Kernel Bypass

ECE/CS598HPN

Radhika Mittal

Performance overhead in kernel stack

* Protocol processing

* Data copy

* (Cache contention (between flows sharing same NUMA node)
* CPU scheduling overheads (locking, context switching)

* Interrupts

* Managing heavy datastructures (skbs)

Results from “understanding host network
stack”

60 T T T 60
_ No Opt. =
TRy J A S S TSO/GRO s { 50
B) : = 8
L T ; aRFS -

.................. g 40 g 0 G
l 2 30 30 §
E E = % 20 20 F
App S

£ ’

0 0

All Opt. w/o TSO/GRO w/o Jumbo

(sdgondysnauy 1oy

T 3 § 8 & 2 o

1

Sender CPU Ul B55A
Receiver CPU Udl E22253 -

1

’

-

Results from “understanding host

network stack

Kernel Bypass Packet I/O

Dataplane Development Kit (DPDK)

Linux Kernel without DPDK Linux Kernel with DPDK

User Space
DPDK Libraries

Linux Kernel

Kernel Space
Network Driver

Network
Hardware

Source: https://blog.selectel.com/introduction-dpdk-architecture-principles/

Dataplane Development Kit (DPDK)

* User-space packet processing (kernel bypass).
* Avold context switching overhead.

* Poll Mode Driver (PMD).

* Avold interrupt processing overhead.
* Keeps a core busy.

* Memory usage optimizations

* Light-weight mbufs.

* Memory pools that use hugepages, cache alignment, etc.
* L ockless ring buffers.

Other examples

* NetMap

* |In-kernel module for efficient packet processing,
* Light-weight packet buffers.
* Fewer memory copies.

* Packet Shader
* Modified packet I/O engine in the kernel.
* Fetches packets through a combination of interrupts and polling.
* Processes packets using GPU in userspace.

Kernel Bypass Packet |/O Engine

* Provide mechanisms for delivering packets to
user space.

* Do not implement a network stack.

mTCP

* User-space T CP/IP stack built over kernel-

bypass packet /O engines.
* Implementation in paper over PacketShader.
* DPDK based implementation also available.

mTCP

+@+-Linux =@ ‘REUSEPORT =-#- MegaPipe —¢—mTCP

[o
(@) O (| n
l J

Messages/sec (x 10%)

W
L

o

o 1 2 4 8
Number of CPU Cores

mTCP

100% -
80% -

60% -

40%

CPU Utilization

20%

OKernel OPacket /O GTCP/IP B Application
0% - —— —= ; —= =
Linux-2.6 Linux-3.10 MegaPipe mTCP

1

M T CP -- Issues

e Dedicated threads for the TCP stack.

* Avoid intrusive inter-twining of application and
TCP processing.

* Batching to reduce switching overheads.

* Adds latency.

* Security vulnerabilities with user-space
network stack.

X (OSDI’14)

* Protected kernel-bypass.

* Separation of control plane and dataplane
* Control plane handles resource allocation (cores, memory,
network queues).
* Three-way isolation: IX control plane, dataplane (guest),
and untrusted user code.
* Hardware virtualization techniques to expose resources
to dataplane.

X (OSDI'14)

'\ N | (-)
°°- .
()]
£ | |

XCE T ibix : libix
——————— Hm—===== ci P L= -
o) | |
> 2 l IX i IX
£ C |
= 2 I\C 1\ Y,
________ e —————————
B | |
o 8| (@une)|, .
2 x| Linux | |
'=§ | I
C] ! C]![C][C

| |

| | T l T l

| |

| |

|

(a) Protection and separation of control and data plane.

X (OSDI’14)

* Run to completion packet processing in dataplane.
* Adaptive Batching
* /ero-copy
* Synchronization-free processing
* Implemented over DPDK

| X Performance

4 e
—&— X 10GbE
3.5 - —— IX4x10GbE
\;‘ —o— Linux 10GbE
3 3 4 _—®— Linux4x10GE ™=
v —=a— mTCP 10GbE
2.5 T N
8 2 Saturates \ -~
G 1x10GbE
0
0 1.5 -
(s}
0 1 -
Q
=
0.5 T
0] I I I I I |
0 1 2 3 4 5 6 7 8

Number of CPU cores

| X Limitations

* [TAS, EuroSys' | 9] Might still have addrtional protocol

processing overheads. . ..
* TCP packet processing in one monolithic block.
* Large amount of per-connection state, many branches,
increased cache footprint.

 Non-socket API

* Enforcing zero-copy requires application and dataplane

kernel to coordinate on buffer management.
* Application must not mutate content of a packet until it's
acknowledged.
* (Similar issues with kernel zero-copy mechanisms).

TAS: TCP Acceleration as an OS
service (EuroSys’ | 9)

Slides from TAS authors.

RPCs are Essential in the Datacenter

Remote procedure calls (RPCs) are a common building block for datacenter applications
Scenario: An efficient key-value store in a datacenter
1. Low tail latency is crucial

2. Thousands of connections per machine

3. Both the application writer and datacenter operator want the full feature set of TCP
a) Developers want the convenience of sockets and in-order delivery

b) Operators want flexibility and strong policy enforcement

You might want to simply go with Linux...

Linux provides the features we want

sockets in-order delivery flexibility policy enforcement
But at what cost?

You might want to simply go with Linux...

Linux provides the features we want

sockets in-order delivery flexibility policy enforcement
But at what cost?

A simple KVS model: 256B RPC request/response over Linux TCP
250 application cycles per RPC

You might want to simply go with Linux...

Linux provides the features we want

sockets in-order delivery flexibility policy enforcement
But at what cost?

A simple KVS model: 256B RPC request/response over Linux TCP

250 application cycles per RPC
8,300 Total CPU Cycles per RPC

[

App Processing: 3% Kernel Processing: 97%

We're only doing a small amount of useful computation!

Why is Linux slow?

System call and cache pollution

Application and kernel co-location

overheads

| |

Executes entire TCP state machine Complicated data path

Poor cache efficiency, unscalable

State in multiple cache lines

Why not kernel-bypass?

NIC interface is optimized, bottlenecks are in OS
Arrakis (OSDI “14), mTCP (NSDI “14), Stackmap (ATC ‘16)

Do network processing in userspace
Expose the NIC interface to the application
Hardware |/O virtualization

Why not kernel-bypass?

NIC interface is optimized, bottlenecks are in OS
Arrakis (OSDI “14), mTCP (NSDI ‘14), Stackmap (ATC “16)

Do network processing in userspace
Expose the NIC interface to the application
Hardware |/O virtualization

I Avoid OS overheads, can specialize stack

Why not kernel-bypass?

NIC interface is optimized, bottlenecks are in OS
Arrakis (OSDI “14), mTCP (NSDI “14), Stackmap (ATC ‘16)

Do network processing in userspace
Expose the NIC interface to the application
Hardware 1/0O virtualization

VI Avoid OS overheads, can specialize stack
Operators have to trust application code

Little flexibility for operators to change or update network stack

Why not RDIMIAY (next week)

Remote Direct Memory Access:
Interface: one-sided and two-sided operations in NIC hardware

RPCs and sockets implemented on top of basic RDMA primitives

Why not RDMA? (next week)

Remote Direct Memory Access:
Interface: one-sided and two-sided operations in NIC hardware

RPCs and sockets implemented on top of basic RDMA primitives

VI Minimize or bypass CPU overhead

Why not RDMA? (next week)

Remote Direct Memory Access:
Interface: one-sided and two-sided operations in NIC hardware

RPCs and sockets implemented on top of basic RDMA primitives

VI Minimize or bypass CPU overhead

[]

Lose software procotol flexibility

%]

Bad fit for many-to-many RPCs

%]

RDMA congestion control (DCQCN) doesn‘t work well at scale

TAS: TCP Acceleration as an OS Service

An open source, drop-in, highly efficient RPC acceleration service

No additional NIC hardware required
Compatible with all applications that already use sockets
Operates as a userspace OS service using dedicated cores for packet processing

Leverages the benefits and flexibility of kernel bypass with better protection

TAS accelerates TCP processing for RPCs while providing all the desired features
Sockets In-order delivery Flexibility Policy enforcement

Why is Linux slow?

System call and cache pollution

Application and kernel co-location

overheads

Executes entire TCP state machine Complicated data path

I
>

Poor cache efficiency, unscalable

State in multiple cache lines

How does TAS fix it?
System call and cache pollution

S —— Dedicate cores for network stack
Complicated data path Separate simple fast path and slow path

Poor cache efficiency, unscalable Minimize and localize connection state

Application = Application TAS Overview

Slmple Fast Path

Slow Path]

Dividing
Functionality

Application

* Socket API, locking <§§\§®>

Slow Path
@ @ Per connection:

e Open/close connections
IP routing, ARP
Firewalling, traffic shaping
Compute rate
Re-transmission timeouts

Fast Path

Per packet:
* Generate data segments
* Process & send ACKs

* Flow control
* Apply rate-limit %@%

Application

Connection setup/teardown
* Socket API, locking

Slow Path
Data packet payloads

Per connection:

* Open/close connections
IP routing, ARP
Firewalling, traffic shaping
Compute rate
Re-transmission timeouts

Fast Path

Per packet:
* Generate data segments
e Process & send ACKs

* Flow control
 Apply rate-limit <%@%>Congestion statistics
Retransmissions

Control packets

Application

* Socket API, locking

\\\7

J

Data packet payloads @ @

'/ Fast Path \\

Per packet:

* Generate data segments
* Process & send ACKs

* Flow control

* Apply rate-limit

. Minimal Connection State
.

|
/

' 4

<§§§>Connection setup/teardown

/ Slow Path \\

Per connection:
* Open/close connections
* |P routing, ARP
* Firewalling, traffic shaping
* Compute rate
\0 Re-transmission tlmeoutS/

% Congestion statistics
Retransmissions

Control packets

Application

Connection setup/teardown

* Socket AP ing :
k Minimal Connection State
Data packets
Payload buffers Seq/Ack numbers
Remote IP/port lons
/ = Send rate or window
Congestion statistics -
Per packet: Rl
* Generate Only 2 cache lines per connection
* Process & eouts
* Flow con
* Apply rate-limit Congestion statistics

Retransmissions
\ Control packets

Application Congestion Control

Inspired by CCP (SIGCOMM ‘18)

O 6 é ‘ SIOW Path
\'/ \'/ \'/ CC Algorithm c
per connection PRI
O R Perlodlcally check/update connection state

Fast Path

Minimal Connection State

Many CC algorithms can be implemented
(described in paper)

“

Exceptions e §Slow path libTAS App
Rsst : Fastpath :
o
_ Pét_a_ _ RX threadsg _ d_eﬂlg R)f pa”yl‘o.ad‘bufferl-’i)
1 noti 5
ACKs I --a;pu-{o]-’ epoll ()
D context RX queue

Figure 1. TAS receive flow.

* Application runs on separate core.
* Not zero-copy.

ACK

packets
Data

packets

Monitor

Slow path

Set rate
................................ -

Fastpath - g8

\J
"
tx sent
t N

é

:

cnt_ecnb
oy

4
>
«----

> g bucke

libTAS

_
—_— é

TX payload buffers

= == \‘
'[F 12 T‘?‘se

T =
context TX queue :

—

t >

App

:

nd ()

Figure 2. TAS transmit flow.

* Application runs on
* Not zero-copy.

separate core.

Workload

Application Application Pro oor tiona ‘ i ty

I I [6 Slow Path]

Fast Path ..~

Minimal Connection State

NIC

Throughput (Gbps)

Linux vs TAS on RPCs (1 App Core)

N
o

=
o

N

[y

o

* Single direction RPC benchmark

* 32 RPCs per connection in flight

RX Pipelined RPC Throughput

=—linux =—=TAS

128 256 512 1024 2048

Message size (B)

32 64

* 250 cycle application workload
* 64 bytes realistic small RPC

TX Pipelined RPC Throughput

N
o

| inuUX ==——TAS

B

=
o

Throughput (Gbps)
= N

o

1024 2048

512

128 256

Message size (B)

32 64

Connection Scalability
:

s

* 20 core RPC echo server ? 2 —

N
(@]

* 64B requests/responses =
i : E 5
» Single RPC per connection 5
'§o 10
o e o e _._TAS +|X _._L
Key factor: minimized £ . inux
connection state —_)) :)
0
1 16 32 48 6l - o

Thousand connections

Key-value Store

Increasing server cores with matching
load (~2000 connections per core) 16

IX and TAS provide ~6x speedup over
Linux across all cores

TAS: 9 app cores, 7 TAS cores
IX, Linux: 16 app/stack cores

Throughput (m

TAS has a 15-20% performance
improvement over IX without sockets

TAS: 8 app cores, 8 TAS cores

KVS Throughput

4 8
Server Cores

12

16

Key-value Store Latency

KVS latency measure with single application core, 15% server load

0.9
0.8
0.7
0.6
a 0.5
0.4
0.3
0.2
0.1

—TAS Serv + TAS Client
——Linux Serv + TAS Client
—TAS Serv + Linux Client
——IX Serv + TAS Client

0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Tail Latency

IX has 50% higher latency in the 90p case
Latency is 20us (27%) higher in the 99.99p case

In addition, IX has a 2.3x higher maximum latency

1 —_ 1
e

0.8 0.9998

" 0.6 " 0.9996
a a
(@) (@]

0.4 0.9994

—TAS Serv + TAS Client
0.2 erv ien 0.9992
IX Serv + TAS Client
0 _ 0.999

5 10 15 20 25 30 35 40 45
Latency (us)

Why long IX tail?
Batching

TAS Max: 122us

—_—)

IX Max: 280us

f/ —TAS Serv + TAS Client

I IX Serv + TAS Client

15 25 35 45 55 65 75 85 95 105 115 125

Latency (us)

Your thoughts...

