Programmable and Universal Packet
Scheduling

ECE/CS598HPN

Radhika Mittal

Scheduling not programmable

Ingress

1710y
HEH

Scheduling in standard switches

* Fixed number (8-16) of priority queues.
* Can be configured to support weighted round-robin.

* In practice, few priority levels might be left for common use.

* Not enough to support diverse scheduling policies:
* Fairness across many more flows.
* Shortest job first scheduling.

Two complementary papers

* Programmable packet scheduling, HotNets'| 5, SIGCOMM'| 6

* Universal packet scheduling, HotNets' | 5, NSDI' [6

Two complementary papers

* Programmable packet scheduling, HotNets'| 5, SIGCOMM'[6

Two complementary papers

* Programmable packet scheduling, HotNets'| 5, SIGCOMM'| 6

* Many slides borrowed from Anirudh Sivaraman.

The Push-In First-Out Queue

* Many algorithms determine transmission order at packet arrival

* Often, relative order of packet transmissions doesn't change with
future arrivals

* Examples:
* S5JF: Order determined by flow size
* FCFS: Order determined by arrival time

* Push-in first-out queues (PIFO) is a good abstraction to capture
such algorithms.

* packets are pushed into an arbitrary location based on a priority,
and dequeued from the head

* First used as a proof construct by Chuang et. al.

The PIFO abstraction

* PIFO: A sorted array that let us insert an entry (packet or
PIFO pointer) based on a programmable priority
* Entries are always dequeued from the head
* If an entry Is a packet, dequeue and transmit it
* If an entry is a PIFO, dequeue it, and continue recursively

A programmable scheduler

Classification &

Transmission

Order
Computation

-

Ingress Pipeline

Classification &
Transmission

Scheduler

~

\3

Order
Computation

I

—

Push-In-First-Out
(PIFO) Queue

~/

==

pFabric using PIFO

Scheduler

1. f={flow(p) I}‘ s

2. p.prio =f.rem_size
Push-In-First-Out

(PIFO) Queue

==
VL. F=4H)\\

Weighted Fair Queuing

S

Ingress Pipeline

f=flow(p)

p.start = T[f].finish

T|[f].finish = p.start + p.len / p.w
p.prio = p.start

Scheduler

L

~

I

—

Push-In-First-Out
(PIFO) Queue

2/

==

Traffic Shaping

-

_

Ingress Pipeline

1. update tokens
2. p.send = now +

(p.len - tokens) / rate;
3. p.prio =p.send

Scheduler

L

~

—>

Push-In-First-Out
(PIFO) Queue

2/

Vi —

Composing PIFOs

Hierarchical packet-fair
queueing (HPFQ)

A (0.5 B (0.5)

1 2 3 4
(0.1) (0.9) (0.3) (0.7)

Composing PIFOs

PIFO-root

Al

(WFQ on A and B)/\

1

2 4

PIFO-A

PIFO-B

(WFQon 1 and2) (WFQ on 3 and 4)

PIFO in hardware

Range search CAM Mini-PIFO bank

4 (Min| Max [MiniPIFO) <128 clements

1 10 pl 1 10

10 | 100 » 10 100

1000 mini-PIFOs 100 | 300 » 100 300
300 | 500 » 300 500

5001 1000 » 500 1000

v \1000 | 2000 — »11000 2000

* Meets timing at | GHz on a |6 nm node
* 5 % area overhead for 3-level hierarchy

Programmable packet scheduling,

SIGCOMM’| 6

D50 | B40 | A30 | D25

B20

c9

C8

C7 B5 A5 B3 Al

Single array PIFO can be expensive
(lots of comparator circuits required)

A: 30,5

B: 40, 20, 5, 3

C:9,8,7

D: 50, 25

Rank Store

D25 | C7 B3 Al

Flow scheduler

(fewer comparator circuits

required)

Key limitation of the PIFO abstraction!?

* What if packet priorities change after enqueuing?

* Need to re-program routers for supporting a new/different
algorithm. ..

Two complementary papers

* Programmable packet scheduling, HotNets'| 5, SIGCOMM'[6

* Universal Packet Scheduling, HotNets'| 5, NSDI'[6

Many Scheduling Algorithms

* Many different algorithms
* HIFO, FQ, virtual clocks, priorities.. .

* Many different goals
* fairness, small packet delay, small FCT...

* Many different contexts
* WAN, datacenters, cellular. ..

Many Scheduling Algorithms

* Implemented Iin router hardware.

* How do we support different scheduling algorithms for different
requirements?

* Option |: Change router hardware for each new algorithm
* Option 2: Implement all scheduling algorithms in hardware
* Option 3: Programmable scheduling hardware

Many Scheduling Algorithms

* Implemented Iin router hardware.

* How do we support different scheduling algorithms for different
requirements?

* Option |: Change router hardware for each new algorithm
* Option 2: Implement all scheduling algorithms in hardware
* Option 3: Programmable scheduling hardware

Many Scheduling Algorithms

* Implemented Iin router hardware.

* How do we support different scheduling algorithms for different
requirements?

* Option |: Change router hardware for each new algorithm
* Option 2: Implement all scheduling algorithms in hardware
* Option 3: Programmable scheduling hardware

We are asking a new question.....

Fﬁft . .2 5™
Is there a universal packet
scheduling algorithm?

UPS: Universal Packet Scheduling Algorithm

A single scheduling algorithm that

can imitate the network-wide output
produced by any other algorithm.

How can a single
algorithm imitate all ~
others!

Network Model

Input Traffic

INGRESS
CORE NETWORK

Network Model

Scheduling

Input Traffic
Algorithm

INGRESS
CORE NETWORK

Network Model

Input Traffic

____________ b

(Optional)
Header
Initialization :

INGRESS

Scheduling

— Output Traffi
Algorithm JPHE TR

EGRESS
CORE NETWORK

Network Model

Output Traffic tied to
Input Traffic /,—-----_§Et7fij/’”§ Algorithm

. (Optional) ! h : \

~ Header SC ed,u“ng ——%OutT.')utTrafﬁC

Initialization : Algorithm

“““““““““““““ EGRESS
INGRESS

CORE NETWORK

Network Model

Goal: Minimize Mean FCT
Input Traffic

 Pric l

Priority

Priority
Scheduling

. Value
. Flow Size |

INGRESS

—> Output Traffic

EGRESS
CORE NETWORK

Network Model

Goal: Fairness

Input Traffic

o l

—> Output Traffic

INGRESS

EGRESS

CORE NETWORK

Network Model

Goal: Weighted Fairness
Input Traffic

o l

.~ Flow | |

Weights — Output Traffic

_____________________ EGRESS
INGRESS

CORE NETWORK

Network Model

Output Traffic tied to Header Initialization

N N S S Sy
- — -,
-

Header | Scheduling 3 .
 Initialization ! Algorithm?* — Output Traffic
""""""""""""" EGRESS

INGRESS

CORE NETWORK

* Uses packet header state to make scheduling decisions

Network Model

Input Traffic

o l

Header .
Initialization —> Output Traffic
""""""""""""" FGRESS

INGRESS

CORE NETWORK

How do we formally
define and evaluate

~

/

Defining a UPS

Theoretical Viewpoint:
AR Can it replay a given schedule?

s Practical Viewpoint:

S

,_@*{' Can 1t achieve a given objective!

Theoretical Viewpoint

Can 1t replay a given schedule!

Original Schedule

Only requirement from original schedule:
Output Times are viable

Input Traffic

(Optional) | Arbitrary

~ Header ——{ = Scheduling ——> Output Times
Initialization !

Algorithm o(p) for a packet p

INGRESS CORE NETWORK EGRESS

Replaying the Schedule, given o(p)

Input Traffic

; ,H,e?de'f ——> Output Times

 Initialization ;

o’(p) for a packet p
INGRESS CORE NETWORK EGRESS

For every packet p, o’(p) < o(p)

Pragmatic Constraints on a UPS

Input Traffic

o l """""" i

. Header
Initialization:
o’(p) for a packet p

INGRESS CORE NETWORK EGRESS

——> Output Times

Obliviousness: For initializing p's
header; use only o(p) and path(p)

Pragmatic Constraints on a UPS

Input Traffic

o l """""" i

. Header
Initialization:
o’(p) for a packet p

INGRESS CORE NETWORK EGRESS

——> Output Times

Obliviousness: For initializing p's
header; use only o(p) and path(p)

Pragmatic Constraints on a UPS

Input Traffic

o l """""" i

. Header
Initialization:
o’(p) for a packet p

INGRESS CORE NETWORK EGRESS

——> Output Times

Obliviousness: For initializing p's
header; use only o(p) and path(p)

Pragmatic Constraints on a UPS

Input Traffic

o l """""" i

. Header
Initialization:
o’(p) for a packet p

INGRESS CORE NETWORK EGRESS

——> Output Times

Obliviousness: For inrtializing p's
header; use only o(p) and path(p)

Pragmatic Constraints on a UPS

Limited State: Scheduling can use only
header state and static information

Input Traffic

. Header
Initialization:
o’(p) for a packet p

INGRESS CORE NETWORK EGRESS

——> Output Times

Obliviousness: For initializing p's
header; use only o(p) and path(p)

Pragmatic Constraints on a UPS

Limited State: Scheduling can use only
header state and static information

Input Traffic

| Fleader : —— QOutput Times

 Initialization ;

o’(p) for a packet p
INGRESS CORE NETWORK EGRESS

Obliviousness: For initializing p's
header; use onlyﬂo(p) and path(p)

/

We call this Blackbox Initialization

Limited State: Scheduling can use only
header state and static information

Input Traffic

. Header
Initialization:
o’(p) for a packet p

INGRESS CORE NETWORK EGRESS

——> Output Times

Obliviousness: For initializing p's
header; use only o(p) and path(p)

Basic Existence and Non-existence Results

There exists a UPS under Omniscient Initialization
when scheduling time at every hop I1s known

No UPS exists under Blackbox Initialization
when only the final output time Is known

See NSDI'[6 paper for proofs.

How close can
we get to a UPS!?

Key Result: Depends on congestion points

No. of Congestion Points

per Packet General
I v/
2 v/
3 X

See NSDI'[6 paper for proofs.

Can we achieve
this upper bound!?

Can we achieve

this upper bound!?
Yes, LSTF!

Least Slack Time First

e Packet header Inrtialized with a slack value
* slack = maximum tolerable queuing delay

e At the routers

* Schedule packet with least slack time first
* Update the slack by subtracting the wart time

Key Results

No. of Congestion Points General LSTF

per Packet
I v v
2 v v
3 X X

See NSDI'| 6 paper for proofs.

Not all algorithms achieve upper bound

No. of Congestion Points General LSTE Priorities

per Packet
I v v v/
2 v/ v/ X
3 X X X

See NSDI'| 6 paper for proofs.

How well does
LSTF perform
empirically?

Empirically, LSTF is (almost) universal

* ns-2 simulation results on realistic network settings
— Less than 3% packets missed their output times

— Less than 0.1% packets are late by more than
one transmission time

Summarizing the theoretical viewpoint

* Evaluate the ability to replay a schedule, given its
final output times

* Analytical Results:
— No UPS exists

— LSTF comes as close to a UPS as possible

* Empirical Results: LSTF i1s almost universal!

Practical Viewpoint

Can 1t achieve a given objective!?

Achieving various network objectives

* Slack assignment based on heuristics
* Comparison with state-of-the-art

* Three objective functions
— Tail packet delays
- Mean Flow Completion Time
— Fairness

Tail Packet Delays
Slack Assignment: Same slack for all packets
State-of-the-art: FIFO, FIFO+
Results:

* |dentical to FIFO+.

* Smaller tail packet delays compared to FIFO.

Mean Flow Completion Time

Slack Assignment: Proportional to flow size
State-of-the-art: S|F SRPT

Results:
* Mean FCTs comparable to both SJF and SRPT.

Fairness

Slack Assignment: Inspired by Virtual Clocks
slack(pg) = O

slack(p;) = max(0, slack(pi.;) + (1/reg) = (1I(P) = 1(Pi-1))
. — Estimate of fair share rate

State-of-the-art: Fair Queuing (FQ)

Results:
* bventual convergence to fairness for long-lived flows.

* FCTs roughly comparable to FQ for short-lived flows.
* Higher sensitivity to fair share rate estimate (r.)

Results Summary

* [heoretical results show that
— There is no UPS under blackbox inrtialization
- LSTF comes as close to a UPS as possible
— Empirically, LSTF 1s very close

* LSTF can be used in practice to achieve a
variety of network-wide objectives.

Implication

* |Less need for many different scheduling
algorithmes.

* (Can just use LSTH with varying
initializations.

Limitations

* Policies for which the required information is not
available during header inrtialization at the ingress.
* When relative ordering between two packets changes after

engueuing them.
* C(lass-based weighted fairness.

Follow-up work along similar lines...

* Fast, Scalable, Programmable Packet Scheduler (SIGCOMM'[9)
* Increase flexibility and scalability of PIFO through a different design.

« SP-PIFO (NSDI'20)
* Most switches have only 8-16 queues.What's the best we can do with existing
switch hardware?

* Programmable Calendar Queues (NSDI'20)

* A different abstraction to approximate different scheduling algorithms using
fixed number of FIFO queues.

* Programmable packet scheduling with a single queue (SIGCOMM™22)

* Approximate PIFO using a single FIFO queue.
* Datacenter buffers are shallow, so only need to decide which packets should be

enqueued vs which ones should be dropped.

Logistics

* First progress report is due on Friday (Oct | 3) atl [:59pm.
* See course website (assignment tab) for submission instructions.

* Need to end OH at 3pm today.
* Supplemental OH till 3pm on Friday.

