Structures—Primary Memory
Keywords

Persistent Memory, Non-volatile Memory

1. INTRODUCTION

Applications that require high reliability, such as databases
and file systems, need to periodically store critical data in
nonvolatile devices so the data can survive system failures
or program crashes. Commodity computing systems employ
slow block-addressable storage media, such as spinning disks
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or flash, to store this critical data. Due to hardware (PCle
or SATA 1/0 delay) and software (legacy block-oriented file
system interfaces) costs, applications suffer from significant
throughput degradation.

Persistent memory is a new technology incorporating
the properties of both main memory and storage. An appli-
cation can directly access persistent data through a memory
interface with loads and stores, without paging data blocks
from/to a storage device or context switching while servic-
ing page faults. Recent work [12,45] has demonstrated much
higher program throughput (up to 32x) by utilizing byte-
addressable nonvolatile memory technologies (NVRAM) such
as spin-transfer torque RAM (STT-MRAM) or phase-change
memory (PCM) to build persistent memory. These stud-
ies operate directly on nonvolatile data that is accessible
through the processor-memory bus, eliminate the overhead
of PCle or SATA accesses and legacy block-oriented file-
system interfaces, and update the persistent data structures
at cache line granularity without the need for batching. Nei-
ther memory (SRAM, DRAM, and flash) nor storage me-
dia (hard drives and optical discs) in current commercial
systems are both nonvolatile and byte-addressable. Hence,
NVRAM-based persistent memory enables a new class of
applications that can store pointer-rich, user-defined data
structures directly in a nonvolatile memory and process a
large amount of data at low latency and high bandwidth.

A caveat for persistent memory design is that system fail-
ures or program crashes may corrupt the state of data struc-
tures. For instance, a power outage may occur while an ap-
plication is inserting a node in a doubly-linked list. If only
one pointer is written out to nonvolatile devices (NVRAM)
and the other is still in volatile devices (processor caches or
DRAM), the doubly-linked list will be broken and not us-
able after the crash. Ideally, a persistent memory system
(hardware, software, or a combination of both) must ensure
safe data updates so that data integrity is maintained in
the presence of system failures or program crashes. Borrow-
ing the ACID (atomicity, consistency, isolation, and dura-
bility) [38] concept from the database community, persistent
memory systems must update a set of programmer-defined
nonvolatile locations in an atomic, consistent, and durable
way to enforce crash consistency (i.e., persistence).

Unfortunately, supporting persistence in memory still in-
curs significant performance cost, even with the latest pro-
posals. Existing persistent memory designs employ logging
or copy-on-write (COW) to manage persistent data updates.
Logging mechanisms track the changes to critical data by
maintaining a set of journals, which store old data values
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Figure 1: Comparison between a native system with
no persistence support (Native) and log-based per-
sistent memory (Persistent Memory). Speedups of
transaction throughput (higher is better) and mem-
ory traffic (lower is better), including reads and
writes, are averaged across benchmarks.

(undo logging) or new updates (redo logging). COW stores
new updates in a temporary data copy, while the real data
is unchanged. However, these mechanisms increase the de-
mand of storage space and reduce system performance by
increasing memory traffic with extra data transfers. Fur-
thermore, previous persistent memory designs use instruc-
tions such as flush (clflush) and memory fence (mfence)
to ensure consistency by flushing the dirty lines in caches at
the barrier of each persistent memory update. As a result,
we observe a large performance gap between a system with
a persistent memory and a “native system” (i.e., with no
persistence support). Persistent memory implementations
using off-chip NVRAM and logging incur a 120% increase in
memory traffic (60% in reads and 180% in writes) and only
achieve 53% of the throughput of a native system (Figure 1).
Therefore, our goal is to design a persistent memory with
performance close to that of the native system.

We propose Kiln!, a persistent memory design that em-
ploys a nonvolatile last level cache and a nonvolatile mem-
ory to construct a persistent memory hierarchy. Our design
allows a persistent memory system to directly update the
real in-memory data structures, rather than performing log-
ging or COW. We refer to these direct updates to the real
in-memory data structures as in-place updates. We also
develop a set of light-weight software and hardware exten-
sions to facilitate atomicity and consistency support. With
in-place updates, Kiln can achieve 91% of native system per-
formance, which is about a 2Xx improvement over log-based
persistent memory designs using NVRAM. In particular, we
make the following contributions:

e We propose a persistent memory design that closes the
performance gap between systems with and without
persistence support. Our persistent memory allows in-
place updates to real in-memory data structures, with-
out performing logging or COW.

e We provide an optimized flush operation, which en-
forces the order of persistent memory updates without
flushing the entire cache hierarchy or executing flush
and memory fence instructions.

e We develop a simple and intuitive software interface
and a set of light-weight ISA and architecture exten-
sions to provide atomicity and consistency support for
our persistent memory.

LéKiln” was once used by ancient Mesopotamians to bake the clay
tablets with temporary scripts and turn them into permanent records.
‘We name our persistent memory design Kiln, because it is analogous
to the persistent memory that turns volatile data into permanent
records.

2. BACKGROUND AND RELATED WORK

Protecting data against system failures and crashes forces
a trade-off between performance and reliability. In this sec-
tion, we study the requirements of developing persistent
memory and investigate the persistence mechanisms of pre-
vious work.

2.1 Properties of Persistent Memory

Persistence has been well investigated in databases and file
systems. We borrow the concept of atomicity, consistency,
isolation, and durability (ACID) [38] from the database com-
munity to study the properties of persistent memory. These
four properties can be separately maintained in different
manners in a system. For example, transactional memo-
ries (TMs) [22] maintain A, C, and I, separated from D,
while a recent study on failure-atomic msync [36] focuses on
A and D.

In particular, a persistent memory system needs to en-
sure atomicity, consistency, and durability. First of all, a
persistent memory system contains nonvolatile devices so
each data update is retained during power loss, crashes, or
errors. This is referred to as the durability property. Sec-
ond, because the granularity of programmer-defined data
updates can be larger than the interface width of the persis-
tent memory, a single update is typically serviced as multi-
ple requests. Therefore, sudden power losses or crashes can
leave an update partially completed, corrupting the persis-
tent data structures. To address this issue, each single up-
date must be “all or nothing”, i.e., either successfully com-
pletes or fails completely with the data in persistent memory
intact. This property is atomicity. Third, consistency
requires each update to convert persistent data from one
consistent state to another. Taking an example where an
application inserts a node to a linked list stored in persis-
tent memory, a system (including software programs and
hardware) needs to ensure that the initial values of the node
are written into the persistent memory before updating the
pointers in the list. Otherwise, the persistent data struc-
ture can lose consistency with dangling pointers in a sudden
crash, leading to a permanent corruption not recoverable
by restarting the application or the system. Typically, pro-
grammers are responsible for defining consistent data up-
dates, because only the programmers know what it means
for application data to be in harmony with itself. Of course,
programmers can leverage runtime API to do this. While
executing the software programs, hardware and system soft-
ware need to preserve the demanded consistency.

The fourth property, isolation, ensures that concurrent
data updates are invisible to each other. Today, a program-
mer writing portable code atop a POSIX-compliant OS and
hardware has two separate families of mechanisms for solv-
ing two isolation problems. One family of mechanisms is
used to ensure orderly race-free access to data in multi-
threaded or multiprocess concurrent programs. This set of
mechanisms includes mutexes, semaphores, TMs, and lock-
free/wait-free data structures and algorithms. The other
family of mechanisms is used to update data in durable me-
dia. This set of mechanisms includes system calls such as
write(), fsync(), and mmap() /msync(). Commodity sys-
tems use separate and orthogonal mechanisms for handling
isolation in the face of concurrency and durable updates.
Our persistent memory design permits the same kind of or-
thogonal separation of concerns. Various concurrency con-



trol mechanisms can be integrated with our design.
Specifically, our persistent memory design maintains A

and D, preserves C that is defined by programmers, and re-

lies on concurrency control mechanisms to support isolation.

2.2 Maintaining Atomicity by Multiversioning

Multiversioning is a common method to ensure atomicity.
With multiversioning, multiple copies of data exist. When
performing updates to one copy of data, another copy is left
intact. If one copy of data is corrupted by a partial update,
another copy is still valid and available for recovery.

Most previous work on persistence, e.g., persistent object
systems [4,9,12,19,28,42,47], the Java persistence API [2,33],
RVM [39], Rio file cache [11], Stasis [40], Mnemosyne [45],
eNVy [48], and UBJ [29], employ one of two techniques to
maintain multiversioning: write-ahead logging (or journal-
ing) [12, 20, 31, 39, 43, 45] or COW [11, 13,23, 44, 48] (Fig-
ure 2 (a) and (b)). Several previous studies investigated the
use of battery-backed RAMs as persistent storage [8,14,18].
Although battery-backed RAMs are byte-addressable, these
designs inefficiently access the RAMs through a driver like
disks and adopt database management systems (DBMS)
or file systems to implement logging or COW to manage
the persistent memory. NV-heaps [12] and Mnemosyne [45]
adopt durable software transactional memory (STM) to sup-
port persistence for in-memory data objects. Both designs
enforce atomic transactional updates by maintaining a redo
log.

Both logging and COW mechanisms impose significant
performance overhead by explicitly executing logging or data
copying instructions. While the software overhead is toler-
able with traditional disk-based persistent memories where
the I/O delay dominates the performance overhead, the frac-
tion of software overhead increases dramatically when the

persistent memory can be accessed at a much faster speed [10].

Furthermore, duplicated data (logs or data copies) traverse
the cache hierarchy to the memory, contaminating caches
with non-reusable cache lines. Therefore, the key reason
that the native system runs fast is that it performs in-place
updates to the real in-memory data, without explicitly dupli-
cating the data like logging or COW does. However, in-place
updates are hard to implement in most previous NVRAM-
based persistent memory designs [12,13,44,45], which main-
tain persistence in a single-level memory. In such systems,
at least one more copy of data needs to be stored in addition
to the real data, to maintain multiversioning.

An exception of ensuring atomicity without multiversion-
ing is when an update can be completed instantaneously,
typically with very small granularity of memory stores. Ex-
amples of such cases are updating a single variable [45] or a
memory store of the granularity the same as the bus width [13,
35]. Unfortunately, these studies do not provide any mech-
anisms that can be applied to in-place updates of larger
granularities.

2.3 Preserving Consistency by Ordering

Controlling write ordering is a primary mechanism to pre-
serve consistency in application programs. Ordering means
that the order that updates become permanent must match
the order in which they are issued. A mismatch can happen
when processor caches and memory controllers reorder mem-
ory requests to optimize performance. A persistent memory
employs ordering control mechanisms to prevent mismatch.

Most previous persistent memory designs ensure the order-
ing by write-through caching [45] or bypassing the processor
caches entirely, flush, memory fence [35,44,45], and msync
operations, each imposing high performance costs. With
write-through caching, each memory store needs to wait un-
til reaching the main memory. Flush and memory fence
mechanisms can cause a burst of memory traffic and block
subsequent memory stores. Furthermore, most previous de-
signs [35,44,45] employ instructions such as c1flush, which
flushes dirty cache lines to ensure ordering, with a latency
that can be up to several milliseconds. Besides the long la-
tency, flushing an entire cache can also evict the working sets
of other applications from the cache. BPFS [13] adopted an
epoch barrier mechanism to minimize the flush traffic, how-
ever at the cost of reduced durability strength that leads to
potential data loss.

3. DESIGN OVERVIEW

Kiln adopts a new persistent memory architecture con-
sisting of a nonvolatile cache (NV cache) and a nonvolatile
memory (NV memory), naturally forming a multiversioned
persistent memory hierarchy (Figure 2 (c)). The newly up-
dated versions are dirty NV cache lines. The old versions
are clean data stored in the NV memory, which will be auto-
matically updated when the dirty NV cache lines are evicted.
With this multiversioned persistent memory hierarchy, Kiln
simplifies persistent memory update operations by allow-
ing memory stores to be performed in-place to the persis-
tent data structures in the NV cache, without logging or
COW. Therefore, Kiln’s memory store operations are sim-
ilar to those of the native system. As a result, Kiln’s per-
formance is also very close to that of the native system,
yielding a significant performance improvement over pre-
vious NVRAM-based persistent memory designs. Table 1
qualitatively compares Kiln with the native system and re-
lated persistent memory designs in terms of memory update
mechanisms and support of atomicity and ordering.

3.1 Assumptions and Definitions

Mapping data to a hybrid memory address space: We
assume that DRAM and NVRAM are both deployed on the
processor-memory bus and mapped to a single physical ad-
dress space. Kiln stores the user-defined critical data in
NVRAM. The DRAM is used to store data that is not re-
quired to be persistent and can be overwritten frequently.
Examples of such data are stacks and data transfer buffers.
Runtime systems such as the ones developed by prior stud-
ies [12,45] can be employed to expose the NVRAM address
space to persistent data objects.

Program hints on persistent memory transactions:
Kiln adopts program hints to decide when and what data
blocks need to be persistent. Recent NVRAM-based per-
sistent memory designs [12,45] obtain this information by
allowing users to define durable STM transactions. Simi-
larly, Kiln exposes to programmers an interface of “persis-
tent memory transactions”, which are groups of instructions
performing persistent memory updates. Kiln reads users’
input to define the beginning and end of each transaction.

States of a persistent memory transaction: Each per-
sistent memory transaction will go through three states: in-
flight, committing, and committed. After the first instruc-
tion of a persistent memory transaction starts execution,



Table 1: Comparison of Kiln with previous work. (x means In-place updates are only performed for memory stores to a
single variable or at the granularity of the bus width. ¢ means ordering is maintained among the writes to the disk or flash

by flush or checkpointing.)

Designs Mechanisms Persistence Support
In-place | Logging | COW | clflush/msync/fsync | mfence/barrier || Atomicity | Ordering
BPFS [13] * No Yes No Yes 4 V
Mnemosyne [45] * Yes Yes Yes Yes N4 N4
NV-heaps [12] No Yes No No Yes V4 V4
CDDS [44] No No Yes Yes Yes N N
UBJ [29] Yes Yes Yes o © Vv V4
eNVy [48] No No Yes © o N N
Native System Yes No No No No X X
Kiln Yes No No No No v v
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Figure 2: Overview of Kiln persistent memory design and previous work.

the transaction becomes an in-flight transaction. When the
last instruction of the transaction completes execution, the
transaction is in committing state. In this state, Kiln will
perform the clean-on-commit operation (Section 3.3) and
update the state of persistent data structures (Section 3.4).
When these operations are completed, the transaction is
committed. All data updated by this transaction is now
persistent.

3.2 In-place Updates without Logging or COW

Previous persistent memory designs maintain multiver-
sioning by software, using application or OS libraries. From
the perspective of software, a memory system is a flat ad-
dress space, consisting of a sequence of pages. Therefore,
previous persistent memory designs need to explicitly create
multiple regions, logs or temporary data copies, to maintain
multiple versions of data. Different from software, hardware
views a memory system as a hierarchy with multiple lev-
els of processor caches and a main memory. This hierarchy
naturally stores different versions of data in different levels.

Leveraging this hierarchy, we design a multiversioned per-
sistent memory that includes a last-level NV cache and a
NV memory (Figure 2(c)). The dirty NV cache lines are
one version and the clean data in the NV memory are an-
other. Both versions have the same address so this persis-
tent memory hierarchy directly performs in-place updates
to real data structures. We allow in-flight and committing
persistent memory transactions to overwrite data values in
processor caches (including the NV cache), but not in the

NV memory. Therefore, the version stored in the NV mem-
ory is persistent if a system crashes when a persistent mem-
ory transaction is executing or committing. We allow NV
cache lines of committed persistent memory transactions to
be written back to the NV memory. However, we do not al-
low evictions from higher-level volatile caches to overwrite a
NV cache line that is being written back. Therefore, the ver-
sion stored in the NV cache is persistent if a system crashes
when writing back a NV cache line.

Our work is different from previous work that use a disk
cache or flash buffer to improve the persistence performance,
such as eNVy [48], and UBJ [29]. The file cache and flash
buffer in these designs are simply used as buffers of the jour-
nal or temporary copies of data which still serve for logging
or COW, rather than as a way of enabling in-place updates.

3.3 Ordering Control by Clean-on-commit

We employ an optimized flushing operation called clean-
on-commit to preserve the ordering of persistent memory up-
dates, when a persistent memory transaction is committing.
Unlike previous work, Kiln allows cache controllers to issue
flush requests without explicitly executing instructions such
as clflush or mfence. We allow out-of-order write-backs of
any dirty cache lines in the volatile caches, including those
being updated by in-flight persistent memory transactions.
The cache controllers will track the dirty cache lines that
are updated by an in-flight persistent memory transaction
and still remain in the volatile caches. The architecture ex-
tension in the NV cache (Section 4) will track the dirty NV
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cache lines updated by an in-flight persistent memory trans-
action. When a persistent memory transaction commits,
typically a large portion (demonstrated in Section 6) of its
dirty cache lines have already been written to the NV cache.
Therefore, only the remaining dirty cache lines updated by
the transaction in volatile caches need to be flushed. Af-
ter all the dirty cache lines that belong to the committing
transaction are flushed to the NV cache, the state of the
transaction transitions from committing to committed.
The clean-on-commit operation is improved over the or-
dering mechanisms of previous designs in four aspects. First,
clean-on-commit only flushes the volatile dirty cache lines
of the committing persistent memory transactions. Many
previous designs [44,45] employ flushing instructions (e.g.,
clflush) that unnecessarily flush the dirty cache lines out of
the cache hierarchy. Second, the memory traffic to perform
the flushes is significantly reduced because we only flush
a small number of cache lines. Third, the bandwidth of
processor-cache buses is much higher than that of the off-
chip memory bus, and therefore the flush operations can be
completed much faster. Finally, clean-on-commit will be is-
sued in the same order as the commits of persistent memory
transactions, and therefore does not employ memory fence
or barrier instructions which block other memory accesses.
However, clean-on-commit requires bookkeeping functional-
ity to be added to the volatile cache controllers. We will
discuss the mechanisms and the overhead in Section 4.

3.4 Timeline of a Transaction

With in-place updates and clean-on-commit, Kiln pro-
vides a way to reduce the latency of data persistence by
committing the persistent memory transactions right after
all the updates arrive at the NV cache, rather than waiting
for the updates to be flushed to the NV memory. Figure 3
shows the execution timeline of Kiln compared to that of
a persistent memory system with redo logging. We do not

show an example with undo logging, because its performance
is usually worse than that of redo logging.

Figure 3(a) shows the sequence of updating persistent
memory that employs redo logging to a journal in the NV
memory. An in-flight persistent memory transaction keeps
adding new data values and their addresses to a journal.
This is followed by flush and memory fence operations to
ensure that all the journal updates reach the NV memory
immediately after they are issued. A persistent memory
transaction becomes committed after the last instruction in
a transaction is executed and all the logs are flushed into
the NV memory. Then, the system can overwrite the real
data structures in the NV memory. Figure 3(b) shows the
timeline of Kiln. After executing the last instruction in an
in-flight transaction, the state of the transaction becomes
committing. Committing a persistent memory transaction
consists of two steps. First, Kiln performs clean-on-commit
to flush all the corresponding dirty cache lines remaining in
volatile caches. Then, Kiln updates the state of every corre-
sponding NV cache line, from uncommitted to committed.
After these two steps are completed, a persistent memory
transaction becomes committed.

Compared with redo log based persistent memory, Kiln
executes faster with both a single persistent memory trans-
action and a sequence of them. As discussed in Section 3.3,
clean-on-commit is much more efficient than executing flush
and memory fence instructions. Therefore, Kiln completes
a single persistent memory transaction faster than the redo
logging method, despite the longer last-level cache (NV cache)
access latency. Kiln also executes much faster than redo log
based persistent memory when running a sequence of trans-
actions. The redo logging mechanism only flushes log up-
dates when a transaction is committing. The real data up-
dates of a committed transaction can still remain in volatile
caches. Therefore, the NV memory needs to keep the log
updates after a transaction is committed, until all the real
data updates arrive at the NV memory. As a result, a redo
log based persistent memory needs to periodically perform a
truncation operation, which flushes real data updates from
caches to the NV memory and then releases (free of recla-
mation) the corresponding log entries. Instead, Kiln releases
NV memory data blocks right after the corresponding trans-
action is committed. Therefore, Kiln reduces the total time
of completing a sequence of persistent memory transactions
by eliminating the truncation operations.

3.5 Discussion

Durable TM transactions: Persistent memory transac-
tions are similar to database and file system transactions,
which make atomic, consistent, and durable modifications
to the storage system. TM, a concurrency control mecha-
nism which also borrows the concept of “transaction” from
the database community for controlling shared memory ac-
cess, also supports atomic and consistent memory accesses.
However, directly enabling durability with TM is subopti-
mal for persistent memory updates, if not impossible. STM
records every speculative store in a log. Therefore, em-
ploying STM with durable memory transactions still re-
quires maintenance of a journal. For example, recent stud-
ies employing STM for persistent memory updates, includ-
ing Mnemosyne [45] and NV-heaps [12], both maintain a
redo log in the persistent memory. Another type of TM im-
plementation, hardware transactional memory (HTM), does
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Figure 4: Software and architecture extensions developed to facilitate Kiln.

not necessarily require logs. Commodity HTM implementa-
tions, such as the transactional synchronization extensions
specified by the Intel Haswell processor [24] and the trans-
actional memory processor instructions supported by the
IBM zEC12 [25], buffer speculative stores at processors’ pri-
vate caches (in particular, the L1 caches) and overwrite the
lower-level caches and memory when transactions commit.
These HTM implementations need to support fast recovery
from transaction aborts, and therefore ensure atomicity only
at higher-level caches. Unless the entire cache hierarchy is
made nonvolatile, it is impossible to ensure atomic updates
crossing the persistence boundary by directly adopting these
HTM implementations. Other HTM implementations, such
as IBM Blue Gene/Q’s hardware support for TM [46] and
LogTM [34], allow the speculative stores to enter the lower-
level caches. However, they have other downsides. The IBM
Blue Gene/Q [46] requires write-through L1 caches or inval-
idating the entire L1 cache at the beginning of each trans-
action. LogTM [34] maintains a hardware-based undo log
to buffer the speculative stores. Recovery with the persis-
tent memory from system failures is performed off-line or
off the critical path of program execution, and therefore can
tolerate much longer recovery latency. Employing durable
HTM transactions to update the persistent memory can be
unnecessarily cumbersome and inflexible. With Kiln, race-
free isolated data accesses in multi-threaded or multi-process
programs can be guaranteed by TM or any other concur-
rency control mechanisms, such as mutexes, semaphores, or
lock-free/wait-free data structures and algorithms.

Critical-data persistence vs. whole-system persis-
tence: Kiln supports persistence for user-defined critical
data structures typically used in databases or file systems,
such as search trees, hash tables, and graphs. This is espe-
cially useful for servers running database and file system
services. Another research direction focuses on the per-
sistence of the entire system, called whole-system persis-
tence (WSP) [35], supporting instant program restart or re-
suming after failures. This method makes a persistent copy
of the entire memory upon failures, by employing flush-on-
fail, i.e., flush all register and cache states to the NV mem-
ory. With sufficient backup power sources, a system employ-
ing Kiln can also provide high-performance WSP support by
mapping all the data to the NV memory address space and
performing the same flush-on-fail operation.

4. SOFTWARE INTERFACE AND ARCHI-
TECTURE IMPLEMENTATIONS

In this section, we address the implementation details.
First, we provide a software interface for users to define the
boundary of a persistent memory transaction. Second, we
provide a finite-state machine for every NV cache line to
ensure that the persistent memory is in a consistent valid
state with only the committed transaction data. Third, we
implement a set of cache architecture extensions, including
the extended tags and the selective replacement policy at
the NV cache, and track logic and FIFO queues in the cache
controllers. Fourth, we provide a solution to detect the NV
cache overflow and present a fall-back path to resolve the
overflow. Finally, we will discuss the physical implementa-
tion choices, including the memory technologies used in the
NV cache and the NV memory and integration technologies.

4.1 Software Interface and ISA Extension

To define the beginning and end of a persistent memory

transaction, we provide the software interface,
persistent{...}
to define persistent memory transactions. Furthermore, we
provide a software interface that allows the users to declare
strong and relaxed ordering control. The strong ordering is
denoted by
#pragma persistence_inorder
With the strong ordering control declared, Kiln applies clean-
on-commit, for each persistent memory transaction. Without
this declaration, the users can specify the transactions that
require ordering with an attribute called inorder, i.e., using
persistent (inorder){...}

Ordering is maintained within persistent memory transac-
tions with the inorder attribute. Clean-on-commit opera-
tions on transactions without this attribute may be delayed.
Figure 4(a) shows an example of using the software interface
with relaxed ordering control. In this example, the pointers
pyl and py2 will be updated after the updates to their data
objects y1 and y2 are flushed to the NV cache. The updates
to z1 and z2 may remain in volatile caches without being
forced to the NV cache.

We also extend the ISA with a pair of new instructions,
PERSISTENT_BEGIN and PERSISTENT_END. The software in-
terface can be translated to ISA instructions with simple
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modifications to the compiler. Similar ISA and software in-
terface extensions have been implemented to support HT'M,
such as those of Intel’s Haswell processors [24] and IBM’s
zEC12 [25]. We provide a separate set of extensions with
persistent memory transactions so that HI'M can be simul-
taneously used as the concurrency control mechanism.

4.2 Maintaining the State of NV Cache Lines

The NV cache is shared by non-persistent cache lines
(mapped to the DRAM address space), the cache lines being
updated by in-flight persistent transactions, and the cache
lines with the committed transactions. Each NV cache line
is assigned one of three states: free, pending, and persis-
tent (Figure 5). A free cache line stores non-persistent data
mapped to the DRAM address space. A pending cache line
is updated by an in-flight persistent memory transaction,
storing the new data value. A cache line with the latest ver-
sion of a committed persistent memory transaction is called
persistent. As shown in Figure 5, various access events at a
NV cache line can trigger state transitions of the cache line.
Note that read or write misses do not apply to a pending
cache line, due to our selective replacement policy presented
in Section 4.3. Although the state transition can be inte-
grated with a cache coherency protocol, doing this can in-
crease the complexity of maintaining coherence. Therefore,
we maintain the state transition separately.

4.3 Cache Extensions

We develop a set of cache architecture extensions (Fig-
ure 4(b)) to facilitate Kiln, including additional regions in
the NV cache tags, a selective replacement policy, and track-
ing logic and tables in the cache controllers.

Additional regions in the NV cache tags: We add
four additional fields to each cache tag, including the core
ID (CID), the hardware thread ID (TID), the persistent
memory transaction ID (TxID), and the cache line state.
The first three IDs are used to distinguish between dif-
ferent persistent memory transactions initiated by differ-
ent processor cores. The cache line state is used to main-
tain the state transition among the states of free, pending,
and persistent. The storage overhead of each tag entry is
logaN + log2T + loga M, plus 2 bits for the cache line state.
Here N and T are the number of cores and hardware threads
per core, and M is the number of maximum in-flight per-
sistent memory transactions supported by Kiln. If strong
ordering is enforced (i.e., #pragma persistence_inorder is
declared), the number of in-flight persistent memory trans-
actions is limited by the total number of hardware threads,
i.e., N x T. The TxID of a persistent memory transaction
can be reused after it is committed. We can estimate the
storage overhead in the NV cache tags with the following
case. If we support 256 in-flight persistent memory trans-

actions on a processor with eight cores and two hardware
threads per core, we need an additional 14 bits in each NV
cache tag, which only adds 2.7% to a 64-byte cache line. If
strong ordering control is enforced, the maximum number of
in-flight persistent memory transactions is far less than 256,
16 in this example.

Selective NV cache replacement policy: Existing cache
replacement policies are not designed for data persistence.
To prevent the in-flight persistent memory transactions from
corrupting the data structures stored in the NV memory, we
implement a simple selective NV cache replacement policy
extension: we do not allow the evictions of pending cache
lines. Read and write misses at pending cache lines are thus
not allowed in Figure 5. Our extension can work with most
existing cache replacement policies. In practice, we adopted
LRU as the basic replacement policy in Section 6.We leave
the exploration of more sophisticated optimizations of cache
replacement policy as future work.

Tracking in-flight persistent memory transactions in
cache controllers: We extend cache controllers with FIFO
queues and persistence controllers, as illustrated in Figure 4.
The FIFO queues are used to track all the dirty cache lines
updated by in-flight persistent memory transactions. Each
FIFO queue entry is a copy of the extended tag information
(CID, TID, and TxID) and the location of a dirty cache
line (its set and way number). We evaluated the storage
overhead of FIFO queues in a cache hierarchy described in
Table 2 (choose option (b) for L3 cache). We employ the
number of FIFO entries that is sufficient to accommodate
the workloads described in Table 3: the FIFO queues at
each L1 and L2 cache have 16 entries; the one at the L3
cache has 128 entries. Figure 4(c) lists the storage overhead
of the FIFO queues at each L1, L2, and L3 cache. Note
that the storage device in cache controllers is volatile for
fast access and easy fabrication. The information stored in
the FIFO queues will be lost if the processor loses power.
In this case, all the in-flight persistent memory transactions
need to be re-executed after the system restarts. Persistence
controllers are in charge of enqueuing the FIFO and issuing
the clean-on-commit operations. They also allocate TxIDs
to the new persistent memory transactions. The persistence
controller at the L1 cache controllers are extended to detect
the boundary of each persistent memory transaction, by re-
ceiving the PERSISTENT_BEGIN and PERSISTENT_END signals
from the processor cores. The request generator in the NV
cache controller is extended to implement the selective re-
placement policy and the overflow detection mechanisms.

4.4 NV Cache Overflow and Fall-back Path

NV cache overflow is the case when a miss at the NV
cache can never be serviced because no victim can be found
for replacement. In this case, the program cannot make for-
ward progress without the NV cache overflow being resolved.
Because we do not allow pending cache lines to be evicted
from the NV cache, the overflow may be caused by one of
two reasons: (1) the capacity is smaller than the total size of
in-flight persistent memory transactions or (2) the associa-
tivity is insufficient to accommodate all in-flight persistent
memory transactions that conflict at the same cache set.

Detecting NV cache overflow: We can detect an NV
cache overflow when searching for an eviction victim at the
NV cache. Figure 4(d) lists the scenarios which can lead to



Table 2: Parameters of the evaluated multi-core system.

Processor/Technology | Intel Core i7 like/22 nm

Cores 8 (2.5GHz), 16 threads
L1 Cache (Private)
L2 Cache (Private)
L3 Cache (Shared)

Memory Controller

Volatile (SRAM), 64KB, 4-way, 64B blocks, 1.6ns latency

Volatile (SRAM), 256KB, 8-way, 64B blocks, 4.4ns latency

(a) Volatile (SRAM), 16MB, 16-way, 64B blocks, 10ns latency

(b) Nonvolatile (STT-MRAM), 64MB, 16-way, 64B blocks, 15ns (19ns) read (write) latency
Two dual-channel memory controllers, FR-FCFS

Memory Technology 30 nm

DRAM DIMM DDRA4-2133, 2GB
NV Memory DIMM

STT-MRAM, 2GB, 25ns row-hit latency, 65ns (76ns) read (write) row-conflict latency

Power and Energy

Processor (with L1 and L2): 149W (peak).
L3 (SRAM): read/write: 0.58nJ/access; L3 (STT-MRAM): read (write): 0.61 (0.67) nJ/access.
NV memory : row buffer read (write): 0.93 (1.02) pJ/bit, array read (write): 1.00 (2.89) pJ/bit

NV cache overflows. NV cache overflows are hard to detect
if the cache set is filled by a mix of different in-flight persis-
tent memory transactions. It is possible that the program
can continue to make progress after one of the in-flight per-
sistent memory transactions is committed and advance one
of the cache lines in the set to the persistent state. Unfor-
tunately, simply waiting for next available victim will incur
performance overhead and even deadlocks. Instead, we stall
memory requests when the request queue at the higher level
cache is almost full (e.g., 80% filled) and then provide a
fall-back path.

Fall-back path: We provide a fall-back path to resolve
the issue of NV cache overflows, allowing the pending cache
lines to be written back to the NV memory and maintain
multiversioning in the NV memory with hardware-controlled
COW similar to that used in eNVy [48]. When an NV cache
overflow is detected, Kiln will notify the operating system by
interrupt to allocate new pages to buffer the pending cache
lines evicted from the NV cache. A mapping table will be
created in the NV memory and updated with the physical
addresses of buffered pending cache lines. When a persis-
tent memory transaction is committed, the page table will
be updated to invalidate the old data values and enable the
new data values according to the mapping table. Then the
corresponding mapping table entries can be discarded.

Commodity processors typically employ several megabytes
of last-level cache with high associativity (e.g., 16-way). The
density of NVRAM is much higher than SRAM, so the ca-
pacity of the NV cache can be as large as tens of or over one
hundred megabytes. The associativity of the NV cache can
also be higher than SRAM-based caches. Therefore, Kiln
can support in-flight persistent transactions with memory
footprints up to tens of megabytes. The memory footprints
of the in-flight persistent memory transactions are deter-
mined by the granularity of modifications performed to the
persistent data structures and upper-bounded by the size
of data structure elements (e.g., tree nodes, table entries,
graph edges, etc.). Furthermore, small-granularity data up-
dates may dominate some commercial and future real-world
workloads. For example, several key-value workload char-
acteristics published recently by Facebook [5] showed that
most queries employ keys of less than 32 bytes and values of
no more than a few hundred bytes. For this type of work-
load, NV cache overflow will be less of an issue.

4.5 Recovery

Kiln allows easy and fast system recovery mechanisms,
because most of the persistent updates are applied in-place

Table 3: Benchmarks used in our experiments.

Benchmarks Description

BTree [7] Inserts/deletes nodes in a B-tree.

Hash [12] Inserts/deletes entries in a hash table.
RBTree [12] Inserts/deletes nodes in a red-black tree.
SDG [41 Inserts/deletes edges in a scalable large graph.
SPS [12 Random swaps between entries in an array.
SSCA2 [6] A scalable large graph analysis benchmark.

to the real in-memory data structures. Upon restart from
an abnormal termination, the system can go through the
following steps for recovery. First, we scan the NV cache
tags and invalidate the cache lines in the pending state be-
cause they are partially updated data structures in process
by in-flight persistent memory transactions before failure.
Next, we scan the page table in the NV memory to identify
the temporary data copies (if any) due to NV cache over-
flows. These data copies were updated by in-flight memory
transactions as well, and hence can be invalidated. These
recovery steps can be performed by hardware, reusing the
tracking logic and FIFO queues in cache controllers.

4.6 Physical Implementation

In principle, our persistent memory architecture design
does not rely on any specific physical implementation of pro-
cessors and memories. For example, all components of the
processor and memory can be packaged in a single package
with silicon interposer technology, which has been widely ex-
plored by academia and industry to develop high-performance
system-in-package designs [16,17]. The NV cache and the
NV memory can both be implemented by STT-MRAM, which
provides the best latency and endurance among NVRAM
technologies. Everspin [26] recently launched the DDR3
compatible STT-MRAM components, which is projected to
be able to scale to Gb densities (close to NAND flash). Ex-
isting work has demonstrated the feasibility of STT-MRAM
used in lower-level caches [49] in multi-core processors. The
NV cache can be stacked on top of the CPU die for large ca-
pacity and high bandwidth, or packaged with the NV mem-
ory, sitting beside the processor with higher-level caches. In
this case, the processor can be fabricated without the effort
of integrating different memory technologies. We can also
implement the NV memory with resistive RAM (ReRAM)
or PCM, because they are byte-addressable and nonvolatile
just like STT-MRAM. The main memory, including the NV
memory and DRAMs, can be implemented with an off-chip
DIMM interface or wide I/O interface [27,37]. The wide
I/0 implementation can achieve higher memory bandwidth
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Figure 6: Performance comparison between two na-
tive systems adopting STT-MRAM and SRAM as
L3 cache respectively. Results show that the two
systems have similar performance.

between the processor and the main memory for better per-
formance, however it incurs complexity and higher cost.

S. EXPERIMENTAL SETUP

We evaluated the performance and power of our persistent
memory design on a multi-core system. In this section, we
describe our simulation framework, processor and memory
configurations, and benchmarks.

5.1 Simulation Framework

Our experiments are conducted using McSim [3], a Pin [32]-
based multi- and many-core cycle-accurate simulation infras-
tructure. McSim models out-of-order cores, caches, directo-
ries, on-chip networks, and memory channels. Table 2 lists
the detailed parameters and architecture configurations of
the processor and memory system in our simulation. The
multi-core processor consists of eight out-of-order cores, each
of which is similar to one of the Intel Core i7 cores [1].
Each processor core incorporates SRAM-based volatile pri-
vate L1 and L2 caches. Kiln employs an STT-MRAM based
L3 cache (the NV cache) (option (b) in Table 2). Option
(a) in Table 2 lists the parameters of a system with SRAM
as L3 cache, which is used to validate the performance of
Option (b). Note that the parameters of the two systems
are calculated based on the same silicon area, i.e., a 16MB
SRAM-based cache occupies the same silicon area of 64MB
STT-MRAM based cache. Both L3 caches are 16-way set-
associative and multi-banked. The processor cores and L3
cache banks communicate with each other through a cross-
bar interconnect. A two-level hierarchical directory-based
MESI protocol is employed to maintain cache coherence at
the private caches and the L3 cache. The DRAM and the
NV memory are modeled as off-chip DIMMs. Memory re-
quests to DRAM and the NV memory are managed by two
dual-channel memory controllers. The timing and energy
parameters of the NV cache and NV memory are calculated
with NVSim [15], a performance, power, and area estimation
tool for NVRAM.

Our simulation framework models Kiln’s in-place updates,
clean-on-commit functionality, and architecture extensions.
We also model HTM based on Hammond et al.’s work [21]
as one of our two concurrency control mechanisms used in
the experiments. The implementations of most commodity
HTM, e.g., Intel’s Haswell processor [24] and IBM’s zEC12
processor [25], are similar to Hammond et al.’s work. The
memory footprint of transactions is limited up to the ca-
pacity of private caches. Overflow at the private caches will
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Figure 8: Performance gap vs. number of threads.

result in transaction abort (re-execution) or transferring the
control to software.

5.2 Benchmarks

The persistence interface of most existing software appli-
cations are optimized for accesses to disk-based storage de-
vices. Currently, no existing public benchmark suites can be
used to evaluate the Kiln design. Therefore, we constructed
a set of benchmarks as described in Table 3. The data struc-
tures and functionality of these benchmarks are similar to
those in the benchmark suite used by NV-heaps [12]. The
benchmarks perform search, insert, and delete to data struc-
tures used in databases and file systems, including a search
tree, hash table, sparse graph, and array. Two sets of ex-
periments are conducted to insert and delete the data el-
ements (tree nodes, table entries, graph edges, etc.) with
small (512 bytes) and large (512 kilobytes) granularity, re-
spectively. They will be referred to as workloads of small
and large footprints in the rest of the paper. Each per-
sistent memory transaction inserts or deletes a single data
element. The benchmarks are written with the strong order-
ing control interface (Section 4) to force all the transactions
to commit inorder. HTM is used as the concurrency control
mechanism for workloads of small footprint, while mutex
lock is used for workloads of large footprint. We also imple-
mented another version of the benchmarks, which perform
undo and redo logging at word granularity to provide persis-
tence support. We only evaluate the hardware performance
of various persistent memory designs, so we do not count
the latency of executing the logging instructions. We collect
the performance and power results of the running phase of
the benchmarks, skipping the initialization phase.

6. RESULTS

In this section, we present the evaluation results and an-
alyze the reasons for these results.

6.1 Volatile Vs. Nonvolatile Last-level Cache

We first compare throughput (in terms of the executed in-
sert/delete operations per second) of two systems with the
L3 cache implemented by SRAM and STT-MRAM, without
providing persistence support (Figure 6). Despite its lower
latency, the SRAM-based last-level cache is only a quar-
ter the capacity of STT-MRAM based cache on the same
silicon area. Our results show that using an STT-MRAM
based L3 cache can achieve on average 91% and 99% of the
performance using SRAM-based L3 cache on workloads of
small and large footprints, respectively. These results show
that employing NV cache in a non-persistent manner as
the last-level cache does not remarkably change the system
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Figure 7: Performance of systems that adopt a NV L3 cache, but with logging for atomicity and flush and
memory fence for ordering. We evaluate the throughput (bars) and NV memory traffic (broken lines). All
the throughputs are normalized against the native system running 1 thread. For NV memory traffic, we only

show the normalized results running 16 threads.
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Figure 9: The throughput (bars) and NV cache traffic (broken lines) of Kiln.

All the throughputs are

normalized against the native system running 1 thread. For NV cache traffic, we only show the normalized

results running 16 threads.

performance due to the latency and capacity trade-offs of
SRAM and STT-MRAM technologies. In the following ex-
periments, we use the configuration of STT-MRAM based
L3 cache as the baseline native system.

6.2 Log-based Persistent Memory Performance

A log-based persistent memory system can adopt a NV
L3 cache, with logging to ensure atomicity and flush and
memory fence to ensure ordering. In this system, the logs
become persistent once they arrive at the NV cache. We
want to demonstrate that the performance of such an op-
timized log-based system is not scalable as the number of
threads increases.

A log-based system can adopt two types of logs, redo
and undo logs. We denote the resultant systems as CRlog
and CUlog, respectively. Rlog and Ulog denote the systems
where the logs are only stored in the NV memory. CXlog
uses Kiln’s cache controller extensions to track the dirty
cache lines of logs and flush them into the NV cache. Xlog
uses clflush and mfence to write logs in to the NV memory.
However, the latency of executing these two instructions is
not counted as discussed in Section 5. Figure 7 shows the
comparisons between CXlog (CRlog and CUlog) and Xlog
(Rlog and Ulog) for throughput of insert/delete operations

and NV memory traffic. The results show that the through-
put of CRlog and CUlog increases by an average of 38% and
33% compared with Rlog and Ulog, with workloads of small
footprints running 16 threads. The corresponding NV mem-
ory traffic is reduced by 28% (CRlog) and 26% (CUlog) on
average. With workloads of large footprints, the average im-
provement of throughput is 31% (CRlog) and 28% (CUlog).
The corresponding NV memory traffic reductions are 35%
and 37%.

While CXlog significantly reduces the number of accesses
to the NV memory, it can still incur an over 50% increase
in the memory traffic compared with the native system (de-
noted as the Native). In addition, the throughput of CXlog
does not scale well when the number of threads increases
from two to 16 (Figure 8). With two threads, the perfor-
mance gap between CUlog and Native is less than 38% and
30% with small and large footprints, respectively. However,
when the number of threads increases to 16, this perfor-
mance gap also significantly increases up to 70% and 50%
with small and large footprints, respectively. CRlog per-
forms better than CUlog, however, the performance gap
still increases from around 25% to 45% when the number
of threads increases from two to 16. With a large number of
threads running concurrently, the log size grows quickly and
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of 16-thread workloads with longer NVRAM laten-
cies, normalized to the Native throughput with x1
latency and 16 threads.

the NV cache will soon be filled by logs. Furthermore, the
logs in the NV cache, which will not be reused anymore, can
also lead to early evictions of reusable cache lines of the real
data structures. Sophisticated replacement policies can be
employed to prioritize the evictions of logs. However, this
will be equivalent to bypassing the NV cache or flushing the
logs all the way down to the NV memory.

6.3 Performance of Kiln

The following experiments evaluate Kiln performance in
terms of the throughput of insert/delete operations.

Throughput and NV cache traffic: For workloads of
small and large footprints running 16 threads, Kiln achieves
on average 91% and 88% of the throughput of the Native sys-
tem (Figure 9). Therefore, the performance of Kiln is 1.6%
and 3x of that of CRlog and CUlog with workloads of small
footprints, and 1.2x and 1.5x of that of CRlog and CU-
log with workloads of large footprints. Kiln performs worse
for workloads of large memory footprints because the large
number of pending cache lines (not allowed to be evicted to
the NV memory) leads to early evictions of other reusable
cache lines. Although CRlog allows the persistent data to
be updated immediately after the logs reach the NV cache,
it still does not perform as well as Kiln because CRlog needs
to maintain the ordering of the log updates with c1fush and
mfence, which prevent the cache controllers from re-ordering
the memory requests and block subsequent loads and stores.
While log-based persistent memory designs double the write
traffic to the NV cache, Kiln only generates 8% additional
writes and 5% additional total accesses in NV cache traffic
compared to the Native, due to clean-on-commit operations.

Sensitivity to NVRAM latency: The evaluations above
are conducted with fixed NV cache and the NV memory la-
tencies. We also evaluated the performance variation with
longer NVRAM latencies. Figure 10 shows the results of nor-
malized throughput with doubling and quadrupling the orig-
inal NV cache and NV memory latencies (the NV memory
clock rate is determined accordingly), averaged across the
benchmarks running 16 threads. We observe that the bene-
fit of Kiln remains at longer NVRAM latencies for workloads
of both small and large footprints. Even with quadrupled
NVRAM latency, Kiln still achieves 92% and 82% of Native
throughput with workloads of small and large footprints.

Frequency of NV cache overflow: The frequency of NV
cache overflow significantly affect system performance. Here
we study the frequency of NV cache overflow by further in-
creasing the memory footprints of the persistent memory
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Figure 11: The average dynamic power consump-
tion of processor (including the NV cache) and the
NV memory, normalized to the Native (workloads
running 16 threads).

transactions. We count the number of NV cache overflows
during 100K persistent memory transactions inserting and
deleting to a hash table. The keys are four-byte integers.
The value size ranges from 512KB to 64MB. Each persis-
tent memory transaction inserts or deletes one entry of the
hash table. When running a single thread, we do not observe
any NV cache overflows even with the value size increased
to 32MB. With multithreaded workloads, the frequency of
NV cache overflow is lower than 0.1% (100 overflow events
out of the total 100k transactions) when the total memory
footprint of all the threads is smaller than 64MB. Unfortu-
nately, the frequency reaches 100% when the total memory
footprint of all the concurrent transactions is larger than
the NV cache capacity. In such a case, Kiln falls back to
hardware-controlled COW as described in Section 4.4, and
the performance is similar to that of CRlog. We will leave
the investigation of more efficient methods to resolve the
overflow issue as future work.

6.4 Dynamic Power

Maintaining data persistence with Kiln incurs additional
processor and memory dynamic power consumption due to
the extra bookkeeping activities in cache controllers and the
increased accesses to caches and the NV memory. We calcu-
lated the processor’s dynamic power consumption by feed-
ing the simulation statistics of processor and cache activities
into McPAT [30]. We calculated the NV memory power con-
sumption based on the number of memory accesses broken
down into row buffer hits and misses, the memory energy
configuration listed in Table 2, and the total execution time
of each benchmark. As shown in Figure 11, Kiln provides
up to a 23% dynamic power reduction for the NV mem-
ory compared to CXlog due to fewer memory accesses (Fig-
ure 9). Compared to the Native, Kiln results in dynamic
power overheads of only 1.2% and 5% to the processor and
the NV memory.

7. CONCLUSIONS

NVRAM technologies can provide promising solutions to
persistent memory design. However, current NVRAM-based
persistent memory designs are inefficient due to increased
latency and bandwidth demands due to log-based or COW
mechanisms. In this paper, we propose Kiln, a persistent
memory design which employs a multiversioned memory hi-
erarchy consisting of an NV cache and NV memory, enabling
in-place updates to in-memory data structures, without the
redundant writes required by logging or COW. Kiln provides
persistence support with only a 9% performance overhead to
the native system, hence up to 2x performance improvement
to the log-based NVRAM persistent memory. In addition,
Kiln provides a simple and intuitive software interface, as



well as easy and fast recovery from failures. Our work re-
thinks the design of persistent memory in light of emerging
NVRAM technologies, which is a critical step in reaping the
full advantages of NVRAM technologies beyond simply re-
placing of DRAM in main memory.
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