Use cases of
Programmable Dataplane (P4)

ECE/CS598HPN

Radhika Mittal

Which paper(s) did you read?

* (A) BeauCoup: Network Monitoring
* (B) Elmo: Multicast
* (C) Both

* (D) Neither

Network Monitoring

* Most popular usecase of programmable dataplanes.
* Lots of recent papers!

* Key challenges:
* Dealing with small amount of memory.
* Ensuring high line rate (small processing capabillity, limited memory
access)
* Supporting a wide variety of queries.

1[bo’ku] Adv. many, a lot.

BeauCoup:

Answering FT10INY network traffic queries,

OIN€ memory update at a time!

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

D)

s

W 3 PRINCETON
SIGCOM hfwigsbf% UNIVERSITY

Slides from Xiaogi Chen

Network traffic query

DDoS:

Are there many Source IPs
sending to one particular
Destination IP?

Select Dst/P where
distinct(Src/P)>1000

—
Attributh [_T/h reshold

Many network traffic queries

multiple data structures

Different keys/attrs, need}

S key | Auribute | Threshold_

Many network traffic queries

| have 42
queries

0% >
Run 42 data structures? -~

AN
iy
Spec for today’s commodity programmable switch:

| ca n’t... ° XX Thps aggregated throughput

data-plane memory

* Can only access ZZ bytes of memory per packet

One memory update at a time?

* Constant memory update per packet, regardless of
the number of queries!

* Game plan:

2.

3.

Each query uses only (1) memory update per
packet on average

Combine many different queries,
on average uses O(1)

Coordinate, at most O(1) per packet

BeauCoup’s Approach

* Challenge:
many queries, few memory updates

* Achieving o(l) memory access:
coupon collectors

The coupon collector problem

* 4 different coupons, collect all of
them

e Random draws

* How many total draws are Ded?
] .’"

10

Naive Approach

Query: Select DstlP where distinct(SrclP)> 1 30

* Map each ScrlP to a coupon
* How many total coupons!
* How many do you need to collect?

* [ssues with this approach:
* oo much memory

* Fach packet results in a coupon collection.

* Exceed O(I) access when multiple such queries are combined.
11

BeauCoup coupon collector

f(SrclP) -> Coupon j

,-
.
s
......

i Select DstIP where Collect different
distinct(SrcIP)>1oo coupons '

Key: 162.249.4.107 * f(10.0.1.15) -> Coupon[¢]
Couponsziﬁ:lj'f[?« f(10.0.1.33) -> CouponD

* £(100.1.15) -> Coupon[§
* f(10.0.1.42) -> No Coupon

12

BeauCoup coupon collector

f(SrclP) -> Coupon

_TV|

* Generalization: (m, P, n)-coupon collector
* m*p<|, most packets collect no coupon

m=8 coupons in total

Example:
(m=8,p=1%, :IIII:
n-4) =

Given a new SrclP, each coupon
is drawn with probability 1%

stop at n=4 different coupons

13

Stacking queries: same attribute

q,: f(SrclP) -> Coupon
m1=4, p1=1/8

q,: f(SrclP) -> Coupon
m2=3’ p2:1/16

ate - J et
Hash function |

h,(srciP) ->[0,1) © 1(4 1/2 3/4

4 coupons for q, 3 coupons for g,

14

One hash function for each
attribute

q,: f(SrclP) -> Coupon

m,=4, p,=1/8

qs: g(DstlIP) -> Cou pon

m =3, p,=1/8

h,(SrcIP) -> i 9" , 4

[T |

0 1/4 12 3/4 1

0 1/4 1/2 3/4 1
Randomly break ties if a coupon needs to be collected for two different attributes

15

System design

* Query compiler: finds coupon collector configurations

* Stops near query thresholds, minimize error
* Hardware limits (e.g.,, memory access limit)
* Fairness across queries

* Data plane program: collect coupons into in-memory table
* Simultaneously run many queries
* At most one coupon per packet
* Update queries on-the-fly

16

Query compiler

Query set Total memory update
Q={q9, 9, .-} limit: I per packet

&

Per-query limit:

N =g ool =l I e ——

e e o e e -

|
! I
Query q; i i i i qg;'s Collector Configuration i ! i |. Stop near Threshold
Key, Attribute, |1 — || Compiler ':>i Total coupons: mi! {1l Update limit m*psy,
Threshold i | Each probability: ~ p 11! 1ll. HW limit, e.g., m<32
mmmmmmmmmmmm e =r/ IQI : |
Vq I Coupons to collect: n |

(fair allocation)

17

Query compiler

. :
Query set Query J:ta' cotipons: [pa e
-— H 1 1
= {ql, q5, ...} | Compiler : Each probability: p i Program

' i Coupons to collect: n -

/7 ————————————— - Threshold=100Q Switch Data Plane

Threshold=1000, y,=0.01
= (m—20,p-1/2048 n=8)

18

Installing queries into switches

QuerysetQ=1{q,, q,, ...}

Header field tuples Key, Attribute, Threshold
Static Dynamic
program| Code Query | = rules

Generator _Compiler |
code & (m,p,n)

P4 " Rules |
Compiler _Generator |

Ame rules * The installed rules

represent query set Q

program
Packets . o sl © ;pdate queries on the
E’I without recompiling

\-bAIerts

Programmable Switch

Data plane

19

TCAM for selecting a coupon

| Matchhy() | Query#,Coupont _
 Matchhy() | Query#,Coupont _
__Match h(___) | Query#,Coupont _
QO * ****x (6,1)
QO * ¥ k*xx (6,2)
©19% ** %% (6,3)
01101 *** (8,1)

—————

B\
. No coupon

o h,(SrcPort)=101010c) |
SrcPort: 25012 N
DstPort: 443 | [T _ Random tiebreak

ngct|I|;:: 10.0.1.15 h,(DstPort)=111010 = Nocoupon fsq coupons

h(SrclP)=1010111..0) | . Nocoupon

L_a7

h,(DstIP)=0101011..1. [& Collect coupon (5, #3) 20

Coupon collector table in SRAM

Packet

SrcPort: 27000

DstPort: 443 4, 3.8.8.8:53 _-_:_.Z.I_’I@-
SrclP: 10.0.1.33 . 1.1.1.1:53 {13233)
Dst'P““l gs:10.0.0.1 1’9 3

SrcPort: 25012 . : g.: 100133 BB o QUEFV%
DstPort: 443 : Key: E> @ ey
SrclP: 10.0.1.15 10.0.1.15 1N

Space efficiency: SrclP 10.0.1.33 is
* Keys from all queries

multiplexed into one table
* Only keep rows for “active

keys” (at least one coupon)
e Clear rows after timeout

sending
to >1000 distinct DstlIPs.

21

Evaluation highlights

* How efficient is BeauCoup!?

Uses 4x~10x fewer memory access than

the state-of-the-art to achieve the same accuracy.
* How much hardware resource!

On the Barefoot Tofino programmable switch,
BeauCoup occupies <50% of each resource

22

BeauCoup:

Answering IT1GNY network traffic queries,
OIN€ memory update at a time!

* Scalable: built upon coupon collectors,
runs many queries simultaneously

* Versatile: change queries on the fly,
without recompiling P4 program

» Efficient: achieve the same accuracy
using 4x- 1 Ox fewer memory accesses

23

Is this a good usecase of
programmable dataplanes?

What are the limitations?

Elmo: Source Routed Multicast
for Public Clouds

Muhammad Shahbaz

Lalith Suresh, Jennifer Rexford, Nick Feamster,
Ori Rottenstreich, and Mukesh Hira

Stanford

pd University

~
__® PRINCETON i 3
UNIVERSITY M T%(Eh'llplgv mware

26

Slides from Muhammad Shahbaz

| -to-Many Communication in Cloud

27

| -to-Many Communication in Cloud

Distributed Programming
Frameworks

Publish-Subscribe Systems

28

| -to-Many Communication in Cloud

10,000s of tenants
& 100s of workloads
= Millions of groups

amazon Google FF Microsoft

29

| -to-Many Communication in Cloud

10,000s of tenants
& 100s of workloads
= Millions of groups

amazon Google gF Microsoft

30

| -to-Many Communication in Cloud

10,000s of tenants
& 100s of workloads

u = Millions of groups

amazon Google FF Microsoft
N

31

Limitations of Native Multicast

Controller

32

Limitations of Native Multicast

Processing overhead

Excessive control churn
due to membership and topology changes

Limited group entries

33

Restricted to Unicast-based Alternatives

Controller

Processing
overhead

34

Restricted to Unicast-based Alternatives

Controller

Traffic
overhead

Processing
overhead

-

35

| -to-Many Communication in the Cloud

Need a scheme that scales to millions of groups
without
excessive control, end-host CPU, and traffic overheads!

36

Proposal: Source Routed Multicast

Controller

37

Proposal: Source Routed Multicast

Controller

38

Proposal: Source Routed Multicast

i Little processing overhead

omns
oV %

AN Minimal control churn

No group entries
needed*

Negligible
processing overhead

39

A Nailve Source Routed Multicast

A multicast group encoded as

a list of (Switch, Ports) pairs

Switch 1: [Ports]
Switch 2: [..]
Switch 3: [..]
Switch 4: [.. .. .x ..]
Switch 5: [.x]

For a data center with:
- 1000 switches
- 48 ports per switch

4 O(30) bytes per switch

* 0(30,000) bytes header

for a group spanning 1000 switches
20X the packet size!

40

Enabling Source Routed Multicast in Public
Clouds

Key attributes:

- Efficiently encode multicast forwarding policy inside packets

- Process this encoding at hardware speed in the switches

- Execute tenants’ applications without modification

41

Encoding a Multicast Policy in Eimo

A multicast group encoded as
a list of (Switch, Ports) pairs

Switch 1: [Ports]

Switch 2: [..]
Switch 3: [..]

Switch 4: [.. .. .x ..]
Switch 5: [.x]

Encoding a Multicast Policy in Eimo

A multicast group encoded as

a list of (Switch, Ports) pairs

Switch 1:

Switch 2: [..]
Switch 3: [..]

Switch 4: [.. ..
Switch 5: [.x]

[Bitmap] P

X o]

@ ctncode switch ports as a bitmap

Bitmap is the internal data structure that
switches use for replicating packets

43

Encoding a Multicast Policy in Eimo

A multicast group encoded as

a list of (Switch, Ports) pairs

@ Group switches into layers

Switch 1: [Bitmap]

Switch 2: [..]
Switch 3: [..]

Switch 4: [.. .. .x ..]
Switch 5: [.x]

44

Encoding a Multicast Policy in EImo

A multicast group encoded as | @ Group switches into layers
a list of (Switch, Ports) pairs :

Switch 2: [or oo o] S e)
i pine
Switch 3: [..] pine ><: @ -
Switch 4: XL, . - . ‘ Leaf
! : Leaf AN N N N
Switch 5: [.X -

More precisely: upstream leaf, upstream spine, core, downstream spine, downstream leaf

45

Encoding a Multicast Policy in EImo

A mul‘“cast group encoded as e Switches within a layer with same

ports share a bitmap

a list of (Switch, Ports) pairs

Switch 2: [.. .. .
Switch 3: [..]
Switch 4: [

Switch 5: [

46

Encoding a Multicast Policy in EImo

A multicast group encoded as
a list of (Switch, Ports) pairs

Switch 4: [.. .. .x ..]
Switch 5: [.x]

9 Switches within a layer with same
ports share a bitmap

47

Encoding a Multicast Policy in EImo

Core

Spine

Leaf

48

Encoding a Multicast Policy in EImo

9 Switches within a layer with same
ports share a bitmap

M-
750K For z;data.cehnter with:
Modern commaodity switches can =1 - 628 switches
-------- ST --——> 325 bytes header space
parse packet headers of 512 bytes o
o
g 250K - supports 890,000 groups!

49

Encoding a Multicast Policy in EImo

A multicast group encoded as
a list of (Switch, Ports) pairs

Switch 4: [..

Switch 2,3: [..

Switch 5: [.x ..

]

Spine

Leaf

@ Switches within a layer with N
different ports share a bitmap

50

Encoding a Multicast Policy in EImo

A multicast group encoded as

a list of (Switch, Ports) pairs

Switch 2,3: [..

Switch 4,5:

[.x ..

.........................

@ Switches within a layer with N
different ports share a bitmap

51

Encoding a Multicast Policy in EImo

@ Switches within a layer with N
different ports share a bitmap

1M-
: II
0 -
0 6

Difference in ports

For a data center with:
- 628 switches
- 325 bytes header space

[$)
o
o
A

Supports 980,000 groups!

No. of groups
>
=

52

Fixed Header Size

Encoding a Multicast Policy in EImo

A multicast group encoded as
a list of (Switch, Ports) pairs

Switch 4,5:

Switch 2,3: [..

[.x ..

.]

Spine

Leaf

@ Switches within a layer with N
different ports share a bitmap

53

Fixed Header Size

Encoding a Multicast Policy in EImo

A multicast group encoded as

a list of (Switch, Ports) pairs

Switch 1: [Bitnap] Core

Switch 2,3: [..]

Switch 4,5:
[.x .. .x ..]

Spine

Leaf:

Default Bitmap
Switch Table Entries

© Use switch entries and a default
bitmap for larger groups

54

Encoding a Multicast Policy in EImo

© Use switch entries and a default
bitmap for larger groups

& 5.0K-
= For a data center with:
2 25K - 628 switches
= - 325 bytes header space
; OO - +
(Vp] . . ,
0 6

©

©

()

£

()

>

o 0-

(S]]

s o 6

|_

Difference in ports

55

Encoding a Multicast Policy in Eimo

A multicast group encoded as
a list of (Switch, Ports) pairs

[.x .. .x ..]

3

& _ Core
o | Switch 2,3: [..]

o Spine
(q0)

Q

L+ | switch 4,5:

E®, Leaf
Q

X

L

Default Bitmap
Switch Table Entries

@ ctncode switch ports as a bitmap
@ Group switches into layers

Switches within a layer with:
e - same ports share a bitmap
@ - N different ports share a bitmap

9 Use switch entries and a default
bitmap for larger groups

For a data center with:
- 628 switches
- 325 bytes header space

Supports A M|”|On groups!

56

Encoding a Multicast Policy in EImo

Core

Spine

Leaf

Sender-specific leaf, spine, and core p-rules Common downstream spine and leaf p-rules

Sender H, type u-leaf u-spine d-core

d-spine d-leaf
QOuter header(s) ' VXLAN u | 01|M | 00|M | 0011 P Packet body
At Ly: forward to H, Py: multipath C: forward 10:[Po] 11:[P5) 11:[Lo,Le) 01:[L,]

Sender H and multipath to Py toC to Py, P3 OL:[P,] Default 10:[Ly] Default
Outer header(s) VXLAN u 00|M 00|M 1001 . Packet body
| | | Py: forward to L, Lo: forward to H,, Hy

AtLs: multipath P multipath C:forward | p . forard to L Ls: forward to Hy
toP, to C to Pg, P4 : Lg: forward to H, H,
Ly: forward to H,

P3: forward to L, Ly

Core

Spine

Leaf

Encoding a Multicast Policv in Eimo

Downstream spine and leaf assignments with
varying degree of redundancy (R) and s-rules.

R=0 R=2

#s-rules=0 #s-rules = 1 #s-rules=0, 1

(p) 10:[Po] (p) 10:[Py] (p) 10:[Po]
(p) 01:[P,] (p) 01:[P,] (p) 11:[P,,P4]
(d) 11:[P3) (s) 11:[P4]

(p) 11:[Lo,Lg) (p) 11:[Lo, Le) (p) 11:[Lo L
(p) 10:[Ls] (p) 10:[Ls] (p) 11:[Ls,L7]
(d) 01:[L,] (s) 01:[L;]

#p-rules = 2 (and max two switches per p-rule)

‘ legends: p-rule (p), s-rule (s), and default p-rule (d)

Sender-specific leaf, spine, and core p-rules Common downstream spine and leaf p-rules

Sender H, type u-leaf u-spine d-core

d-spine d-leaf
QOuter header(s) ' VXLAN u | 01|M | 00|M | 0011 Packet body

At Ly: forward to H, Py: multipath C: forward 10:[Po] 11:[P5) 11:[Lo,Le) 01:[L,]

Sender Hy and multipath to Py toC to Py, P3 OL:[P,] Default 10:[Ly] Default
Outer header(s) VXLAN u | 00|M | 00|M | 1001 Lo: forward to H,, Hy Packet body

- - Po: forward to L, :
At Ls: multipath P,: multipath C: forward P,: forward to Ls Ls: forward to Hy

to P, toC to Py, P3 Lg: forward to H,,, H,,
Ly: forward to H, 58

P3: forward to L, Ly

Processing a Multicast Policy in EImo

2. Computes the multicast policy

3. Installs entries in

programmable

- virtual switches to push Elmo
headers on packets

\
| “ardware switches
i higher update rates : S

' than hardware

- More flow entries and

switches
- No changes to the

tenant ajiGatSiitch

59

Processing a Multicast Policy in EImo

: | cControler
P Controller

Switch looks for:
Matching bitmap

or Table entry

or Default bitmap

Implemented using P4 on a Barefoot Tofino Switch

60

Applications Run Without Performance
Overhead

=0= Elmo —@— Unicast

fg ’o\? E Eimo M Unicast

(TJ >~ 200K- _ S 100 -

L 5 150K- QS 75-

o Q < ©

? c 100K- O N 50-

QD 50K- QF 25-

(,3) 5 OK- 1 1 1 1 1 1 1 1 03- D O----“JJ
s TR 2O iR é NV D0I SR

Number of subscribers Number of subscrlbers

61

Conclusion

Elmo e Designed for multi-tenant data
centers
Source Routed
Multicast Compactly encodes multicast
for Public Clouds | policy inside packets

- J

e Operates at hardware speed
using programmable data
planes

62

Is this a good usecase of
programmable dataplanes?

What are the limitations?

Other networking usecases

* Load balancing:
* HULA: Scalable Load Balancing Using Programmable Data Planes, SOSR'I 6

* Congestion control:

* Evaluating the Power of Flexible Packet Processing for Network Resource

Allocation, NSDI'l 7
* Support RCP and XCP on programmable switches
* HPCC: High Precision Congestion Control, SIGCOMM'|9

 Obtain precise link information for congestion control

* A new protocols for more efficient L2 switching
* The Deforestation of L2, SIGCOMM'| 6

e And others...

