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Summary

* Snap: Framework for packet processing in software

— Goals: Performance and Deployment Velocity

— Technique: Microkernel-inspired userspace approach

* Supports multiple use cases:

— Andromeda: Network virtualization for Google Cloud Platform
[NSDI 2018]

— Espresso: Edge networking [SIGCOMM 2017]
— Maglev: L4 load balancer [NSDI'| 6]

— New: High-performance host communication with “Pony Express”

* 3x throughput efficiency (vs kernel TCP), 5M |OPS, and
weekly releases



Motivation

* Growing performance-demanding packet processing
needs at Google

* The abllity to rapidly develop and deploy new
features Is just as important!

Fleet-wide Snap Upgrades in One Year




Monolithic (Linux) Kernel

Deployment Velocity:
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LibraryOS and OS Bypass

Networking logic in application binaries
Examples: Arrakis, mTCP X, ZygOS, and more

Deployment Velocity:
 Difficult to release changes to the fleet

* App binaries may go months between releases

Performance:

* Can be very fast

* But typically requires spin-polling in every
application

* Benefits of centralization (i.e., scheduling) lost

* Delegates all policy to NIC
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Microkernel Approach
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* Decouples release cycles from application and kernel binaries

* Transparent upgrade with iterative state transfer

Performance:

* Fast! Leverages kernel bypass and many-core CPUs

* Maintains centralization of a kernel

* Can implement rich scheduling/multiplexing policies




Snap Architecture
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Snap Engine
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Snap Engine Scheduling
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Snap Engine Scheduling Modes

Dedicated Cores
— Static provisioning of N cores to run engines.

* Fair share these N cores across engines.
— Simple and best for some situations.
— Provisioning for the worst-case is wasteful
— Provisioning for the average case leads to high tail latency
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Snap Engine Scheduling Modes

Spreading Engines

— Bind each engine to a unique thread

— Threads scheduled on-demand based on interrupts

triggered from NIC or application

— Leverages new micro-quanta kernel scheduling class for

tighter latency

— Can provide lowest tall latency

— Scheduling pathologies and overheads

Snap Spreads
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Snap Engine Scheduling Modes

Compacting Engines
— Compacts engines to as few cores as possible

— Periodic polling of queuing delays to re-balance
engines to more cores

— Can provide best CPU efficiency.
— Timely detection of queue build-up.

Snap Compacts
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Snap Architecture
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High Performance Communication

Pony Express Communication Stack

* Implement a full-fledged reliable transport and interface
* RDMA-like operation interface to applications
* [wo-sided operations for classic RPC

* One-sided (pseudo RDMA) operations for avoiding
invocation of application thread scheduler

* Custom one-sided operations to avoid shortcomings
of RDMA (l.e., pointer chase over fabric)

* Custom transport and delay-based congestion
control (Timely/Swift)



High Performance Communication

Pony Express Communication Stack
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Evaluation: Ping-pong latency
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Evaluation: Throughput
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Evaluation: Comparison with RDMA

* Switching to Pony Express "doubled the production
performance of the data analytics service”,

* Stringent RDMA rate limits applied to prevent NIC
cache overflow, and ensuing PFCs,

* Could be disabled with Pony Express.



Your thoughts?

* What did you like about the work!?
* What are its limitations?

* What are some alternative design choices!



Logistics

* Second progress report due today!

* Please identify the key delta from first report
— either tag new/heavily-edited sections and paragraphs

— or Include a paragraph at the end that describes the key
changes.



