eXpress Data Path and
eBPF

ECE/CS598HPN

Radhika Mittal

Performance overhead in kernel stack

* Protocol processing

* Data copy

* (Cache contention (between flows sharing same NUMA node)
* CPU scheduling overheads (locking, context switching)

* Interrupts

* Managing heavy datastructures (skbs)

Alternatives

* Kernel bypass in software (user-space):
* Enabled by high-speed packet /O engine (DPDK)
* Network stacks over DPDK:mTCP X, TAS....
* Software NIC offload over DPDK (next week)

* Kernel/CPU bypass using specialized NIC
* e.g. RDMA (next class)
* other smartNIC based offloads (later in the course)

* Augmenting kernel datapath with programmable, high
performance, packet processor: XDP

XDP (Express Datapath)

* Baremetal packet processing at the lowest point in the software stack.

RX CPU Control application Other CPUs...
Load/configure BPF .
Application T : Application
I .
S | SRR SRR S SR BSOS OSSN SRS SR SR R SRR R R e e . h_-—-‘----+--
‘ ’ . ‘
Sockets Packet steering | ! : Sockets
TCP/IP stack | Receive local ,' [TCPI/IP stack
1 I
Drop S ,' Forward
x GRO]
\ *
Parsing/processing
BPF Program
XDP Packet
Processor

E Driver/device E E E

Contents from Herbert and Starovoitov XDP presentation.

Benefits of XDP over DPDK?

* Retains kernel security boundary.

* No special hardware requirements.
* Only needs basic support like multiqueue NIC, TSO, etc.
* Fasier to integrate with existing NICs and drivers.

* Allows selective utilization of kernel stack (routing, TCP etc).

* No expensive packet re-injection from user-space to

kernel.

* [ransparent to applications running on host.

* Dynamic runtime re-programming.

* No need to dedicate CPU cores to packet processing.

Limitations of XDP over DPDK?

* Performance!

Limitations of XDP over DPDK?

* Performance!

120 —*— DPDK
—&— XDP

100 4~ Linux (raw)
—— Linux (conntrack)

Number of cores

Packet drop throughput

Limitations of XDP over DPDK?

* Performance!

80

—e— DPDK (different NIC)
—#— XDP (same NIC)

10 —4— XDP (different NIC)
Number of cores

Packet forwarding throughput

Limitations of XDP over DPDK?

* Performance!

Average Maximum < 10us
100pps 1Mpps 100pps 1Mpps 100pps 1 Mpps
XDP 82us 7us 272pus 202us 0% 98.1%
DPDK 2us 3us 161us 18%us 99.5% 99.0%

Latency

Limitations of XDP over DPDK?

* Performance!

* Reasons!
* Interrupt vs polling
* Overhead of generic device driver

CPU utilization

o]
o

CPU usage (%)
(o))
o

-8
o

20

0 5 10 15 20 25
Oftered load (Mpps)

Relationship to Kernel-bypass (DPDK)

* |f kernel network stack Is a freeway,
* kernel-bypass Is a proposal for high-speed train
infrastructure.
* XDP Is a proposal for adding carpool lanes on the
freeway.

Contents from Herbert and Starovoitov XDP presentation.

Potential usecases of XDP

* Pre-stack processing (filtering, DOS mitigation).
* Forwarding and load balancing.

* GRO.

* Flow sampling and monrtoring.

* Upper layer protocol (Layer /) processing.

Cilium using XDP/eBPF for enforcing network policies and load
balancing (as a replacement of sidecar proxies).

Some contents from Herbert and Starovoitov XDP presentation.

Key components of XDP
* XDP driver hook

* eBPF virtual machine

* BPF maps

e eBPF verifier

Future Directions

* TCP over XDP

* Zero-copy to user-space

* Performance optimziations
* QoS support

* Debugging support

Your thoughts?

