Host Networking
(Google Case Study)

ECE/CS598HPN

Radhika Mittal

Snap: a Microkernel Approach to
Host Networking

SOSP'9

Slides largely borrowed from the SOSP talk

Summary

* Snap: Framework for packet processing in software

— Goals: Performance and Deployment Velocity

— Technique: Microkernel-inspired userspace approach

* Supports multiple use cases:

— Andromeda: Network virtualization for Google Cloud Platform
[NSDI 2018]

— Espresso: Edge networking [SIGCOMM 2017]
— Maglev: L4 load balancer [NSDI'| 6]

— New: High-performance host communication with “Pony Express”

* 3x throughput efficiency (vs kernel TCP), 5M |OPS, and
weekly releases

Motivation

* Growing performance-demanding packet processing
needs at Google

* The abllity to rapidly develop and deploy new
features Is just as important!

Fleet-wide Snap Upgrades in One Year

Monolithic (Linux) Kernel

Deployment Velocity:

. CC
Smaller pool of software developers S — >
* More challenging development environment P PPe
: . (system calls (
° Mus_t draln and r.eboo-t a machlne -to ro” Ou-t ..
new version Kermne
* Typically months to release new feature N 24 SoftRGs
NIC locks
Performance:

* Overheads from system calls, fine-grained
synchronization, interrupts, and more.

LibraryOS and OS Bypass

Networking logic in application binaries
Examples: Arrakis, mTCP X, ZygOS, and more

Deployment Velocity:
 Difficult to release changes to the fleet

* App binaries may go months between releases

Performance:

* Can be very fast

* But typically requires spin-polling in every
application

* Benefits of centralization (i.e., scheduling) lost

* Delegates all policy to NIC

CC

7 J J
App 1 App 2

(fn call (fn call
Network Network
Library Library
\\//
NIC

Microkernel Approach

< shared memory reads/writes

Hoists functionality to a v W
App 1 Snap Process))
separate userspace process < S e—
App 2 Network Module
N LTSS A
A4
. Linux | |
Deployment Velocity: Kernel | 1LNC

~

* Decouples release cycles from application and kernel binaries

* Transparent upgrade with iterative state transfer

Performance:

* Fast! Leverages kernel bypass and many-core CPUs

* Maintains centralization of a kernel

* Can implement rich scheduling/multiplexing policies

Snap Architecture

on-host cloud VMs | : host applications
control | :
stack | hypervisor | I/O | : | Pony Express APl | host kernel
. memory-mapped I/O %
Users . Q
e [Virtualization | : [[~ Virt. Virt, LOECIEAE- N,
% g module —TLengine P engine llnzrieliet]s o
a|@ P __ TP P =)
el ony : ony ony ony
2 8 module | Lengine engine || _engine group B g-
c o : — =
8 Shapin % Shapin r Pon ! ®
o | X ping : ping y
module engine engine engine group C

! it} L
engine mailboxes

memory-mapped /O

OS-bypass NIC

Network
off-host controllers

Snap Engine

input <, engine mailbox
queues /

& \output

h—_

queues

Snap Engine Scheduling

=

one per CPU

engine load balancer

maps engines to threads

Snap Engine Scheduling Modes

Dedicated Cores
— Static provisioning of N cores to run engines.

* Fair share these N cores across engines.
— Simple and best for some situations.
— Provisioning for the worst-case is wasteful
— Provisioning for the average case leads to high tail latency

Snap Apﬁ Idle

i /

cO c¢1 ¢2 c3 cd ¢

Snap Engine Scheduling Modes

Spreading Engines

— Bind each engine to a unique thread

— Threads scheduled on-demand based on interrupts

triggered from NIC or application

— Leverages new micro-quanta kernel scheduling class for

tighter latency

— Can provide lowest tall latency

— Scheduling pathologies and overheads

Snap Spreads

=™

— |

Snap Engine Scheduling Modes

Compacting Engines
— Compacts engines to as few cores as possible

— Periodic polling of queuing delays to re-balance
engines to more cores

— Can provide best CPU efficiency.
— Timely detection of queue build-up.

Snap Compacts

=

Snap Architecture

on-host cloud VMs | : host applications
control | :
stack | hypervisor | I/O | : | Pony Express APl | host kernel
. memory-mapped I/O %
Users . Q
e [Virtualization | : [[~ Virt. Virt, LOECIEAE- N,
% g module —TLengine P engine llnzrieliet]s o
a|@ P __ TP P =)
el ony : ony ony ony
2 8 module | Lengine engine || _engine group B g-
c o : — =
8 Shapin % Shapin r Pon ! ®
o | X ping : ping y
module engine engine engine group C

! it} L
engine mailboxes

memory-mapped /O

OS-bypass NIC

Network
off-host controllers

High Performance Communication

Pony Express Communication Stack

* Implement a full-fledged reliable transport and interface
* RDMA-like operation interface to applications
* [wo-sided operations for classic RPC

* One-sided (pseudo RDMA) operations for avoiding
invocation of application thread scheduler

* Custom one-sided operations to avoid shortcomings
of RDMA (l.e., pointer chase over fabric)

* Custom transport and delay-based congestion
control (Timely/Swift)

High Performance Communication

Pony Express Communication Stack

command & .] application Unix
-- completion --t{--"""""---------- -------domain ~°| [~""""
queues \ Al op streams] socket
_ ' <Een ine mailbox
g‘g ' op scheduler op layer ¥ 2 §
g 8 IR N ;,’.... St (shared memory\ g
S(q reliability . =2
€ = || flow mapper] laver state & policy =
— Py ; N (buffer pools, é
command & .1 flows] remote ACLs, ...))
- completion -~ e
queues £ NIC

Evaluation: Ping-pong latency

25
20
15
10

Latency (usecs)

Kermel TCP Kernel TCP, Snap/Pony Snap/Pony, Snap/Pony,
busy polling (two-sided) busy polling busy polling
(two-sided) (one-sided)

Evaluation: Throughput

100
75

50

Gbps

25

Kernel TCP, Kernel TCP, Snap/Pony, 1 Snap/Pony, Snap/Pony, Snap/Pony,
1 stream 200 streams stream 200 streams +5kB MTU +I/OAT DMA

Evaluation: Comparison with RDMA

* Switching to Pony Express "doubled the production
performance of the data analytics service”,

* Stringent RDMA rate limits applied to prevent NIC
cache overflow, and ensuing PFCs,

* Could be disabled with Pony Express.

Your thoughts?

* What did you like about the work!?
* What are its limitations?

* What are some alternative design choices!

Logistics

* Second progress report due today!

* Please identify the key delta from first report
— either tag new/heavily-edited sections and paragraphs

— or Include a paragraph at the end that describes the key
changes.

