Network Interface Cards

ECE/CS598HPN

Radhika Mittal

Challenges of deploying RDMA in DCs

- Need for a lossless network
 - Congestion control to mitigate PFC issues (DCQCN, Timely, ZTR).
 - Better loss recovery in the NIC (IRN, SIGCOMM'18)
 - Large enough buffers + congestion control (eRPC, NSDI'19)
- Limited NIC cache:
 - Use bigger pages for memory translation (FaRM, NSDI'14).
 - Optimizing number of QPs (FaRM, NSDI'14; FASST, OSDI'16).
- Limited resource sharing and isolation
 - Kernel re-direction (LITE, SOSP'17)
- Supporting RDMA for VMs (para-virtual RDMA)
 - Commercial solution from VMWare requiring NIC support.
- Limited flexibility (tied to increased heterogeneity)
 - FPGA-based implementation / firmware patches.

Wednesday's reading

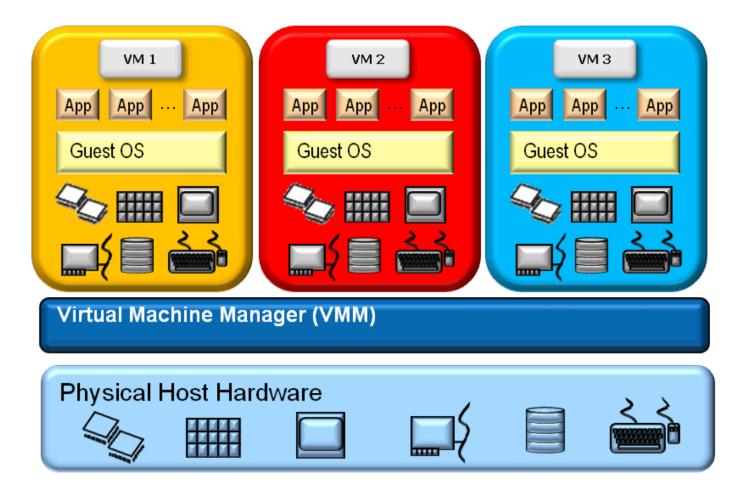
- Empowering Azure Storage with RDMA (NSDI'23)
- Primary usecase: intra-region storage.
- What are the additional challenges that arise?

Is RDMA the right choice for datacenters?

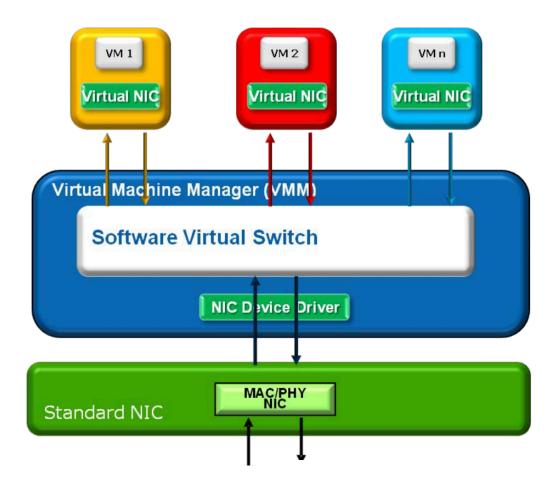
What will a clean slate approach look like?

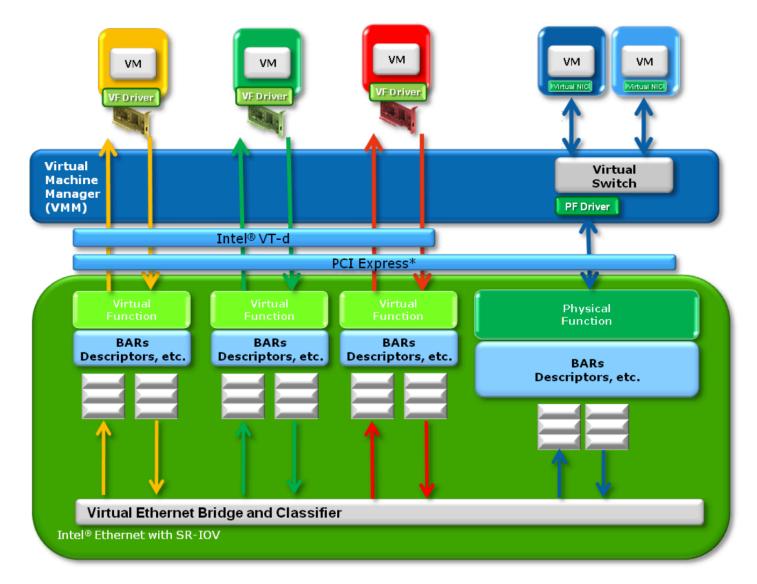
Network Interface Card (NIC)

- Physical layer processing
- Some link layer processing
- Direct Memory Access (DMA) for copying data.
- Mechanism to trigger interrupts.


Modern NICs do much more than this

NIC Features: Protocol Offload


- TCP Segmentation offload
 - Split a large outgoing packet into MTU-sized packets and assign appropriate headers.
- Checksum Offload
 - TCP / UDP / IPv4 checksum computation.
- Large Receive Offload
 - Combine multiple MTU-sized packets for the same connection into a single large packet.


NIC Features: Packet Steering

- Receive Side Scaling
 - Load balance incoming packets across different queues.
 - Hash of packet header fields mapped to queue index.
 - Can pick which queue corresponds to which index.
- Flow Director
 - Maintain explicit mapping between packet header fields and queue.
 - Other actions including dropping and incrementing counters.

Source: Intel White Paper on VMDq, March 2008

SR-IOV (Single Root I/O Virtualization)

Provides the hardware abstraction of a 'virtual function' (VF).

Intel® VT-

• Multiple 'virtual functions' mapped to a single physical function.

• VMM maps a virtual function space to a specific VM.

Virtual Ethernet Bridge and Classifie

Intel® Ethernet with SR-IOV

- SR-IOV (Single Root I/O Virtualization)
 - Share a single physical port across multiple VMs.
- VMDq (Virtual Machine Device Queues)
 - Sort packets across VM specific queues based on MAC address and VLAN tags.
 - Round-robin across VM queues.
- VT-d (Virtualization technology for directed I/O)
 - DMA support for VMs, manage interrupts for VMs, protection and isolation across VMs for I/O operations.

NIC Features: Tunneling Support

- Examples:
 - VXLAN:

	← Ethernet Fra											
	Outer MAC SA	Outer 802.1Q	Outer IP DA	Outer IP SA	Outer UDP	VXLAN ID (24 bits)	Inner MAC DA	InnerM AC SA	Optional Inner 802.1Q	Original Ethernet Payload	CRO	
DA	SA					N Encaps			802.10	Payload		

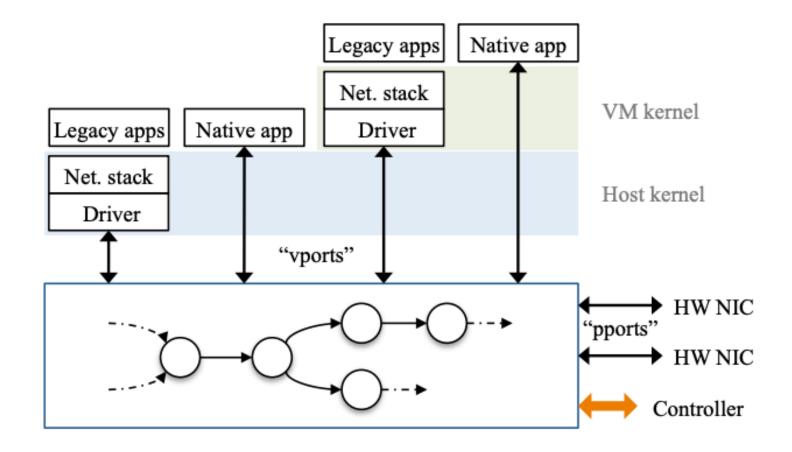
• NVGRE:

Outer MAC	Outer IP	GRE	Inner MAC	Inner Payload	CRC
--------------	-------------	-----	-----------	---------------	-----

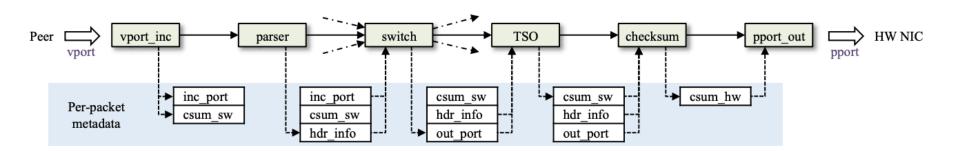
- Offload encapsulation/decapsulation.
- Ability to parse tunneled information.

Limitations

- Lack of flexibility and fine-grained control.
 - E.g.TSO offload can be useless without VXLAN support.
 - Even minor fixes can take years.
- Resource constraints.
 - Limited memory (packet buffers, flow table size, etc).
 - E.g. Flow Director allows only 8K flow entries.

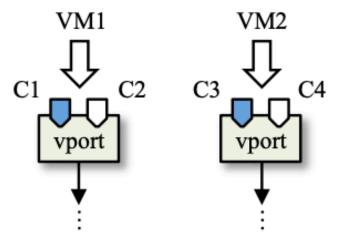

SoftNIC: A Software NIC to Augment Hardware

Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, Sylvia Ratnasamy

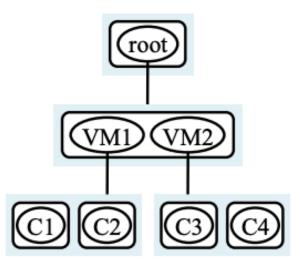

SoftNIC Design Goals

- Programmability and extensibility
- Application performance isolation
- Backwards Compatibility

Architecture

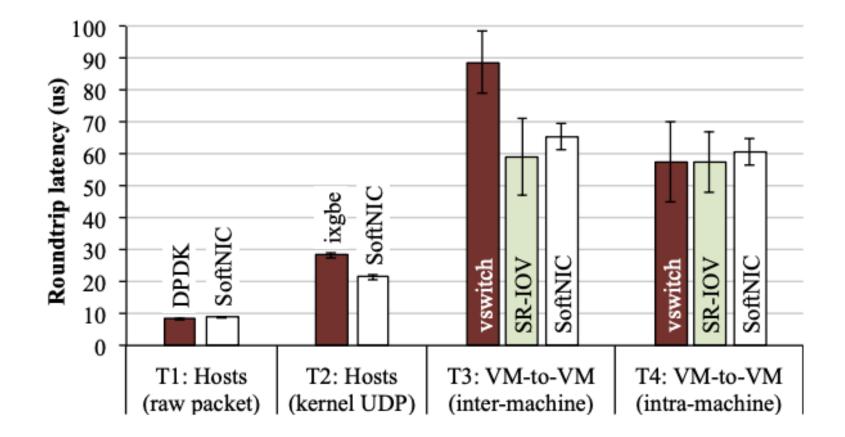


Packet Processing Example



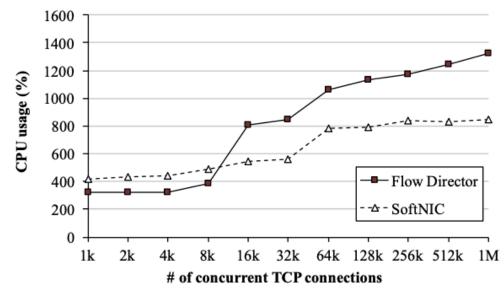
Resource Scheduling

• Allocate both processor and bandwidth resources.


C1, C3: high priority, 1 Gbps C2, C4: low priority, no limit Per VM: 5 Gbps limit

Implementation

- Over DPDK.
- Dedicate a small number of cores to SoftNIC.
 - Multi-core scaling achieved by associating each SoftNIC core with different set of queues.
 - Requires peers to ensure packets from same flow go to the same queue.
- Supports different packet I/O interfaces at vports for userspace / kernel-bypass applications and kernel.
 - Implement a kernel driver, requiring no modification to kernel.
- Polling to check for packets from vport and pport.
- Batching to amortize software processing overheads.


Evaluation

- If NICS do not understand tunneling format, cannot support TSO for "inner" TCP frames.
- SoftNIC can be used to augment the TSO/LRO feature in these cases.

- NIC supports a limited number of ''rate-limiters'' few hundreds.
 - There may be thousands of flows.
- SoftNIC can be used to implement a scalable rate limiter.

- Flow Director directs packets with specific header fields to specific queues.
 - Can only support 8K entries.
- SoftNIC can support almost unlimited flow entries using system memory.

- Scaling legacy applications: send packets to different cores based on hash of packet header fields.
- RSS (NIC feature) is too limiting.
- SoftNIC can be used to provide such scaling.

Your thoughts?

- What did you like about the paper?
- What are its limitations?
- Other ways of achieving flexible NIC offload?

Next few classes

- Host SDN and network virtualization in multi-tenant datacenters.
- Two case-studies:
 - Google (SNAP)
 - Microsoft (AccelNet)
- Other forms of programmable NICs
 - FPGA-based NICs (AccelNet)
 - NICs with general-purpose compute (FlexTOE)
 - Custom NIC-CPU co-design (NanoPU)

Student Presentation on Nov 17th

- Student presentations on Friday, Nov 17th
 - Present a relevant paper of your choice
 - A paper that is related to the topics we covered, but not part of your reading list (can select a paper from the "optional" list).
 - 6 minute presentation with I-2mins for Q/A.
 - What problem is the paper trying to solve?
 - How does it solve it at a high-level / what's the key idea?
 - Key result.
 - Watch out for an email with a sign-up sheet.
 - Select a slot and a paper of your choice on a first-come-first serve basis.

Other logistics

- No class on Wed, Nov 29.
- Second progress report due next Friday.

Thank you for your feedback!

- Many of you want harder assignments ③
- Student presentations
- Broader variety of topics more papers per class?
- Sometimes discussions tend to drag...
- More background before diving into details.