
How and when should we use
programmable switches?

ECE/CS598HPN

Radhika Mittal

Which paper did you like the most?

• BeauCoup

• Elmo

• NetCache

• Silkroad

Which paper did you like the least?

• BeauCoup

• Elmo

• NetCache

• Silkroad

Did you change your opinion after
reading today’s papers?

• Yes

• No

• Maybe

Other networking usecases

• Load balancing:
• HULA: Scalable Load Balancing Using Programmable Data Planes, SOSR’16

• Congestion control:
• Evaluating the Power of Flexible Packet Processing for Network Resource

Allocation, NSDI’17
• Support RCP and XCP on programmable switches

• HPCC: High Precision Congestion Control, SIGCOMM’19
• Obtain precise link information for congestion control

• A new protocols for more efficient L2 switching
• The Deforestation of L2, SIGCOMM’16

• …..

Other app-level usecases
• NetLock: Switching support to manage locks

(SIGCOMM’20).
• NetPaxos: implement Paxos on programmable switches

(SOSR’15)
• NetChain: in-network key-value store (NSDI’18).
• DAEIT: In-network data aggregation (SOCC’17)
• NoPaxos (OSDI’16), Eris (SOSP’17): in-network primitives

for distributed protocols.
• SailFish: cloud gateway deployed by Alibaba (SIGCOMM’21)
• Robot arm control (NSDI’22)
• ….

How should we use
programmable switches?

When should the network be the
computer?

Dan Ports and Jacob Nelson, HotOS’19

Trade-offs

• Low latency and high throughput, at the cost of
• Flexibility
• Storage

Key Arguments (or Principles)

• Offload primitives, not applications
• Make primitives reusable

• Keep state out of the network
• Preserve fate-sharing

• Minimal interference with existing network functionality.

Which primitive are good
offloading candidates?

• Criteria:
• No. of operations per packet

• Typical: O(1) or O(n) where n = length of the packet
• Amount of state stored in switch required to process a packet.

• O(1), O(n), O(s), where s = application’s working set size.
• For a given packet, how many packets are produced

• O(1), O(r), O(1/r)

• Packet gain is an important benefit of “in-network” computing.

Offloading Criteria

Ops/pkt Amt of
State

Packet Gain

BeauCoup O(1) O(#active
flows)

O(1)

Elmo O(1) C O(r)

NetCache O(1) O(cache size) O(1)

SilkRoad O(1) O(#active
flows)

O(1)

Table from the paper

What are some aspects missing from this table?

Other challenges

• Scale and decentralization

• Multi-tenancy and isolation

• Encryption

• Interoperability

•….

Thoughts on Load Distribution and
the Role of Programmable Switches

Relationship with E2E arguments

• Cannot entirely appeal to E2E argument
• E2E talks about which functionality is part of network layer.
• The question here is what infrastructure is used for

implementing the functionality (servers or switches).
• Although some insights could still be applicable….

Alternatives for switch-based
implementation

• Load balancing (SilkRoad)

• In-network Caching (NetCache)

Limitations of SilkRoad

• Requires large amount of state to be stored in the switches.
What if we run out of space?

• Does not allow policy flexibility.

Alternative Designs for SilkRoad

• DIP information can be maintained by the client and stored in the
packet header field [MPLB, HotMiddlebox’16]
• Either update the destination address for subsequent requests.
• Other fields: TCP timestamp, QUIC conn id, MPTCP destination

port….

• Use consistent hashing in switches. Servers redirect incorrectly received
packets [Beamer, NSDI’18]
• Servers must maintain the per-connection mapping: done via a

centralized controller or message exchange with other backend
servers.

• In both cases, state is stored at endhosts, and switches perform routing.

Limitations of NetCache

• Limits on the size of key and value.

• Limits on switch memory.
• Approximate datastructures to compute statistics.

Alternative for NetCache

• Replicate popular keys on other servers.

• Maintain key access statistics in the servers.

• Switches maintain rules on which key is replicated in which
servers.

• [Pegasus, OSDI’20], [SwitchKV,, NSDI’16]

In both alternative designs

• Complex processing and state management handled by the
servers.

• Switches responsible for steering (appropriately forwarding)
the packets.

In-network data aggregation

• Limited algorithms can be implemented in switches.

• Other alternatives to minimize incast issues.

• Co-locate switches with compute accelerators.

In-network consensus protocols

• Unclear whether performance of consensus protocol is a
limiting factor.

Reasonable usecases of
programmable switches

• (Congestion aware) network load balancing, network
telemetry, packet scheduling, congestion control.

• Why?
• Need access to packet counters. Host-based solutions may not be

viable.
• Impact multiple applications (not specific to just one).

Which arguments are shared by both
papers?

On which aspects do the two papers
differ from one another?

Which paper do you agree with more?

