
Use cases of
Programmable Dataplane (P4)

Part 2

ECE/CS598HPN

Radhika Mittal

Which paper(s) did you read?

NetCache

Slides borrowed from the authors’ SOSP’17 presentation

Assume the entire rack is dedicated to key-value storage.

Is this a good usecase of
programmable dataplanes?

What are the limitations?

What could have been an alternate
strategy?

SilkRoad

Slides borrowed from the authors’ SIGCOMM’17
presentation

Layer-4 Load Balancing

VIP1

Layer-4 load balancing is a critical function
• handle both inbound and inter-service traffic
• >40%* of cloud traffic needs load balancing (Ananta [SIGCOMM’13])

30

– Direct	IP

– Virtual	IP

DIP1 DIP2 DIP3 DIP4 DIP5

VIP1DIP4

VIP2

L4	Load	Balancer

Scale to traffic growth

31

Ø Multi-rooted	
topology	

Ø Datacenter	transport
…

Cloud traffic has a rapid growth
– doubling every year in Google, Facebook (Jupiter Rising

[SIGCOMM’15])

L2/L3:	one	big	virtual	switch

L4:	can we	scale	out	load	balancing	to	match
the	capacity	of	physical	network?

Frequent DIP pool updates

32

VIP1

L4	Load	Balancer

DIP pool updates
• failures, service expansion, service upgrade, etc.
• up to 100 updates per minute in a Facebook cluster

Hash function changes under DIP pool updates
• packets of a connection get to different DIPs
• connection is broken

Hash(p)	%	3

ECMP:	Hash(p)	=	9

Hash(p)	%	2

VIP1

Per-connection consistency (PCC)

Broken connections degrade the performance of cloud services
• tail latency, service level agreement, etc.

PCC: all the packets of a connection go to the same DIP

33

L4 load balancing needs connection states

Scale to traffic growth

While ensuring PCC under frequent DIP pool updates

Design requirements

34

Existing solution 1: use software server

VIP1

35

High cost
• 1K servers (~4% of all servers) for a cloud with 10 Tbps

High latency and jitter
• add 50-300 μs delay for 10 Gbps in a server

Poor performance isolation
• one VIP under attack can affect other VIPs

Software	load	balancer
Scale	to	traffic	growth
PCC	guarantee

Ananta	[SIGCOMM’13]
Maglev	[NSDI’16]

L4	Load	Balancer

Existing solution 2: partially offload to
switches

36

Hash function changes under DIP pool updates
• switch does not store connection states

Scale	to	traffic	growth
or	PCC	guarantee

VIP1

Duet	[SIGCOMM’14]
Rubik	[ATC’15]

ECMP:	Hash(p)	=	9

Hash(p)	%	3

Partial	offloading

Hash(p)	%	2

Software	load	balancer

SilkRoad

37

Address such challenges using programmable hardware switch.

Scale to traffic growth: Build on switching ASICs with multi Tbps

PCC guarantee: key challenge

ConnTable in ASICs

VIP DIP	pool

20.0.0.1:80
10.0.0.1:20
10.0.0.2:20

Connection DIP

1.2.3.4:1234
è20.0.0.1:80 TCP

10.0.0.2:20

VIPTable
store	the	DIP	pool	for	each	VIP

ConnTable
store	the	DIP	for	each	connection

Insert

miss
hit

38

1.2.3.4:1234
è20.0.0.1:8

0 TCP

1.2.3.4:1234
è10.0.0.2:2

0 TCP

Design challenges

39

Challenge 2: do all the operations (e.g., PCC) in a few nanoseconds

Approach: use hardware primitives to handle connection state and its
dynamics

Challenge 1: store millions of connections in ConnTable

Approach: novel hashing design to compress ConnTable

• Up to 10 million active connections per rack in
Facebook traffic
• a naïve approach: 10M * (37-byte 5-tuple + 18-byte DIP)

= 550 MB

Many active connections in
ConnTable

40

Compact connection match key by hash digests
Handling hash collisions

• the chance is small (<0.01%)
• detect collision and migrate entry to another stage with different hash function

Approach: novel hashing design to
compress ConnTable

41

Connection DIP
0xEF1C [1002:200C::1]:80
��� ���

Connection DIP
[2001:0db8::2]:1234à[2001:0db8::1]:80	TCP [1002:200C::1]:80
��� ���

ConnTable
5-tuple
(37-byte)

hash	digest	
(16-bit)

Compact action data with DIP pool versioning

Approach: compress ConnTable

42

VIP Version DIP	pool

[2001:0db8::1]:80 100000
[1002:200C::1]:80
[1002:200C::2]:80

[2001:0db8::1]:80 100001 [1002:200C::1]:80
��� ��� ���

DIPPoolTable

Connection DIP
0xEF1C [1002:200C::1]:80
��� ���

Connection Version
0xEF1C 100000
0x1002 100001
��� ���

ConnTable

18	bytes

version
(6-bit)

ConnTable

store	VIP-to-DIP	pool	mapping

x	10M	entries

ASIC feature: ASICs use highly efficient hash tables
• fast lookup by connections (content-addressable)
• high memory efficiency
• but, require switch CPU for entry insertion, which is not atomic

Entry insertion is not atomic in
ASICs

43

t1:	Arrived t2:	Inserted
C1

1	ms

t

C1 is a pending connection between t1 and t2

match	on	ConnTable
to	select	DIP1

cannot	see	entry	in	ConnTableselect	DIP1

DIP pool update breaks PCC for pending connections
Frequent DIP pool updates
• a cluster has up to 100 updates per minute

Many broken connections under
DIP pool updates

44

Arrived Inserted

use	new	version
and	violate	PCC

use	old	
version

DIP pool update

���

���

1K	connections
t

t

t

C1

ASIC feature: registers
• support atomic update directly in ASICs
• store pending connections in registers

Approach: registers to store
pending connections

45

Arrived Inserted

DIP pool update

���

��� t

t

t
Store	in	registers

Key idea: use Bloom filters to separate old and new DIP pool
versions
• store pending connections with old DIP pool version
• other connections choose new DIP pool version
• this is a membership checking, and only need index addressable

Approach: registers to store
pending connections

46

System Architecture

47

Throughput
• a full line rate of 6.5 Tbps
• one SilkRoad can replace up to 100s of software load balancers
• save power by 500x and capital cost by 250x

Latency
• sub-microsecond ingress-to-egress processing latency

Robustness against attacks and performance isolation
• high capacity to handle attacks
• use hardware rate-limiters for performance isolation

PCC guarantee

Prototype performance

48

Is this a good usecase of
programmable dataplanes?

What are the limitations?

What could have been an alternate
strategy?

Which paper did you like the most?

• BeauCoup

• Elmo

• NetCache

• Silkroad

Which paper did you dislike the most?

• BeauCoup

• Elmo

• NetCache

• Silkroad

Other app-level usecases
• NetChain: in-network key-value store (NSDI’18).
• NetLock: Switching support to manage locks

(SIGCOMM’20).
• NetPaxos: implement Paxos on programmable switches

(SOSR’15)
• DAEIT: In-network data aggregation (SOCC’17)
• NoPaxos (OSDI’16), Eris (SOSP’17): in-network primitives

for distributed protocols.
• SailFish: cloud gateway deployed by Alibaba (SIGCOMM’21)
• Robot arm control (NSDI’22)
• ….

Logistics

• Feedback on your reviews.

• Warm-up assignment 2 due today.

• First project report due next Friday (10/13).

