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Which paper(s) did you read?

• (A) BeauCoup: Network Monitoring

• (B) Elmo: Multicast

• (C) Both

• (D) Neither



Network Monitoring

• Most popular usecase of programmable dataplanes.

• Lots of recent papers!

• Key challenges:
• Dealing with small amount of memory.
• Ensuring high line rate (small processing capability, limited memory 

access)
• Supporting a wide variety of queries. 



BeauCoup:
Answeringmany network traffic queries,

onememory update at a time!

Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, Jennifer Rexford

1[bo’ku] Adv. many, a lot.
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Network traffic query
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Internet

DDoS:
Are there many Source IPs
sending to one particular
Destination IP?

Select DstIP where
distinct(SrcIP)>1000

Key

Attribute Threshold



Query Key Attribute Threshold

DDoS DstIP SrcIP 1000

Worm SrcIP DstIP 300

PortScan SrcIP,DstIP DstPort 100

… … … …

Many network traffic queries
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Internet

DDoS?

Worm?

Port Scan?

…

Different keys/attrs, need
multiple data structures



Many network traffic queries
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I have 42
queries

Run 42 data structures?

I can’t…
Spec for today’s commodity programmable switch:

• XX Tbps aggregated throughput

• YY MB data-plane memory

• Can only access ZZ bytes of memory per packet



One memory update at a time?

• Constant memory update per packet, regardless of
the number of queries?
• Game plan:

1. Each query uses only o(1) memory update per
packet on average

2. Combine many different queries,
on average uses O(1) 

3. Coordinate, at most O(1) per packet
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BeauCoup’s Approach

• Challenge:
many queries, few memory updates
• Achieving o(1) memory access:

coupon collectors

9



C DA

The coupon collector problem

• 4 different coupons, collect all of
them
• Random draws
• How many total draws are required?

10

B
?



Naïve Approach

Query: Select DstIP where distinct(SrcIP)>130

• Map each ScrIP to a coupon
• How many total coupons? 
• How many do you need to collect?

• Issues with this approach:
• Too much memory
• Each packet results in a coupon collection. 

• Exceed O(1) access when multiple such queries are combined.  
11



BeauCoup coupon collector

• f(10.0.1.15) -> Coupon
• f(10.0.1.33) -> Coupon
• f(10.0.1.15) -> Coupon
• f(10.0.1.42) -> No Coupon

f(SrcIP) -> Coupon ?
Mapping

Select DstIP where
distinct(SrcIP)>100

Collect different
coupons

C
B
C

C DA B
Key: 162.249.4.107
Coupons:

12



BeauCoup coupon collector

• Generalization: (m, p, n)-coupon collector
• m*p<1, most packets collect no coupon

f(SrcIP) -> Coupon ?

m=8 coupons in total

stop at n=4 different coupons

Example:
(m=8, p=1%,
n=4)

Given a new SrcIP, each coupon
is drawn with probability 1%

13



Stacking queries: same attribute
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q1: f(SrcIP) -> Coupon .
m1=4, p1=1/8

?

Hash function
h1(SrcIP) -> [0,1) 11/4 1/2 3/40

q1 #1 q1 #2 q1 #3 q1 #4

4 coupons for q1

q2: f(SrcIP) -> Coupon .
m2=3, p2=1/16

?

q
2
#
1

q
2
#
2

q
2
#
3

3 coupons for q2

…

…



One hash function for each
attribute
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q1: f(SrcIP) -> Coupon .
m1=4, p1=1/8

?

q6: g(DstIP) -> Coupon .
m6=3, p6=1/8

?

h1(SrcIP) ->
11/4 1/2 3/40

q1
#1 q1 #2 q1 #3

q1
#4 …

h2(DstIP) ->
11/4 1/2 3/40

q6
#1 q6 #2 q6 #3 …

Randomly	break	ties	if	a	coupon	needs	to	be	collected	for	two	different	attributes



System design

• Query compiler : finds coupon collector configurations
• Stops near query thresholds, minimize error
• Hardware limits (e.g., memory access limit)
• Fairness across queries

• Data plane program: collect coupons into in-memory table
• Simultaneously run many queries
• At most one coupon per packet
• Update queries on-the-fly

16



Query compiler

γq= Γ / |Q|
(fair allocation)

17

Compiler

Query set
Q = {q1, q2, …}

Total memory update
limit: Γ per packet

Per-query limit:
γq per packetQuery qi

Key, Attribute,
Threshold

qi’s Collector Configuration
Total coupons: m
Each probability: p
Coupons to collect: n

Query qi
Key, Attribute,
Threshold

Query qi
Key, Attribute,
Threshold

qi’s Collector Configuration
Total coupons: m
Each probability: p
Coupons to collect: n

qi’s Collector Configuration
Total coupons: m
Each probability: p
Coupons to collect: n

Goal:
I. Stop near Threshold
II. Update limitm*p≤γq
III. HW limit, e.g.,m≤32



Query compiler
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Query set
Q = {q1, q2, …}

Query
Compiler

Total coupons:
m
Each probability: p
Coupons to collect: n

P4
Program

Switch Data Plane

Threshold=1000, γq	=0.01
(m=20,p=1/2048,n=8)

Threshold=1000



Installing queries into switches

• The installed rules
represent query set Q

• Update queries on the
fly, without recompiling
P4

19

Table rules

Header field tuples Key, Attribute, Threshold

Code
Generator

Query
Compiler

(m,p,n)
Rules

Generator
P4

Compiler

Data plane
program

Query set Q = {q1, q2, …}

code

Packets

Alerts



TCAM for selecting a coupon
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Packet
SrcPort: 25012
DstPort: 443
SrcIP: 10.0.1.15
DstIP:
162.249.4.107

hA(SrcPort)=101010
…
hB(DstPort)=111010
…
hC(SrcIP)=1010111…
hD(DstIP)=0101011…

Match hA(SrcPort) Query#,Coupon#
000***** (5,1)
001***** (5,2)
010***** (5,3)
01101*** (9,1)

… …

Match hB(DstPort) Query#,Coupon#
… …Match hC(SrcIP) Query#,Coupon#
… …Match hD(DstIP) Query#,Coupon#

000***** (6,1)
001***** (6,2)
010***** (6,3)
01101*** (8,1)

… …

No couponq
6
#
3

Collect coupon (q6, #3)

No coupon

No coupon

Random tiebreak
if >1 coupons



Q , Key Coupons
q4: 8.8.8.8:53
q4: 1.1.1.1:53
q5: 10.0.0.1
q6: 10.0.1.33
q6: 10.0.1.15

1 42 3
1 42 3
1 2 3

4
3

1 2 3
1 2 3

2

Coupon collector table in SRAM
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Packet
SrcPort: 25012
DstPort: 443
SrcIP: 10.0.1.15
DstIP:
162.249.4.107

q6
#
3

q6:
SrcIP

q6Coupon #3
Key:

10.0.1.15

Query q6
Key

10.0.1.33
3

Packet
SrcPort: 27000
DstPort: 443
SrcIP: 10.0.1.33
DstIP: 4.3.2.1

q6
#
1

q6Coupon #1
Key:

10.0.1.33

1

q6:
DstIP,
1000

SrcIP 10.0.1.33 is
sending

to >1000 distinct DstIPs.

Space efficiency:
• Keys from all queries
multiplexed	into one table

• Only keep rows for “active
keys” (at least one coupon)

• Clear rows after timeout



Evaluation highlights

• How efficient is BeauCoup?
Uses 4x~10x fewer memory access than
the state-of-the-art to achieve the same accuracy.
• How much hardware resource?
On the BarefootTofino programmable switch,
BeauCoup occupies <50% of each resource

22



• Scalable: built upon coupon collectors,
runs many queries simultaneously
• Versatile: change queries on the fly,

without recompiling P4 program
• Efficient: achieve the same accuracy

using 4x-10x fewer memory accesses

23

BeauCoup:
Answeringmany network traffic queries,
onememory update at a time!



Is this a good usecase of 
programmable dataplanes? 



What are the limitations?



Elmo: Source Routed Multicast 
for Public Clouds

Muhammad	Shahbaz
Lalith	Suresh,	Jennifer	Rexford,	Nick	Feamster,		

Ori	Rottenstreich,	and	Mukesh	Hira
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1-to-Many Communication in Cloud
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1-to-Many Communication in Cloud

Streaming	Telemetry

State	Replication

Distributed	Programming	
Frameworks

Publish-Subscribe	Systems

Infrastructure	Applications

and	more	…

28



1-to-Many Communication in Cloud
10,000s of	tenants

100s of	workloads
Millions of	groups
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1-to-Many Communication in Cloud

Multicast

10,000s of	tenants
100s of	workloads

Millions of	groups
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1-to-Many Communication in Cloud

Multicast

10,000s of	tenants
100s of	workloads

Millions of	groups

31



Limitations of Native Multicast

Controller

32



Limitations of Native Multicast

Controller

Limited	group	entries

Excessive	control	churn	
due	to	membership	and	topology	changes

Processing	overhead

33



Restricted to Unicast-based Alternatives

S R R
Processing
overhead

Controller

34



Restricted to Unicast-based Alternatives

Traffic
overhead

Controller

Processing
overhead S R R
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1-to-Many Communication in the Cloud

Controller

Excessive	control	churn	
due	to	membership	and	topology	changes

Processing	overhead

Traffic
overhead

Processing
overhead

Limited	group	entries

S R R

Need	a	scheme	that	scales to	millions	of	groups	
without

excessive	control,	end-host	CPU,	and	traffic	overheads!

36



Proposal: Source Routed Multicast

Controller

S R R

37



Proposal: Source Routed Multicast

Controller

S R R

38



Proposal: Source Routed Multicast

Controller

S R R
Negligible	

processing	overhead

No	traffic
overhead

No	group	entries
needed*

Minimal	control	churn

Little	processing	overhead

39



A Naïve Source Routed Multicast

Switch 1: [Ports ]

Switch 2: [.. .. ..]

A	multicast	group	encoded	as	
a	list	of	(Switch,	Ports) pairs

For	a	data	center	with:	
- 1000 switches
- 48	ports per	switch

O(30)	bytes	per	switch

O(30,000) bytes	header
for	a	group	spanning	1000	switches

20x the	packet	size!

Switch 3: [.. .. ..]

Switch 5: [.x .. .. ..]

Switch 4: [.. .. .x ..]

40



Enabling Source Routed Multicast in Public 
Clouds

Key	attributes:

- Efficiently	encode multicast	forwarding	policy	inside	packets

- Process this	encoding	at	hardware	speed in	the	switches

- Execute tenants’	applications	without	modification

41



Encoding a Multicast Policy in Elmo

Switch 1: [Ports ]

Switch 2: [.. .. ..]

Switch 5: [.x .. .. ..]

A	multicast	group	encoded	as	
a	list	of	(Switch,	Ports) pairs

Switch 3: [.. .. ..]

Switch 4: [.. .. .x ..]

42



Encoding a Multicast Policy in Elmo

Switch 1: [Bitmap]

Switch 2: [.. .. ..]

A	multicast	group	encoded	as	
a	list	of	(Switch,	Ports) pairs

Switch 3: [.. .. ..]

Switch 5: [.x .. .. ..]

Switch 4: [.. .. .x ..]

Encode	switch	ports	as	a	bitmap1

Bitmap is	the	internal	data	structure	that		
switches	use	for	replicating	packets

43



Encoding a Multicast Policy in Elmo

Switch 1: [Bitmap]

Switch 2: [.. .. ..]

A	multicast	group	encoded	as	
a	list	of	(Switch,	Ports) pairs

Switch 3: [.. .. ..]

Switch 5: [.x .. .. ..]

Switch 4: [.. .. .x ..]

44

Group	switches	into	layers2



Encoding a Multicast Policy in Elmo

Switch 1: [Bitmap]

Switch 2: [.. .. ..]

A	multicast	group	encoded	as	
a	list	of	(Switch,	Ports) pairs

Switch 3: [.. .. ..]

Core

Spine

Leaf
Switch 5: [.x .. .. ..]

Switch 4: [.. .. .x ..]

Group	switches	into	layers2

Core

Spine

Leaf

45

More precisely: upstream leaf, upstream spine, core, downstream spine, downstream leaf



Encoding a Multicast Policy in Elmo

Switch 1: [Bitmap]

Switch 2: [.. .. ..]

A	multicast	group	encoded	as	
a	list	of	(Switch,	Ports) pairs

Switch 3: [.. .. ..]

Switch 5: [.x .. .. ..]

Switch 4: [.. .. .x ..]

46

Switches	within	a	layer	with	same
ports	share	a	bitmap

3



Encoding a Multicast Policy in Elmo

Switch 1: [Bitmap]

Switch 2,3: [.. .. ..]

A	multicast	group	encoded	as	
a	list	of	(Switch,	Ports) pairs

Core

Spine

Leaf
Switch 5: [.x .. .. ..]

Switch 4: [.. .. .x ..]

Switches	within	a	layer	with	same
ports	share	a	bitmap

3

47



Encoding a Multicast Policy in Elmo
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Encoding a Multicast Policy in Elmo

Switch 1: [Bitmap]

Switch 2,3: [.. .. ..]

A	multicast	group	encoded	as	
a	list	of	(Switch,	Ports) pairs

Core

Spine

Leaf
Switch 5: [.x .. .. ..]

Switch 4: [.. .. .x ..]

Switches	within	a	layer	with	same
ports	share	a	bitmap

3

SIGCOMM ’19, August 19–23, 2019, Beijing, China M. Shahbaz et al.
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Figure 4: Placement strategy with no more than 12 VMs of a
tenant per rack. (Le�) Number of groups covered using non-
default p-rules. (Center) s-rules usage across switches (the
horizontal dashed line show rule usage for the scheme by Li
et al. scheme [83] with no limit on VMs of a tenant per rack).
(Right) Tra�c overhead relative to ideal (horizontal dashed
lines show unicast (top) and overlay multicast (bottom)).

multicast groups of varying sizes to each tenant. We simulate us-
ing a Facebook Fabric topology—a three-tier topology—with 12
pods [22]. A pod contains 48 leaf switches each connected to 48
hosts. Thus, the topology with 12 pods supports 27,648 hosts, in to-
tal. (We saw qualitatively similar results while running experiments
for a two-tier leaf-spine topology like that used in CONGA [19].)

Tenant VMs and placement. Mimicking the experiment setup
from Li et al. [83]; the simulated datacenter has 3,000 tenants; the
number of VMs per tenant follows an exponential distribution, with
min=10, median=97, mean=178.77, and max=5,000; and each host
accommodates at most 20 VMs. A tenant’s VMs do not share the
same physical host. Elmo is sensitive to the placement of VMs in
the datacenter; which is typically managed by a placement con-
troller [108], running alongside the network controller [14, 16]. We,
therefore, perform a sensitivity analysis using a placement strat-
egy where we �rst select a pod uniformly at random, then pick a
random leaf within that pod and pack up to P VMs of that tenant
under that leaf. P regulates the degree of co-location in the place-
ment. We evaluate for P = 1 and P = 12 to simulate both dispersed
and clustered placement strategies. If the chosen leaf (or pod) does
not have any spare capacity to pack additional VMs, the algorithm
selects another leaf (or pod) until all VMs of a tenant are placed.

Multicast groups. We assign multicast groups to each tenant
such that there are a total of one million groups in the datacenter.
The number of groups assigned to each tenant is proportional to
the size of the tenant (i.e., number of VMs in that group). We use
two di�erent distributions for groups’ sizes, scaled by the tenant’s
size. Each group’s member (i.e., a VM) is randomly selected from
the VMs of the tenant. The minimum group size is �ve. We use
the group-size distributions described in Li’s et al. paper [83]. We
model the �rst distribution by analyzing the multicast patterns of
an IBMWebSphere Virtual Enterprise (WVE) deployment, with 127
nodes and 1,364 groups. The average group size is 60, and nearly
80% of the groups have fewer than 61 members, and about 0.6%
have more than 700 members. The second distribution generates
tenant’s groups’ sizes that are uniformly distributed between the
minimum group size and entire tenant size (Uniform).
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Figure 5: Placement strategy with nomore than one VM of a
tenant per rack. (Le�) Number of groups covered using non-
default p-rules. (Center) s-rules usage across switches (the
horizontal dashed line show rule usage for the scheme by Li
et al. [83] with no more than one VM of a tenant per rack).
(Right) Tra�c overhead relative to ideal (horizontal dashed
lines show unicast (top) and overlay multicast (bottom)).

5.1.2 Data-Plane Scalability.

Elmo scales to millions of multicast groups with minimal
group-table usage. We �rst describe results for the various place-
ment strategies under the IBM’s WVE group size distribution. We
cap the p-rule header size at 325 bytes (mean 114) per packet that
allows up to 30 p-rules for the downstream leaf layer and two for
the spine layer while consuming an average header space of 22.3%
(min 3.0%, max 63.5%) for a chip that can parse a 512-byte packet
header (e.g., RMT [33])—leaving 400 bytes (mean) for other proto-
cols, which in enterprises [55] and datacenters [54] consume about
90 bytes [56]. We vary the number of redundant transmissions (R)
permitted due to p-rule sharing. We evaluate: (i) the number of
groups covered using only the non-default p-rules, (ii) the number
of s-rules installed, and (iii) the total tra�c overhead incurred by
introducing redundancy via p-rule sharing and default p-rules.

Figure 4 shows groups covered with non-default p-rules, s-rules
installed per switch, and tra�c overhead for a placement strategy
that packs up to 12 VMs of a tenant per rack (P = 12). p-rules
su�ce to cover a high fraction of groups; 89% of groups are covered
even when using R = 0, and 99.8% with R = 12. With VMs packed
closer together, the allocated p-rule header sizes su�ce to encode
most multicast trees in the system. Figure 4 (left) also shows how
increasing the permitted number of extra transmissions with p-rule
sharing allows more groups to be represented using only p-rules.

Figure 4 (center) shows the trade-o� between p-rule and s-rule
usage. With R = 0, p-rule sharing tolerates no redundant tra�c. In
this case, p-rules comprise only of switches having precisely same
bitmaps; as a result, the controller must allocate more s-rules, with
95% of leaf switches having fewer than 4,059 rules (mean 1,059).
Still, these are on average 9.4 (max 2.5) times fewer rules when
compared to the scheme by Li et al. [83] with no limit on the VMs
of a tenant packed per rack (P = All). (Aside from these many
group-table entries, Li’s et al. scheme [83] also requiresO(#Groups)
�ow-table entries for group aggregation.) Increasing R to 6 and 12
drastically decreases s-rule usage as more groups are handled using
only p-rules. With R = 12, switches have on average 2.7 rules, with
a maximum of 107.

N
o.
	o
f	g
ro
up

s

For	a	data	center	with:	
- 628 switches
- 325 bytes	header	space

Supports	890,000 groups!

Modern	commodity	switches	can	
parse packet	headers	of	512	bytes
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Encoding a Multicast Policy in Elmo

Switch 1: [Bitmap]

Switch 2,3: [.. .. ..]

A	multicast	group	encoded	as	
a	list	of	(Switch,	Ports) pairs

Core

Spine

Leaf
Switch 5: [.x .. .. ..]

Switch 4: [.. .. .x ..]

50

Switches	within	a	layer	with	N
different ports	share	a	bitmap

4



Encoding a Multicast Policy in Elmo

Switch 1: [Bitmap]

Switch 2,3: [.. .. ..]

A	multicast	group	encoded	as	
a	list	of	(Switch,	Ports) pairs

Core

Spine

Leaf
Switch 4,5: 

[.x .. .x ..]

Switches	within	a	layer	with	N	
different ports	share	a	bitmap

4

51



Encoding a Multicast Policy in Elmo

Switch 1: [Bitmap]

Switch 2,3: [.. .. ..]

A	multicast	group	encoded	as	
a	list	of	(Switch,	Ports) pairs

Core

Spine

Leaf
Switch 4,5: 

[.x .. .x ..]

Difference	in	ports

Switches	within	a	layer	with	N	
different ports	share	a	bitmap

4

SIGCOMM ’19, August 19–23, 2019, Beijing, China M. Shahbaz et al.
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Figure 4: Placement strategy with no more than 12 VMs of a
tenant per rack. (Le�) Number of groups covered using non-
default p-rules. (Center) s-rules usage across switches (the
horizontal dashed line show rule usage for the scheme by Li
et al. scheme [83] with no limit on VMs of a tenant per rack).
(Right) Tra�c overhead relative to ideal (horizontal dashed
lines show unicast (top) and overlay multicast (bottom)).

multicast groups of varying sizes to each tenant. We simulate us-
ing a Facebook Fabric topology—a three-tier topology—with 12
pods [22]. A pod contains 48 leaf switches each connected to 48
hosts. Thus, the topology with 12 pods supports 27,648 hosts, in to-
tal. (We saw qualitatively similar results while running experiments
for a two-tier leaf-spine topology like that used in CONGA [19].)

Tenant VMs and placement. Mimicking the experiment setup
from Li et al. [83]; the simulated datacenter has 3,000 tenants; the
number of VMs per tenant follows an exponential distribution, with
min=10, median=97, mean=178.77, and max=5,000; and each host
accommodates at most 20 VMs. A tenant’s VMs do not share the
same physical host. Elmo is sensitive to the placement of VMs in
the datacenter; which is typically managed by a placement con-
troller [108], running alongside the network controller [14, 16]. We,
therefore, perform a sensitivity analysis using a placement strat-
egy where we �rst select a pod uniformly at random, then pick a
random leaf within that pod and pack up to P VMs of that tenant
under that leaf. P regulates the degree of co-location in the place-
ment. We evaluate for P = 1 and P = 12 to simulate both dispersed
and clustered placement strategies. If the chosen leaf (or pod) does
not have any spare capacity to pack additional VMs, the algorithm
selects another leaf (or pod) until all VMs of a tenant are placed.

Multicast groups. We assign multicast groups to each tenant
such that there are a total of one million groups in the datacenter.
The number of groups assigned to each tenant is proportional to
the size of the tenant (i.e., number of VMs in that group). We use
two di�erent distributions for groups’ sizes, scaled by the tenant’s
size. Each group’s member (i.e., a VM) is randomly selected from
the VMs of the tenant. The minimum group size is �ve. We use
the group-size distributions described in Li’s et al. paper [83]. We
model the �rst distribution by analyzing the multicast patterns of
an IBMWebSphere Virtual Enterprise (WVE) deployment, with 127
nodes and 1,364 groups. The average group size is 60, and nearly
80% of the groups have fewer than 61 members, and about 0.6%
have more than 700 members. The second distribution generates
tenant’s groups’ sizes that are uniformly distributed between the
minimum group size and entire tenant size (Uniform).
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Figure 5: Placement strategy with nomore than one VM of a
tenant per rack. (Le�) Number of groups covered using non-
default p-rules. (Center) s-rules usage across switches (the
horizontal dashed line show rule usage for the scheme by Li
et al. [83] with no more than one VM of a tenant per rack).
(Right) Tra�c overhead relative to ideal (horizontal dashed
lines show unicast (top) and overlay multicast (bottom)).

5.1.2 Data-Plane Scalability.

Elmo scales to millions of multicast groups with minimal
group-table usage. We �rst describe results for the various place-
ment strategies under the IBM’s WVE group size distribution. We
cap the p-rule header size at 325 bytes (mean 114) per packet that
allows up to 30 p-rules for the downstream leaf layer and two for
the spine layer while consuming an average header space of 22.3%
(min 3.0%, max 63.5%) for a chip that can parse a 512-byte packet
header (e.g., RMT [33])—leaving 400 bytes (mean) for other proto-
cols, which in enterprises [55] and datacenters [54] consume about
90 bytes [56]. We vary the number of redundant transmissions (R)
permitted due to p-rule sharing. We evaluate: (i) the number of
groups covered using only the non-default p-rules, (ii) the number
of s-rules installed, and (iii) the total tra�c overhead incurred by
introducing redundancy via p-rule sharing and default p-rules.

Figure 4 shows groups covered with non-default p-rules, s-rules
installed per switch, and tra�c overhead for a placement strategy
that packs up to 12 VMs of a tenant per rack (P = 12). p-rules
su�ce to cover a high fraction of groups; 89% of groups are covered
even when using R = 0, and 99.8% with R = 12. With VMs packed
closer together, the allocated p-rule header sizes su�ce to encode
most multicast trees in the system. Figure 4 (left) also shows how
increasing the permitted number of extra transmissions with p-rule
sharing allows more groups to be represented using only p-rules.

Figure 4 (center) shows the trade-o� between p-rule and s-rule
usage. With R = 0, p-rule sharing tolerates no redundant tra�c. In
this case, p-rules comprise only of switches having precisely same
bitmaps; as a result, the controller must allocate more s-rules, with
95% of leaf switches having fewer than 4,059 rules (mean 1,059).
Still, these are on average 9.4 (max 2.5) times fewer rules when
compared to the scheme by Li et al. [83] with no limit on the VMs
of a tenant packed per rack (P = All). (Aside from these many
group-table entries, Li’s et al. scheme [83] also requiresO(#Groups)
�ow-table entries for group aggregation.) Increasing R to 6 and 12
drastically decreases s-rule usage as more groups are handled using
only p-rules. With R = 12, switches have on average 2.7 rules, with
a maximum of 107.
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Figure 4: Placement strategy with no more than 12 VMs of a
tenant per rack. (Le�) Number of groups covered using non-
default p-rules. (Center) s-rules usage across switches (the
horizontal dashed line show rule usage for the scheme by Li
et al. scheme [83] with no limit on VMs of a tenant per rack).
(Right) Tra�c overhead relative to ideal (horizontal dashed
lines show unicast (top) and overlay multicast (bottom)).

multicast groups of varying sizes to each tenant. We simulate us-
ing a Facebook Fabric topology—a three-tier topology—with 12
pods [22]. A pod contains 48 leaf switches each connected to 48
hosts. Thus, the topology with 12 pods supports 27,648 hosts, in to-
tal. (We saw qualitatively similar results while running experiments
for a two-tier leaf-spine topology like that used in CONGA [19].)

Tenant VMs and placement. Mimicking the experiment setup
from Li et al. [83]; the simulated datacenter has 3,000 tenants; the
number of VMs per tenant follows an exponential distribution, with
min=10, median=97, mean=178.77, and max=5,000; and each host
accommodates at most 20 VMs. A tenant’s VMs do not share the
same physical host. Elmo is sensitive to the placement of VMs in
the datacenter; which is typically managed by a placement con-
troller [108], running alongside the network controller [14, 16]. We,
therefore, perform a sensitivity analysis using a placement strat-
egy where we �rst select a pod uniformly at random, then pick a
random leaf within that pod and pack up to P VMs of that tenant
under that leaf. P regulates the degree of co-location in the place-
ment. We evaluate for P = 1 and P = 12 to simulate both dispersed
and clustered placement strategies. If the chosen leaf (or pod) does
not have any spare capacity to pack additional VMs, the algorithm
selects another leaf (or pod) until all VMs of a tenant are placed.

Multicast groups. We assign multicast groups to each tenant
such that there are a total of one million groups in the datacenter.
The number of groups assigned to each tenant is proportional to
the size of the tenant (i.e., number of VMs in that group). We use
two di�erent distributions for groups’ sizes, scaled by the tenant’s
size. Each group’s member (i.e., a VM) is randomly selected from
the VMs of the tenant. The minimum group size is �ve. We use
the group-size distributions described in Li’s et al. paper [83]. We
model the �rst distribution by analyzing the multicast patterns of
an IBMWebSphere Virtual Enterprise (WVE) deployment, with 127
nodes and 1,364 groups. The average group size is 60, and nearly
80% of the groups have fewer than 61 members, and about 0.6%
have more than 700 members. The second distribution generates
tenant’s groups’ sizes that are uniformly distributed between the
minimum group size and entire tenant size (Uniform).
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Figure 5: Placement strategy with nomore than one VM of a
tenant per rack. (Le�) Number of groups covered using non-
default p-rules. (Center) s-rules usage across switches (the
horizontal dashed line show rule usage for the scheme by Li
et al. [83] with no more than one VM of a tenant per rack).
(Right) Tra�c overhead relative to ideal (horizontal dashed
lines show unicast (top) and overlay multicast (bottom)).

5.1.2 Data-Plane Scalability.

Elmo scales to millions of multicast groups with minimal
group-table usage. We �rst describe results for the various place-
ment strategies under the IBM’s WVE group size distribution. We
cap the p-rule header size at 325 bytes (mean 114) per packet that
allows up to 30 p-rules for the downstream leaf layer and two for
the spine layer while consuming an average header space of 22.3%
(min 3.0%, max 63.5%) for a chip that can parse a 512-byte packet
header (e.g., RMT [33])—leaving 400 bytes (mean) for other proto-
cols, which in enterprises [55] and datacenters [54] consume about
90 bytes [56]. We vary the number of redundant transmissions (R)
permitted due to p-rule sharing. We evaluate: (i) the number of
groups covered using only the non-default p-rules, (ii) the number
of s-rules installed, and (iii) the total tra�c overhead incurred by
introducing redundancy via p-rule sharing and default p-rules.

Figure 4 shows groups covered with non-default p-rules, s-rules
installed per switch, and tra�c overhead for a placement strategy
that packs up to 12 VMs of a tenant per rack (P = 12). p-rules
su�ce to cover a high fraction of groups; 89% of groups are covered
even when using R = 0, and 99.8% with R = 12. With VMs packed
closer together, the allocated p-rule header sizes su�ce to encode
most multicast trees in the system. Figure 4 (left) also shows how
increasing the permitted number of extra transmissions with p-rule
sharing allows more groups to be represented using only p-rules.

Figure 4 (center) shows the trade-o� between p-rule and s-rule
usage. With R = 0, p-rule sharing tolerates no redundant tra�c. In
this case, p-rules comprise only of switches having precisely same
bitmaps; as a result, the controller must allocate more s-rules, with
95% of leaf switches having fewer than 4,059 rules (mean 1,059).
Still, these are on average 9.4 (max 2.5) times fewer rules when
compared to the scheme by Li et al. [83] with no limit on the VMs
of a tenant packed per rack (P = All). (Aside from these many
group-table entries, Li’s et al. scheme [83] also requiresO(#Groups)
�ow-table entries for group aggregation.) Increasing R to 6 and 12
drastically decreases s-rule usage as more groups are handled using
only p-rules. With R = 12, switches have on average 2.7 rules, with
a maximum of 107.

Sw
itc
h	
en
tr
ie
s

SIGCOMM ’19, August 19–23, 2019, Beijing, China M. Shahbaz et al.

0 

250K

500K

750K

1M

0 6 12
Redundancy limit (R)

G
ro

up
s 

co
ve

re
d 

 w
ith

 p
−r

ul
es

Li et al.

0.0 

2.5K

5.0K

7.5K

10.0K

0 6 12
Redundancy limit (R)

s−
ru

le
s 

in
st

al
le

d 
pe

r s
wi

tc
h Unicast

Overlay

0 

1 

2 

3 

4 

0 6 12
Redundancy limit (R)

Tr
af

fic
 O

ve
rh

ea
d

(ra
tio

 w
ith

 id
ea

l m
ul

tic
as

t)

Figure 4: Placement strategy with no more than 12 VMs of a
tenant per rack. (Le�) Number of groups covered using non-
default p-rules. (Center) s-rules usage across switches (the
horizontal dashed line show rule usage for the scheme by Li
et al. scheme [83] with no limit on VMs of a tenant per rack).
(Right) Tra�c overhead relative to ideal (horizontal dashed
lines show unicast (top) and overlay multicast (bottom)).

multicast groups of varying sizes to each tenant. We simulate us-
ing a Facebook Fabric topology—a three-tier topology—with 12
pods [22]. A pod contains 48 leaf switches each connected to 48
hosts. Thus, the topology with 12 pods supports 27,648 hosts, in to-
tal. (We saw qualitatively similar results while running experiments
for a two-tier leaf-spine topology like that used in CONGA [19].)

Tenant VMs and placement. Mimicking the experiment setup
from Li et al. [83]; the simulated datacenter has 3,000 tenants; the
number of VMs per tenant follows an exponential distribution, with
min=10, median=97, mean=178.77, and max=5,000; and each host
accommodates at most 20 VMs. A tenant’s VMs do not share the
same physical host. Elmo is sensitive to the placement of VMs in
the datacenter; which is typically managed by a placement con-
troller [108], running alongside the network controller [14, 16]. We,
therefore, perform a sensitivity analysis using a placement strat-
egy where we �rst select a pod uniformly at random, then pick a
random leaf within that pod and pack up to P VMs of that tenant
under that leaf. P regulates the degree of co-location in the place-
ment. We evaluate for P = 1 and P = 12 to simulate both dispersed
and clustered placement strategies. If the chosen leaf (or pod) does
not have any spare capacity to pack additional VMs, the algorithm
selects another leaf (or pod) until all VMs of a tenant are placed.

Multicast groups. We assign multicast groups to each tenant
such that there are a total of one million groups in the datacenter.
The number of groups assigned to each tenant is proportional to
the size of the tenant (i.e., number of VMs in that group). We use
two di�erent distributions for groups’ sizes, scaled by the tenant’s
size. Each group’s member (i.e., a VM) is randomly selected from
the VMs of the tenant. The minimum group size is �ve. We use
the group-size distributions described in Li’s et al. paper [83]. We
model the �rst distribution by analyzing the multicast patterns of
an IBMWebSphere Virtual Enterprise (WVE) deployment, with 127
nodes and 1,364 groups. The average group size is 60, and nearly
80% of the groups have fewer than 61 members, and about 0.6%
have more than 700 members. The second distribution generates
tenant’s groups’ sizes that are uniformly distributed between the
minimum group size and entire tenant size (Uniform).
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Figure 5: Placement strategy with nomore than one VM of a
tenant per rack. (Le�) Number of groups covered using non-
default p-rules. (Center) s-rules usage across switches (the
horizontal dashed line show rule usage for the scheme by Li
et al. [83] with no more than one VM of a tenant per rack).
(Right) Tra�c overhead relative to ideal (horizontal dashed
lines show unicast (top) and overlay multicast (bottom)).

5.1.2 Data-Plane Scalability.

Elmo scales to millions of multicast groups with minimal
group-table usage. We �rst describe results for the various place-
ment strategies under the IBM’s WVE group size distribution. We
cap the p-rule header size at 325 bytes (mean 114) per packet that
allows up to 30 p-rules for the downstream leaf layer and two for
the spine layer while consuming an average header space of 22.3%
(min 3.0%, max 63.5%) for a chip that can parse a 512-byte packet
header (e.g., RMT [33])—leaving 400 bytes (mean) for other proto-
cols, which in enterprises [55] and datacenters [54] consume about
90 bytes [56]. We vary the number of redundant transmissions (R)
permitted due to p-rule sharing. We evaluate: (i) the number of
groups covered using only the non-default p-rules, (ii) the number
of s-rules installed, and (iii) the total tra�c overhead incurred by
introducing redundancy via p-rule sharing and default p-rules.

Figure 4 shows groups covered with non-default p-rules, s-rules
installed per switch, and tra�c overhead for a placement strategy
that packs up to 12 VMs of a tenant per rack (P = 12). p-rules
su�ce to cover a high fraction of groups; 89% of groups are covered
even when using R = 0, and 99.8% with R = 12. With VMs packed
closer together, the allocated p-rule header sizes su�ce to encode
most multicast trees in the system. Figure 4 (left) also shows how
increasing the permitted number of extra transmissions with p-rule
sharing allows more groups to be represented using only p-rules.

Figure 4 (center) shows the trade-o� between p-rule and s-rule
usage. With R = 0, p-rule sharing tolerates no redundant tra�c. In
this case, p-rules comprise only of switches having precisely same
bitmaps; as a result, the controller must allocate more s-rules, with
95% of leaf switches having fewer than 4,059 rules (mean 1,059).
Still, these are on average 9.4 (max 2.5) times fewer rules when
compared to the scheme by Li et al. [83] with no limit on the VMs
of a tenant packed per rack (P = All). (Aside from these many
group-table entries, Li’s et al. scheme [83] also requiresO(#Groups)
�ow-table entries for group aggregation.) Increasing R to 6 and 12
drastically decreases s-rule usage as more groups are handled using
only p-rules. With R = 12, switches have on average 2.7 rules, with
a maximum of 107.
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Applications Run Without Performance 
Overhead

implying that Elmo can support a demand of 44K and 8K
membership changes per second, respectively, before hitting
the limit of these switches. Shahbaz: this line should go in
Section 2?

b. Network failures. Elmo gracefully handles spine and
core switch failures,4 forwarding multicast packets via alter-
nate paths using upstream ports represented in the groups’
p-rule bitmap (§3.3). During this period, some groups might
experience transient loss while the network is recon�gur-
ing [89]. In our simulations, up to 12.25% of groups are im-
pacted when a single spine switch fails and up to 25.81%
when a core switch fails. Hypervisor switches incur average
(max) updates of 176.86 (1712) and 674.89 (1852), respectively.
We measure that today’s hypervisor switches are capable of
handling batched updates of 80K requests per second (on a
modest server) and, hence, can recon�gure within 25 ms of
these failures.

Elmo’s controller computes p- and s-rules for a group
within a millisecond. Our controller consistently executes
Algorithm 1 for computing p- and s-rules in less than a mil-
lisecond. Across our simulations, our Python implementa-
tion computes the required rules for each group in 0.20 ms
± 0.45 ms (SD), on average, for all group sizes with a header
size limit of 325 bytes. Existing studies report that it takes
up to 100 ms for a controller to learn an event, issue updates
to the network, and for the network state to converge [89].
Elmo’s control logic, therefore, contributes little to the overall
convergence time for updates and is fast enough to support
the needs of large data centers today, even before extensive
optimization.

5.3 Evaluating End-to-end Applications
We ran two popular data-center applications on top of Elmo:
ZeroMQ [65] and sFlow [92]. We found that these applica-
tions ran unmodi�ed on top of Elmo and bene�ted from
reduced CPU and bandwidth utilization for multicast work-
loads.

Testbed setup. The topology for this experiment com-
prises nine PowerEdge R620 servers having two eight cores
Intel(R) Xeon(R) CPUs running at 2.00 GHz and with 32 GB
of memory, and three dual-port Intel 82599ES 10 Gigabit Eth-
ernet NICs. Three of these machines emulate a spine and two
leaf switches; these machines run an extended version of the
PISCES [97] switchwith support for the bitmap_port_select
primitive for routing tra�c between interfaces. The remain-
ing machines act as hosts, with three hosts per leaf switch.

4When a leaf switch fails, all hosts connected to it lose connectivity to the
network, and must wait for the switch to get back online.
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Figure 9: Requests-per-second and CPU utilization
comparison of a pub-sub application using ZeroMQ
(over UDP) for both unicast and Elmo with a message
size of 100 bytes.

5.3.1 Publish-subscribe usingZeroMQ. We implement
a publish-subscribe (pub-sub) system using ZeroMQ (over
UDP). ZeroMQ enables tenants to build pub-sub systems
on top of a cloud environment (like AWS [2], GCP [7], or
Azure [10]), by establishing unicast connections between
publishers and subscribers.5

Throughput (rps). Figure 9 (left) shows the throughput
comparison in requests per second.With unicast, the through-
put at subscribers decreases with an increasing number of
subscribers because the publisher becomes the bottleneck;
the publisher services a single subscriber at 185K rps on av-
erage and drops to about 0.25K rps for 256 subscribers. With
Elmo, the throughput remains the same regardless of the
number of subscribers and averages 185K rps throughout.

CPU utilization. The CPU usage of the publisher VM
(and the underlying host) also increases with increasing num-
ber of subscribers, Figure 9 (right). The publisher VM con-
sumes 32% of the VM’s CPU with 64 subscribers and satu-
rates the CPU with 256 subscribers onwards. With Elmo, the
CPU usage remains constant regardless of the number of
subscribers (i.e., 4.97%).

5.3.2 Host telemetry using sFlow. As our second appli-
cation, we compare the performance of host telemetry using
sFlow with both unicast and Elmo. sFlow exports physical
and virtual server performance metrics from sFlow agents
to collector nodes (e.g., CPU, memory, and network stats for
docker, KVMs, and hosts) set up by di�erent tenants (and
teams) to collect metrics for their needs. We compare the
egress bandwidth utilization at the host of the sFlow agent
with increasing number of collectors, using both unicast
and Elmo. The bandwidth utilization increases linearly with

5A drawback of native multicast is that we cannot use TCP. However,
protocols (like PGM [100] and SRM [53]) can support applications that
require reliable delivery using native multicast.
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implying that Elmo can support a demand of 44K and 8K
membership changes per second, respectively, before hitting
the limit of these switches. Shahbaz: this line should go in
Section 2?

b. Network failures. Elmo gracefully handles spine and
core switch failures,4 forwarding multicast packets via alter-
nate paths using upstream ports represented in the groups’
p-rule bitmap (§3.3). During this period, some groups might
experience transient loss while the network is recon�gur-
ing [89]. In our simulations, up to 12.25% of groups are im-
pacted when a single spine switch fails and up to 25.81%
when a core switch fails. Hypervisor switches incur average
(max) updates of 176.86 (1712) and 674.89 (1852), respectively.
We measure that today’s hypervisor switches are capable of
handling batched updates of 80K requests per second (on a
modest server) and, hence, can recon�gure within 25 ms of
these failures.

Elmo’s controller computes p- and s-rules for a group
within a millisecond. Our controller consistently executes
Algorithm 1 for computing p- and s-rules in less than a mil-
lisecond. Across our simulations, our Python implementa-
tion computes the required rules for each group in 0.20 ms
± 0.45 ms (SD), on average, for all group sizes with a header
size limit of 325 bytes. Existing studies report that it takes
up to 100 ms for a controller to learn an event, issue updates
to the network, and for the network state to converge [89].
Elmo’s control logic, therefore, contributes little to the overall
convergence time for updates and is fast enough to support
the needs of large data centers today, even before extensive
optimization.

5.3 Evaluating End-to-end Applications
We ran two popular data-center applications on top of Elmo:
ZeroMQ [65] and sFlow [92]. We found that these applica-
tions ran unmodi�ed on top of Elmo and bene�ted from
reduced CPU and bandwidth utilization for multicast work-
loads.

Testbed setup. The topology for this experiment com-
prises nine PowerEdge R620 servers having two eight cores
Intel(R) Xeon(R) CPUs running at 2.00 GHz and with 32 GB
of memory, and three dual-port Intel 82599ES 10 Gigabit Eth-
ernet NICs. Three of these machines emulate a spine and two
leaf switches; these machines run an extended version of the
PISCES [97] switchwith support for the bitmap_port_select
primitive for routing tra�c between interfaces. The remain-
ing machines act as hosts, with three hosts per leaf switch.

4When a leaf switch fails, all hosts connected to it lose connectivity to the
network, and must wait for the switch to get back online.
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Figure 9: Requests-per-second and CPU utilization
comparison of a pub-sub application using ZeroMQ
(over UDP) for both unicast and Elmo with a message
size of 100 bytes.

5.3.1 Publish-subscribe usingZeroMQ. We implement
a publish-subscribe (pub-sub) system using ZeroMQ (over
UDP). ZeroMQ enables tenants to build pub-sub systems
on top of a cloud environment (like AWS [2], GCP [7], or
Azure [10]), by establishing unicast connections between
publishers and subscribers.5

Throughput (rps). Figure 9 (left) shows the throughput
comparison in requests per second.With unicast, the through-
put at subscribers decreases with an increasing number of
subscribers because the publisher becomes the bottleneck;
the publisher services a single subscriber at 185K rps on av-
erage and drops to about 0.25K rps for 256 subscribers. With
Elmo, the throughput remains the same regardless of the
number of subscribers and averages 185K rps throughout.

CPU utilization. The CPU usage of the publisher VM
(and the underlying host) also increases with increasing num-
ber of subscribers, Figure 9 (right). The publisher VM con-
sumes 32% of the VM’s CPU with 64 subscribers and satu-
rates the CPU with 256 subscribers onwards. With Elmo, the
CPU usage remains constant regardless of the number of
subscribers (i.e., 4.97%).

5.3.2 Host telemetry using sFlow. As our second appli-
cation, we compare the performance of host telemetry using
sFlow with both unicast and Elmo. sFlow exports physical
and virtual server performance metrics from sFlow agents
to collector nodes (e.g., CPU, memory, and network stats for
docker, KVMs, and hosts) set up by di�erent tenants (and
teams) to collect metrics for their needs. We compare the
egress bandwidth utilization at the host of the sFlow agent
with increasing number of collectors, using both unicast
and Elmo. The bandwidth utilization increases linearly with

5A drawback of native multicast is that we cannot use TCP. However,
protocols (like PGM [100] and SRM [53]) can support applications that
require reliable delivery using native multicast.
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Conclusion

• Designed for	multi-tenant	data	
centers	

• Compactly	encodes	multicast	
policy	inside	packets

• Operates	at	hardware	speed
using	programmable	data	
planes

Elmo
Source	Routed

Multicast
for	Public	Clouds
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Is this a good usecase of 
programmable dataplanes? 



What are the limitations? 



Other networking usecases

• Load balancing: 
• HULA: Scalable Load Balancing Using Programmable Data Planes,  SOSR’16

• Congestion control: 
• Evaluating the Power of Flexible Packet Processing for Network Resource 

Allocation, NSDI’17 
• Support RCP and XCP on programmable switches

• HPCC: High Precision Congestion Control, SIGCOMM’19
• Obtain precise link information for congestion control

• A new protocols for more efficient L2 switching
• The Deforestation of L2, SIGCOMM’16

• And others…


