Software Routers

ECE/CS598HPN

Radhika Mittal

Logistics

* Warm-up assigsnment | due today.

Dataplane programmability is useful

* New ISP services
* Intrusion detection, application acceleration

* Flexible network monitoring
* measure link latency, track down traffic

* New protocols
* |P traceback, Rate Control Protocol (RCP)...

Enable flexible, extensible networks

But routers must be able to keep up
with traffic rates!

Can we achieve both high speed and
programmability for network routers!?

* Programmable hardware
* Limited flexibility
* Higher performance per unit power or per unit $.
* More on it in the next class!

* Software routers
* RouteBrick's approach
* Can SW routers match the required performance?
* Possible through careful design that explorts
parallelism within and across servers.
* Higher power, more expensive.

RouteBricks: Exploiting Parallelism
to Scale Software Routers

SOSP'09

Mihai Dobrescu and Norbert Egi, Katerina Argyraki,

Byung-Gon Chun, Kevin Fall Gianluca lannaccone, Allan
Knies, Maziar Manesh, Sylvia Ratnasamy

Acknowledgements: Slides from Sylvia Ratnasamy, UC Berkeley

Router definitions

3 R bits per second (bps)

* N = number of external router "ports’
* R = line rate of a port
* Router capacity = N x R

Networks and routers

Examples of routers (core)

Juniper T640
« R=2.5/10 Gbps
* NR = 320 Gbps

Cisco CRS-|
* R=10/40 Gbps
* NR =46 Tbps

2 rac

3 - e [
~ =5F =0 |

s, IMW

[l ¢ 3

Examples of routers (edge)

Cisco ASR 1006
* R=1/10 Gbps
* NR = 40 Gbps

Juniper M120
« R=2.5/10 Gbps
* NR = 120 Gbps

Examples of routers (small business)

Cisco 3945E

* R = 10/100/1000 Mbps '
* NR < 10 Gbps

Building routers

* edge, core
e ASICs

* network processors
» commodity servers € RouteBricks

* home, small business
* ASICs
* network, embedded processors

* commodity PCs, servers
* Click Modular Router: |-2Gbps

Detour: Click Modular Router

* Monolithic routing module In Linux
e Difficult to reason about or extend.

e Click: modular software router

Detour: Click Modular Router

element class

e Element:

configuration string

e Connection between elements:

queue

FromDevice 4—» [ToDevice

push pull

* Rules about permitted connections.

Detour: Click Modular Router

* Examples:

IP router

Classifier(...)

high priority low priority

=

1 HashBemux HashBemux

4+ HashDemux N RoundRobinSched [+ z 1

E/

v v ! v

N N N N
RoundRobin... RoundRobin...

5'/ (_J
PrioSched

)

V . v .
ToDevice ToDevice

Detour: Click Modular Router

FromDevice(eth0) FromDevice(ethl)

v v
Classifier(...) Classifier(...)
ARP ARP

ARP ARP

queries responses P queries responses P
- - - -
= =
v v
ARPResponder ARPResponder
(1.0.0.1..) (2.00.1..)
Py =
v v
to Queue to ARPQuerier to Queue to ARPQuerier

Paint(2)

Example: IP Router

Paint(1)

CheckIPeader()

GetIPAddress(16)

(stare at it on your own)

LookupIPRoute(...)

v v
| DropBroadcasts | | DropBroadcasts |
v v
| CheckPaint(1)_ | | CheckPaini2) |
e
| IPGWOptions(1.0.0.1) | | 1PGWOptions(2.0.0.1) |
=l
| FixPSrc(1.00.) | | FixIPSre(20.0.1) |
v v
| DecIPTTL | | DecIPTTL |
ey
[1PFragmenter(1500) | [1PFragmenter(1500) |
e e
from Classifier from Classifier
v v v v
| ARPQuerier(1.0.01, ... | | ARPQuerier(2.0.0.1,) |

ToDevie(ethO) ToDevie(ethl)

Building routers

* edge, core
e ASICs

* network processors
» commodity servers € RouteBricks

* home, small business
* ASICs
* network, embedded processors

* commodity PCs, servers
* Click Modular Router: |-2Gbps

A single-server router

sockets with
cores

cores - cores

N

mem [

memory A

controllers
(integrated)

~.._ Network Interface

ports ~ \‘ " Cards (NICs)
N router links

Packet processing in a server

cores cores Per packet,

2.
3.
4

core polls input port
NIC writes packet to memory
core reads packet

core processes packet
(address lookup, checksum, etc.)

core writes packet to port

Packet processing in a server

8x 2.8GHz

cores cores

Assuming |10Gbps with all 64B packets
-2 19.5 million packets per second
—> one packet every 0.05 usecs
=~ 1000 cycles to process a packet

Today, 200Gbps memory

Today, 144Gbps /0O

Suggests efficient use of CPU cycles is key!

Lesson# | : multi-core alone isn’t enough

"Older’ (2008) Current (2009)
cores cores eheC/r cores cores
(X Il X) . o0 o0
25 (ERg e
-
“chipset’” § mem /0 hub
1 i 1 1 controller in ;‘I—g :‘f :‘:

“chipset’

Hardware need: avoid shared-bus servers

Lesson#2: on cores and ports

- > ® - >
> >
<— poli transmit——
> ® >
input cores output
ports ports

How do we assign cores to input and output ports?

Lesson#2: on cores and ports

Problem: locking

SHERE

Hence, rule: one core per port

Lesson#2: on cores and ports

Problem: inter=core communication,
cache misses

RSN O L R R o

NI NSNS

. I+ 3 G
< XX
X NSNS

QQ QQ QQ K O° \oo RO ORI ORI

\\\\ N &a%a%a% \\\\"\\"\\"\\"\\"\\"

’YYIY YL o0 00000
L3 cache L3 cache L3 cache L3 cache

[+

' packet (may be) transferred)
across caches packet always in one cache

Hence, rule: one core per packet

Lesson#2: on cores and ports

e two rules:
* one core per port
* one core per packet

* problem: often, can’t simultaneously satisfy both

C

8 one core per packet 8 one core per port

* solution: use multi-Q NICs

Multi-Q NICs

* feature on modern NICs (for virtualization)
* port associated with multiple queues on NIC
* NIC demuxes (muxes) incoming (outgoing) traffic

* demux based on hashing packet fields
(e.g,, sourcet+destination address)

UL
UL
}
¥

Multi-Q NIC: incoming traffic Multi-Q NIC: outgoing traffic

Multi-Q NICs

* feature on modern NICs (for virtualization)

* repurposed for routing

* rule: one core per pp({ queue
* rule: one core per packet

3/>:\D

* I #queues per port == #cores, can always
enforce both rules

—

Lesson#2: on cores and ports

recap:
e use multi-Q NICs
* with modified NIC driver for lock-free polling of queues
* with
* one core per queue (avoid locking)

* one core per packet (avoid cache misses, inter-core
communication)

Lesson#3: book-keeping

cores

cores

Lk w e

core polls input port

NIC writes packet to memory
core readd packet

core processes packet

core write pacht to out port

and packet descriptors

problem: excessive per packet book-keeping overhead

* solution: batch packet operations
* NIC transfers packets in batches of K’

Recap: routing on a server

Design lessons:
|. parallel hardware
* at cores and memory and NICs
2. careful queue-to-core allocation
* One core per queue, per packet
3. reduced book-keeping per packet
* modified NIC driver w/ batching

Single-Server Measurements

* test server: Intel Nehalem (X5560) cores cores
e dual socket, 8x 2.80GHz cores e em 9O "-|:mem
+ 2% NICs; 2x 10Gbps ports/NIC 28 [®e

additional servers
generate/sink test traffic

Single-Server Measurements

* test server: Intel Nehalem (X5560)

* dual socket, 8x 2.80GHz cores packet processing
* 2x NICs; 2x 10Gbps ports/NIC

Clic'< rurtime

modif,ed NI&driver
 software: kernel-mode Click [TOCS00]

o with modified NIC driver
(batching, multi-Q) Gbps

additional servers
generate/sink test traffic

Single-Server Measurements

* test server: Intel Nehalem (X5560)

packet processing

* software: kernel-mode Click [TOCS00]
* with modified NIC driver

Clic'< rurtime

J

ed Nlidriver
* packet processing il
* static forwarding (no header processing)
* P routing Gbps
* trie-based longest-prefix address lookup
* ~300,000 table entries [RouteViews]
* checksum calculation, header updates, etc. additional servers

modif

generate/sink test traffic

Single-Server Measurements

* test server: Intel Nehalem (X5560)

packet processing

software: kernel-mode Click [TOCS00]
e with modified NIC driver

Clic'< rurtime

modif,ed NI&driver
* packet processing

* static forwarding (no header processing)
* |P routing Gbps

* input traffic

* all min-size (64B) packets
(maximizes packet rate given port speed R)

* realistic mix of packet sizes [Abilene]

additional servers
generate/sink test traffic

Factor analysis: design lessons

19
2
O
% 5.9
older current Nehalem Nehalem
shared-bus Nehalem + batching’ w/ multi-Q
server server NIC driver + “batching’
driver

Test scenario: static forwarding of min-sized packets

Single-server performance

QOGRS -++wwvrreeeeesssssssssssmssssssssssssssssssssss s

Gbps

min-size packets

realistic pkt sizes

36.5 36.5
9.7 6.35
static f&rwa in/)uting
Bottleneck?
Bottleneck?

Bottleneck analysis (64B pkts)

Recall: max IP routing = 6.35Gbps = 12.4 M pkts/sec

Per-packet load Maximum Max. packet rate as
due to routing component per component
capacity — capacity --
nominal (nominal (
memory
/o CPUs are the bottleneck
Inter-socket
link
CPUs

Test scenario: IP routing of min-sized packets

Recap: single-server performance

current servers
(realistic packet sizes) 1/10 Gbps 36.5 Gbps
current servers . 6.35
T Bl [P, (CPUs bottleneck)

Recap: single-server performance

With newer servers? (2010)
4x cores, 2x memory, 2x |/O

Recap: single-server performance

current servers
(realistic packet sizes) 1/10 Gbps 36.5 Gbps
current servers . 6.35
(min-sized packets) (CPUs bottleneck)
upcoming servers —estimated
(realistic packet sizes) 1/10/40 146
upcoming servers —estimated
(min-sized packets) 1/10 25.4

Practical Architecture: Goal

* scale software routers to multiple 10Gbps ports

* example: 320Gbps (32x 10Gbps ports)

* higher-end of edge routers; lower-end core routers

A cluster-based router today

/A

=777

.

interconnect?

\‘4_, 10Gbps

=777
=7

Interconnecting servers

Challenges
* any input can send up to R bps to any output

A naive solution

NZ internal links
of capacity R

problem: commodity servers cannot accommodate NxR traffic

Interconnecting servers

Challenges

* any input can send up to R bps to any output
* but need a lower-capacity interconnect
* e, fewer (<N), lower-capacity (<R) links per server

* must cope with overload

Overload

drop at input servers?
problem: requires global state

drop at output server?
problem: output might
receive up to NxR traffic

Interconnecting servers

Challenges

* must cope with overload
* need distributed dropping without global scheduling
* processing at servers should scale as R, not NxR

Interconnecting servers

Challenges

* any input can send up to R bps to any output
* must cope with overload

With constraints (due to commodity servers and NICs)
* Internal link rates £ R
* per-node processing: cxR (small ¢)
* limrted per-node fanout

Solution: Use Valiant Load Balancing (VLB)

Valiant Load Balancing (VLB)

* Valiant et al. [STOC81], communication In multi-processors

* applied to data centers [Greenberg09], all-optical
routers [Kesslassy'03], traffic engineering [Zhang-Shen'04], etc.

* i dea: random load-balancing across a low-capacity
Interconnect

VLB: operation

phase 1

</// 77\
2

7

R
N .)
Packets arriving at external po
e N2 intern «ap N2 internal links of capacity R/N
NI ahﬁakﬂl?ﬂ balty Blu Ut Server transmrts r cp?lved
* each server receives up to R bL * €ach seLxer recenes u ptgrt bps

Packets forwarded in two phases

VLB: operation
phase 1+2

* NZinternal links of capacity 2R/N

* each server receives up to 2R bps

* plus R bps from external port

* hence, each server processes up to 3R

* or up to 2R, when traffic is uniform [directVLB, Liuv'05]

Scaling N: Requires large no. of ports / server

a
g fewer but

faster links

i

7/

A 4
é/// oj/’// i

fewer but
faster servers

Multiple external ports per server
(if server constraints permit)

Scaling N: Multi-stage interconnect

Use extra servers to form a constant-degree
multi-stage interconnect (e.g., butterfly)

Recap: Router cluster

* assign maximum external ports per server

* servers interconnected with commodity NIC links
* servers interconnected in a full mesh it possible

* else, Introduce extra servers in a k-degree butterfly

e servers run flowlet-based VLB

Scalability

* question: how well does clustering scale for
realistic server fanout and processing capacity?

* metric: number of servers required to achieve
a target router speed

Scalability

Assumptions
* / NICs per server
* each NIC has 6 x |0Gbps ports or 8 x | Gbps ports

* current servers
* one external |0Gbps port per server
(1.e., requires that a server process 20-30Gbps)
* upcoming servers

* two external |0Gbps port per server
(l.e., requires that a server process 40-60Gbps)

Scalability (computed)

160Gbps | 320Gbps | 640Gbps 1.28Thbps 2.56Tbps

current TN

servers 16 | 32/—> 128 256 512
upcoming)

servers e 16 32 1 128 256

| |

Transition from mesh to butterfly

Example: can build 320Gbps router with 32 ‘current’ servers

Implementation: the RB8/4

al

4 x Nehalem L)
servers g

2 x 10Gbps external ports
(Intel Niantic NIC)

Specs.

e 8x |0Gbps external ports
e form-factor: 4U

* power: |.2KW

e cost ~$10k

Key results (realistic traffic)
* /2 Gbps routing

* reordering: 0-0.15%

* validated VLB bounds

What did you all like about this work!?

Limitation / trade-offs

* Power

e Form-factor

* Cost

* Packet-reordering

* Increased latency

* High performance only under favorable workloads

