
Software Routers

ECE/CS598HPN

Radhika Mittal

Logistics

• Warm-up assignment 1 due today.

Dataplane programmability is useful

• New ISP services
• intrusion detection, application acceleration

• Flexible network monitoring
• measure link latency, track down traffic

• New protocols
• IP traceback, Rate Control Protocol (RCP)…

Enable flexible, extensible networks

But routers must be able to keep up
with traffic rates!

Can we achieve both high speed and
programmability for network routers?

• Programmable hardware
• Limited flexibility
• Higher performance per unit power or per unit $.
• More on it in the next class!

• Software routers
• RouteBrick’s approach
• Can SW routers match the required performance?
• Possible through careful design that exploits

parallelism within and across servers.
• Higher power, more expensive.

RouteBricks: Exploiting Parallelism
to Scale Software Routers

SOSP’09
Mihai Dobrescu and Norbert Egi, Katerina Argyraki,

Byung-Gon Chun, Kevin Fall Gianluca Iannaccone, Allan
Knies, Maziar Manesh, Sylvia Ratnasamy

Acknowledgements: Slides from Sylvia Ratnasamy, UC Berkeley

Router definitions
1

2

3

45
…

N-1

N

• N = number of external router `ports’
• R = line rate of a port
• Router capacity = N x R

R	bits	per	second	(bps)

Networks and routers

AT&T MIT

UIUC

UCB

HP

core

core

edge	(ISP)

edge	(enterprise)

home,
small	business

Examples of routers (core)

72	racks,	1MW

Cisco CRS-1
• R=10/40 Gbps
• NR = 46 Tbps

Juniper T640
• R= 2.5/10 Gbps
• NR = 320 Gbps

Examples of routers (edge)

Cisco ASR 1006
• R=1/10 Gbps
• NR = 40 Gbps

Juniper M120
• R= 2.5/10 Gbps
• NR = 120 Gbps

Examples of routers (small business)

Cisco 3945E
• R = 10/100/1000 Mbps
• NR < 10 Gbps

Building routers

• edge, core
• ASICs
• network processors
• commodity servers ß RouteBricks

• home, small business
• ASICs
• network, embedded processors
• commodity PCs, servers

• Click Modular Router: 1-2Gbps

•Monolithic routing module in Linux
•Difficult to reason about or extend.

•Click: modular software router

Detour: Click Modular Router

• Element:

• Connection between elements:

• Rules about permitted connections.

Detour: Click Modular Router

push pull

queue

• Examples:

Detour: Click Modular Router

Example: IP Router

(stare at it on your own)

Detour: Click Modular Router

Building routers

• edge, core
• ASICs
• network processors
• commodity servers ß RouteBricks

• home, small business
• ASICs
• network, embedded processors
• commodity PCs, servers

• Click Modular Router: 1-2Gbps

A single-server router

mem mem

corescores

server
I/O	hub

Network	Interface	
Cards	(NICs)	ports

N	router	links

memory	
controllers
(integrated)

sockets	with
cores

point-to-point	
links	(e.g.,	QPI)

Packet processing in a server

mem

cores

I/O	hub

mem

cores Per packet,
1. core polls input port
2. NIC writes packet to memory
3. core reads packet
4. core processes packet

(address lookup, checksum, etc.)
5. core writes packet to port

Packet processing in a server

mem

cores

I/O hub

mem

cores

Today, 144Gbps I/O

Teaser: 10Gbps?

Today, 200Gbps memory

8x 2.8GHz

Assuming 10Gbps with all 64B packets
à19.5 million packets per second
à one packet every 0.05 µsecs
à~1000 cycles to process a packet

Suggests efficient use of CPU cycles is key!

memmem`chipset’

corescores

Lesson#1: multi-core alone isn’t enough

mem mem

corescores

Current	(2009)

I/O	hub

`Older’	(2008)

Memory	
controller	in	
`chipset’

Shared	front-
side	bus

Hardware need: avoid shared-bus servers

Lesson#2: on cores and ports

input
ports cores output

ports

How do we assign cores to input and output ports?

poll transmit

Problem: locking

Lesson#2: on cores and ports

Hence, rule: one core per port

Problem: inter-core communication,
cache misses

pipelined parallel

L3	cache L3	cache L3	cache L3	cache

Lesson#2: on cores and ports

Hence, rule: one core per packet

packet	transferred	between	cores packet	stays	at	one	corepacket	(may	be)	transferred	
across	caches packet	always	in	one	cache

• two rules:
• one core per port
• one core per packet

• problem: often, can’t simultaneously satisfy both

• solution: use multi-Q NICs

Lesson#2: on cores and ports

one	core	per	portone	core	per	packet

Multi-Q NICs

• feature on modern NICs (for virtualization)
• port associated with multiple queues on NIC
• NIC demuxes (muxes) incoming (outgoing) traffic
• demux based on hashing packet fields

(e.g., source+destination address)

Multi-Q	NIC:	incoming	traffic Multi-Q	NIC:	outgoing	traffic

Multi-Q NICs

• feature on modern NICs (for virtualization)
• repurposed for routing
• rule: one core per port
• rule: one core per packet

• if #queues per port == #cores, can always
enforce both rules

queue

Lesson#2: on cores and ports

recap:
• use multi-Q NICs
• with modified NIC driver for lock-free polling of queues

• with
• one core per queue (avoid locking)
• one core per packet (avoid cache misses, inter-core

communication)

Lesson#3: book-keeping

mem

cores

ports

I/O	hub

mem

cores
1. core	polls	input	port
2. NIC	writes	packet	to	memory
3. core	reads	packet
4. core	processes	packet	
5. core	writes	packet	to	out	port	

and packet descriptors

• solution: batch packet operations
• NIC transfers packets in batches of `k’

problem: excessive per packet book-keeping overhead

Recap: routing on a server

Design lessons:
1. parallel hardware
• at cores and memory and NICs

2. careful queue-to-core allocation
• one core per queue, per packet

3. reduced book-keeping per packet
• modified NIC driver w/ batching

Single-Server Measurements

• test server: Intel Nehalem (X5560)
• dual socket, 8x 2.80GHz cores
• 2x NICs; 2x 10Gbps ports/NIC

mem mem

corescores

I/O	hub

additional	servers	
generate/sink	test	traffic

10Gbps
max	40Gbps

mem mem

corescores

I/O	hub

additional	servers	
generate/sink	test	traffic

Click	runtime

modified	NIC	driver

packet	processing	

10Gbps

• test server: Intel Nehalem (X5560)
• dual socket, 8x 2.80GHz cores
• 2x NICs; 2x 10Gbps ports/NIC

• software: kernel-mode Click [TOCS’00]

• with modified NIC driver
(batching, multi-Q)

Single-Server Measurements

• test server: Intel Nehalem (X5560)

• software: kernel-mode Click [TOCS’00]

• with modified NIC driver

• packet processing
• static forwarding (no header processing)
• IP routing

• trie-based longest-prefix address lookup
• ~300,000 table entries [RouteViews]
• checksum calculation, header updates, etc.

mem mem

corescores

I/O	hub

additional	servers	
generate/sink	test	traffic

Click	runtime

modified	NIC	driver

packet	processing	

10Gbps

Single-Server Measurements

• test server: Intel Nehalem (X5560)

• software: kernel-mode Click [TOCS’00]

• with modified NIC driver

• packet processing
• static forwarding (no header processing)
• IP routing

• input traffic
• all min-size (64B) packets

(maximizes packet rate given port speed R)
• realistic mix of packet sizes [Abilene]

mem mem

corescores

I/O	hub

additional	servers	
generate/sink	test	traffic

Click	runtime

modified	NIC	driver

packet	processing	

10Gbps

Single-Server Measurements

Factor analysis: design lessons

Test scenario: static forwarding of min-sized packets

Nehalem	
w/	multi-Q	
+	`batching’

driver

older	
shared-bus

server

1.2

current
Nehalem
server

Nehalem	
+	`batching’	
NIC	driver

2.8
5.9

pk
ts
/s
ec
	(M

) 19

Single-server performance

IP	routingstatic	forwarding

36.5

6.35

36.5

9.7G
bp

s min-size	packets

realistic	pkt sizes

Bottleneck?
Bottleneck?

40Gbps

Bottleneck analysis (64B pkts)

Test scenario: IP routing of min-sized packets

Per-packet	load	
due	to	routing

Maximum
component	
capacity	–

nominal	(empirical)

Max. packet	rate	as	
per	component	
capacity		--

nominal	(empirical)

memory 725 bytes/pkt 51	(33) Gbytes/sec 70		(46)Mpkts/sec

I/O	 191 bytes/pkt 16 (11) Gbytes/sec 84	(58)Mpkts/sec

Inter-socket
link

231	bytes/pkt 25	(18) Gbytes/sec 108	(78)	Mpkts/sec

CPUs 1693 cycles/pkt 22.4	 Gcycles/sec 13Mpkts/sec

Recall:	max	IP	routing	=	6.35Gbps	à 12.4	M	pkts/sec	

CPUs	are	the	bottleneck

Recap: single-server performance

R NR
current	servers

(realistic	packet sizes) 1/10	Gbps 36.5 Gbps

current	servers
(min-sized	packets) 1	 6.35

(CPUs	bottleneck)

With	newer	servers?	(2010)
4x	cores,	2x	memory,	2x	I/O

Recap: single-server performance

Recap: single-server performance

R NR
current	servers

(realistic	packet sizes) 1/10	Gbps 36.5 Gbps

current	servers
(min-sized	packets) 1	 6.35

(CPUs	bottleneck)
upcoming servers	–estimated

(realistic	packet	sizes) 1/10/40 146

upcoming servers	–estimated
(min-sized	packets) 1/10 25.4

Practical Architecture: Goal

• scale software routers to multiple 10Gbps ports

• example: 320Gbps (32x 10Gbps ports)
• higher-end of edge routers; lower-end core routers

A cluster-based router today

10Gbps

interconnect?

Interconnecting servers

Challenges
• any input can send up to R bps to any output

A naïve solution

10Gbps

problem:	commodity	servers	cannot	accommodate	NxR traffic	

N2 internal	links
of	capacity	R

R
R

R

R

R

Interconnecting servers

Challenges
• any input can send up to R bps to any output
• but need a lower-capacity interconnect
• i.e., fewer (<N), lower-capacity (<R) links per server

• must cope with overload

Overload

need	to	drop	20Gbps;	(fairly	
across	input	ports)

10Gbps

10Gbps

10Gbps

10Gbps

drop	at	output	server?	
problem:	output	might	
receive	up	to	NxR traffic

drop	at	input	servers?	
problem:	requires	global	state

Interconnecting servers

Challenges
• any input can send up to R bps to any output
• but need a lower-capacity interconnect
• i.e., fewer (<N), lower-capacity (<R) links per server

• must cope with overload
• need distributed dropping without global scheduling
• processing at servers should scale as R, not NxR

Interconnecting servers

Challenges
• any input can send up to R bps to any output
• must cope with overload

With constraints (due to commodity servers and NICs)
• internal link rates ≤ R
• per-node processing: cxR (small c)
• limited per-node fanout

Solution: Use Valiant Load Balancing (VLB)

Valiant Load Balancing (VLB)

• Valiant et al. [STOC’81], communication in multi-processors

• applied to data centers [Greenberg’09], all-optical
routers [Kesslassy’03], traffic engineering [Zhang-Shen’04], etc.

• idea: random load-balancing across a low-capacity
interconnect

VLB: operation

R/N

R/N

R/N

R/N

R/N

Packets forwarded in two phases

phase 1 phase 2

Packets arriving at external port
are uniformly load balanced• N2 internal links of capacity R/N

• each server receives up to R bps
Each server sends up to R/N (of traffic
received in phase-1) to output server;

drops excess fairly

Output server transmits received
traffic on external port

R

• N2 internal links of capacity R/N
• each server receives up to R bps

R/N

R/N

R/N

R/N

R/N
R

VLB: operation
phase 1+2

• N2 internal links of capacity 2R/N
• each server receives up to 2R bps
• plus R bps from external port
• hence, each server processes up to 3R
• or up to 2R, when traffic is uniform [directVLB, Liu’05]

RR

Scaling N: Requires large no. of ports / server

Multiple external ports per server
(if server constraints permit)

fewer	but
faster	links

fewer	but
faster	servers

Scaling N: Multi-stage interconnect

Use extra servers to form a constant-degree
multi-stage interconnect (e.g., butterfly)

Recap: Router cluster

• assign maximum external ports per server
• servers interconnected with commodity NIC links
• servers interconnected in a full mesh if possible
• else, introduce extra servers in a k-degree butterfly
• servers run flowlet-based VLB

Scalability

• question: how well does clustering scale for
realistic server fanout and processing capacity?

• metric: number of servers required to achieve
a target router speed

Scalability

Assumptions
• 7 NICs per server
• each NIC has 6 x 10Gbps ports or 8 x 1Gbps ports
• current servers
• one external 10Gbps port per server

(i.e., requires that a server process 20-30Gbps)
• upcoming servers
• two external 10Gbps port per server

(i.e., requires that a server process 40-60Gbps)

Scalability (computed)

160Gbps 320Gbps 640Gbps 1.28Tbps 2.56Tbps

current
servers 16 32 128 256 512

upcoming
servers 8 16 32 128 256

Example:	can	build	320Gbps	router	with	32	‘current’	servers

Transition	from	mesh	to	butterfly

Implementation: the RB8/4
Specs.
• 8x 10Gbps external ports
• form-factor: 4U
• power: 1.2KW
• cost: ~$10k

2	x	10Gbps	external	ports
(Intel	Niantic	NIC)

Key results (realistic traffic)
• 72 Gbps routing
• reordering: 0-0.15%
• validated VLB bounds

4	x	Nehalem	
servers

What did you all like about this work?

Limitation / trade-offs

• Power
• Form-factor
• Cost
• Packet-reordering
• Increased latency
• High performance only under favorable workloads

