Use cases of
Programmable Dataplane (P4)

Part 2

ECE/CS598HPN

Radhika Mittal

Which paper(s) did you read?

NetCache

Slides borrowed from the authors’ SOSP’| / presentation

Goal: fast and cost-efficient rack-scale key-value storage

O Store, retrieve, manage key-value objects

» Critical building block for large-scale cloud services
o~ B 00
GafF e afoeae @ l -

= Need to meet aggressive latency and throughput objectives efficiently

0 Target workloads

= Small objects

= Read intensive

* Highly skewed and dynamic key popularity

Key challenge: highly-skewed and rapidly-changing workloads

low throughput W dl high tail latency

Load =

Bl = H =
Server = Sﬁﬁﬁ “““ SSSS

Key challenge: highly-skewed and rapidly-changing workloads

low throughput R dl high tail latency

Load —» | J— — Em
Bl=EE E S D=
Server —- @@@@ """ i N s Y v

Q: How to provide effective dynamic load balancing?

Opportunity: fast, small cache can ensure load balancing

[B. Fan et al. SoCC’11, X. Li et al. NSDI’'16]

Cache O(/V1og N) hottest items -
E.g., 10,000 hot objects

BEEEN BE BN
-

N:#ofservers EO I B - R

E.g., 100 backends with 100 billions items

Requirement: cache throughput > backend aggregate throughput

NetCache: towards billions QPS key-value storage rack

Cache needs to provide the aggregate throughput of the storage layer

i i ‘ flash/disk cache , in-memory

i i each: O(100) KQPS
10) MQP
total: O(10) MQPS 0(10) MQPS

!

storage layer cache layer

, In-memory cache ,

each: O(10) MQPS -
total: O(1) BQPS O(1) BQPS

!

NetCache: towards billions QPS key-value storage rack

Cache needs to provide the aggregate throughput of the storage layer

‘ flash/disk cache , in-memory
each: O(100) KQPS I 0O(10) MQPS
total: O(10) MQPS

storage layer cache layer

, in-memory CaChC a in_network
each: O(10) MQPS l

total: O(1) BQPS O(1) BQPS

Small on-chip memory?
Only cache O(N log N) small items

NetCache rack-scale architecture

(—)
4 o) Network Cache
G,
Management Management
- ﬁ ; Run-time API
» Network Key-Value Query
Functions Cache Statistics
\& ~/
Top of Rack Switch

goaaoa

Storage Servers

0 Switch data plane

= Key-value store to serve queries for cached keys
= Query statistics to enable efficient cache updates

O Switch control plane

= Insert hot items into the cache and evict less popular items
= Manage memory allocation for on-chip key-value store

Assume the entire rack is dedicated to key-value storage.

Data plane query handling

Read Query
(cache hit)

Read Query
(cache miss)

Write Query

Client

Hit | Cache | Update| Stats
' Miss | Cache | Update| Stats
’ Invalidate| Cache Stats

Server

B E——

3

Server

Key-value caching in network ASIC at line rate ?!

0 How to identify application-level packet fields ?
O How to store and serve variable-length data ?

O How to efficiently keep the cache up-to-date ?

Key-value caching in network ASIC at line rate

— 0 How to i1dentify application-level packet fields ?
O How to store and serve variable-length data ?

O How to efficiently keep the cache up-to-date ?

NetCache Packet Format

Existing Protocols NetCache Protocol
| |

OP SEQ KEY VALUE
L) N
'. reserved read, write,
L2/L3 Routing port # delete, etc.

0 Application-layer protocol: compatible with existing L.2-L.4 layers

O Only the top of rack switch needs to parse NetCache fields

—

Key-value caching in network ASIC at line rate

0 How to identify application-level packet fields ?
—» 0 How to store and serve variable-length data ?

O How to efficiently keep the cache up-to-date ?

Key-value store using register array in network ASIC

action process_array (idx):

if pkt.op == read: .
P P Register Array
pkt.value =— array/[idx]

elif pkt.op == cache update:

array[idx] -— pkt.value

Key-value store using register array in network ASIC

Match pkt.key == A pkt.key == B
Action process_array(0) process_array(1)
pkt.value: | A B
0O 1 2 3
action process_array (idx) : A|B
if pkt.op == read: Register Array

pkt.value =-— array[idx]

elif pkt.op == cache update:

array|[idx] <—— pkt.value

Combine outputs from multiple arrays

Match

pkt.key == A Bitmap indicates arrays that store the key’s value

Lookup Table |GRsald

bitmap = 111

Index indicates slots in the arrays to get the value
index =0

Minimal hardware resource overhead

pkt.value: |AOQ|(Al|A2

L\ Ei(Il bitmap[0] == 0 1 2 3
Value Table 0 J-\eisto) Bl process_array_0 (index) — |AQ Register Array 0
Value Table 1 Match bitmap{1] == .

Action process_array_1 (index) — |Al Register Array 1
Value Table 2 J\YEi(d I bitmap[2] == Resicter Array 2

JNeito) Ml process_array_2 (index) — |A2 egister Array

Combine outputs from multiple arrays

Match pkt.key == A pkt.key ==

Action bitmap =111 |bitmap = 110
Lookup Tabl
OOKIP 2abE index = 0 index = 1

pkt.value: |AQ|Al|[A2 B0 |B1

Vel bitmap[0] == 0 1 2 3
YNty B process_array 0 (index) — |A0|BO Register Array 0

Value Table 0

Value Table 1 Match bitmap[1] == :
Action process_array_1 (index) — |Al|B1 Register Array 1

Value Table 2 [CSSLINN bitmap[2] ==
Y-NeisTo) Ml process_array_2 (index) —

Register Array 2

B

Combine outputs from multiple arrays

Match pkt.key == A pkt.key == pkt.key ==

Action bitmap = 111 | bitmap = 110 bitmap = 010
Lookup Tabl

ookup Table index = 0 index = 1 index = 2
pkt.value: |AQ|Al|A2 B0 |B1 C0
1 J\YEi(d Ol bitmap[0] == 0 1 2

Value Table 0 J-Neis o) process_array 0 (index) — |A0|BO
Value Table 1 Match bitmap(1] ==

Action process_array_1 (index) — |A1|B1|(C0
Value Table 2 [RAC bitmap[2] ==

Y Neste B process_array_2 (index) — |A2

Register Array 0

Register Array 1

Register Array 2

Combine outputs from multiple arrays

Match pkt.key == A pkt.key ==

Lookup Table Action bitmap =111 | bitmap = 110

Match bitmap[0] ==
Value Table 0

Value Table 1 NG NN bitmap(1] ==

Value Table 2 [RAEICLEN bitmap[2] ==

pkt.key == pkt.key == D
bitmap =010 |bitmap = 101
index =0 index =1 index = 2 index =2
pkt.value: |A0|Al|A2 B0 |B1 Co0 D0 D1
0O 1 2

JNeslo) M process_array_ 0 (index) — |A0|BO0|DO0 Register Array 0
Y-Noia o) Bl process_array_1 (index) — |Al1|B1/|C0 Register Array 1
Y:Nos (o) Bl process_array_2 (index) — |A2 D1 Register Array 2

Key-value caching in network ASIC at line rate

0 How to identify application-level packet fields ?
O How to store and serve variable-length data ?

—> 0O How to efficiently keep the cache up-to-date ?

Cache insertion and eviction

0 Challenge: cache the hottest O(N log N) items with limited insertion rate

0 Goal: react quickly and effectively to workload changes with minimal updates

—

{ Cache Management J«

\

(4]

A

A

(2)

§
<

\L

Y Y
Key-Value Query
Cache Statistics
Tor Switch

(2

(3
4

Storage Servers

Data plane reports hot keys

Control plane compares loads of
new hot and sampled cached keys

Control plane fetches values for
keys to be inserted to the cache

Control plane inserts and evicts keys

Query statistics in the data plane

freport
u _EEEE [T T 17T]
not cached hot
it N EEE e
et ke e R
P'_y Cache (T 111 . e~
Lookup Count-Min sketch oom friter
cached
AN EEEEEEEE EEEEEER

Per-key counters for each cached item

0 Cached key: per-key counter array
0 Uncached key

= Count-Min sketch: report new hot keys
= Bloom filter: remove duplicated hot key reports

Evaluation

e NetCache
7 2.5 | [NetCache (cache) (cache+servers)

I NetCache (servers) — noCache

uniform zipf-0.9 zipf-0.95 zipf-0.99
Workload Distribution

s this a good usecase of
programmable dataplanes?

What are the limitations?

What could have been an alternate
strategy?

SilkRoad

Slides borrowed from the authors’ SIGCOMM' [/
presentation

Layer-4 Load Balancing
_y[oe]

I L4 Load Balancer I

DIP1 DIP2 DIP3 DIP4 DIP5 —DirectlP

Layer-4 load balancing is a critical function

* handle both inbound and interservice traffic
¢ >409%* of cloud traffic needs load balancing (Ananta [SIGCOMM'| 3])

30

Scale to traffic growth

Cloud traffic has a rapid growth

— doubling every year in Google, Facebook (Jupiter Rising
[SIGCOMM'15])

L4: can we scale out load balancing to match

the capacity of physical network?

L2/L3: one big virtual switch > Multi-rooted

topology
» Datacenter transport

31

Frequent DIP pool updates

DIP pool updates
* failures, service expansion, service upgrade, etc.
* up to 100 updates per minute in a Facebook cluster

Hash function changes under DIP pool updates
* packets of a connection get to different DIPs
* connection is broken

VIPLY,

ECMP: Hash(p) =9 I L4 Load Balancer I

Hash(p) % 3 — \® Hash(p) % 2

32

Per-connection consistency (PCC)

Broken connections degrade the performance of cloud services
* tall latency, service level agreement, etc.

PCC: all the packets of a connection go to the same DIP

L4 load balancing needs connection states

Design requirements

Scale to traffic growth

While ensuring PCC under frequent DIP pool updates

Existing solution |: use software server

Ananta [SIGCOMM’13]
Maglev [NSDI’16]

Software load balancer

D Dalssl x Scale to traffic growth

VIP1 " PCC guarantee
<V

am - s . -

High cost

* |Kservers (~4% of all servers) for a cloud with 10 Tbps

High latency and jitter
* add 50-300 ps delay for 10 Gbps in a server

Poor performance isolation
* one VIP under attack can affect otherVIPs

35

Existing solution 2: partially offload to
switches e [S5COMM 18

i, Partial offloading Rubik [ATC"15]

-

Software load balancer

ECMP: Hash(p) =9

Hash(p) % 3\ ™ Hash(p) % 2
. VIPl

Scale to traffic growth
or PCC guarantee

Hash function changes under DIP pool updates
e switch does not store connection states

36

SilkRoad

Address such challenges using programmable hardware switch.

Scale to traffic growth: Build on switching ASICs with multi Tbps

PCC guarantee: key challenge

37

ConnTable in ASICs

ConnTable VIPTable
store the DIP for each connection store the DIP pool for each VIP

Insert
I ____________ ﬁ
Connection hit VIP DIP pool
miss i
é —
1.2.3.4:1234 1.2.3.4:1234
=»20.0.0.1:8 =»10.0.0.2:2
0 TCP 0 TCP

38

Design challenges

Challenge 1: store millions of connections in ConnTable

Approach: novel hashing design to compress ConnTable

Challenge 2: do all the operations (e.g., PCC) in a few nanoseconds

Approach: use hardware primitives to handle connection state and its
dynamics

39

Many active connections in
ConnTable

* Up to 10 million active connections per rack in
Facebook traffic
* a naive approach: |0OM * (3/-byte 5-tuple + [8-byte DIP)
= 550 MB

Approach: novel hashing design to
compress ConnTable

Compact connection match key by hash digests

Handling hash collisions
* the chance is small (<0.01%)
* detect collision and migrate entry to another stage with different hash function

ConnTable

5-tuple Connection
(37-byte) [2001:0db8::2]:1234->[2001:0db8::1]:80 TCP |[1002:200C::1]:80

hash digest Connection DIP
(16-bit) OXEF1C [1002:200C::1]:80

41

Approach: compress ConnTable

Compact action data with DIP pool versioning

ConnTable
18 bytes “n DIE
x 10M entries o ., [1002:200C::1]:80
DIPPoolTable
store VIP-to-DIP pool mapping
ConnTable
version
(6-bit) [2001:0db8::1]:80
OXEF1C 100000 ~

A

42

Entry insertion is not atomic in

ASICs

ASIC feature: ASICs use highly efficient hash tables
* fast lookup by connections (content-addressable)
* hish memory efficiency
* but, require switch CPU for entry insertion, which is not atomic

select DIP1 cannot see entry in ConnTable Match on ConnTable
J K to select DIP1
\r - —_ A, — = ——— —
" 'aEE, @ ® om0,

t1: Arrived t2: Inserted

»
l
l
l
l
l
I
v

C1

Y

1ms

C1 is a pending connection between t1 and t2

43

Many broken connections under
DIP pool updates

DIP pool update breaks PCC for pending connections
Frequent DIP pool updates

* a cluster has up to 100 updates per minute

DIP pool update

I °
use@td A——lse new version f;

version > E_ |if !and violate PCC
I nEn' § B B B
=

= " t
1K connections 4 Cl1 @ - - >
Arrived Inserted

44

Approach: registers to store

pending connections

ASIC feature: registers
* support atomic update directly in ASICs
* store pending connections In registers

Store in registers DIP pool update
————— |
t
\I @ \:‘ >
[«
° | t
' e—t— ->
I Arrived W Inserted
l
I

\0
P
\ 4

45

Approach: registers to store
pending connections

Key idea: use Bloom filters to separate old and new DIP pool
Versions

* store pending connections with old DIP pool version

* other connections choose new DIP pool version

* this Is a membership checking, and only need index addressable

System Architecture

Insertion Learnin
SoftwareE Switch API (...........:
— | f_ - A - — " I | T - T - 3— - I | A -
Hardware Learning
: ﬁlte_r
y |t : v

ConnTable VIPTable LearnTable DIPPoolTable
(Digest > Version) | misS | (VIP = Version) | no updat (VIP, Version => DIP)

VIP in updatel (use new version)
Match action tables

TransitTable miss
Transactional memory| (cache pending conn)

hit (use old version)

47

Prototype performance

Throughput
* a full line rate of 6.5 Tbps
* one SilkRoad can replace up to 100s of software load balancers
* save power by 500x and capital cost by 250x

Latency
* sub-microsecond ingress-to-egress processing latency

Robustness against attacks and performance isolation
* high capacity to handle attacks
* use hardware rate-limiters for performance isolation

PCC guarantee

s this a good usecase of
programmable dataplanes?

What are the limitations?

What could have been an alternate
strategy?

Which paper did you like the most!?

* BeauCoup
* ElImo
e NetCache

e Silkroad

Which paper did you dislike the most!?

* BeauCoup
* ElImo
e NetCache

e Silkroad

Other app-level usecases
* NetChain: in-network key-value store (NSDI'| 8).

* NetlLock: Switching support to manage locks
(SIGCOMM20).

* NetPaxos: implement Paxos on programmable switches
(SOSR'I5)

* DAEIT: In-network data aggregation (SOCC'| /)

* NoPaxos (OSDI'16), Eris (SOSP'I7): in-network primitives
for distributed protocols.

* SailFish: cloud gateway deployed by Alibaba (SIGCOMM™21)
* Robot arm control (NSDI'22)

Logistics

* Feedback on your reviews.
* Warm-up assignment 2 due today.

* First project report due next Friday (10/13).

