Programming Language
for Switches

ECE/CS598HPN

Radhika Mittal

Conventional SDN

* Very flexible control plane in software.
* Interacts with dataplane through OpenkFlow.

* Dataplane flexibility limrted by:
* what OpenfFlow supports.
* what the underlying hardware can support.

OpenFlow Support

OF 1.0 Dec 2009 12
OF 1.1 Feb 2011 15
OF 1.2 Dec 2011 36
OF 1.3 Jun 2012 40

OF 1.4 Oct 2013 41

Programmable Switches

PISA: Protocol Independent Switch Architecture

* RMT:

* Programmable parsers.
* Reconfigurable match-action tables.

* Intel FlexPipe

* Cavium Xpliant

What was missing!?

An Interface to program such switches.

P4 Goals

* Protocol iIndependence
* Switches are not tied to specific packet formats.

* Reconfigurabilrity

* Controller can redefine packet parsing and processing in
the field.

* Jarget Independence
* User program need not be tied to a specific hardware.
* Compller's job to do the mapping.

P4 vs OpenFlow

Populating: |
Installing and |
queryingrules: |3ssic

OpenFlow

Target Switch

Components of a P4 program

e Header definitions
e Parser definition
e Tables: what fields to match on, and which action to execute

e Action definition.

P4 Compiler

* |f the target Is a fixed-function switch?
* Check if specified parser and match-action tables are supported.
* If not, return error.

* |f target Is a software switch!?
* Full flexibility to execute specified program.
* May use specific software data structures for optimizations.

* [f target i1s an RMT switch!?

* Figure out table layout

* mapping logical stages to physical ones.
* When to use RAM vs TCAM

* |f tables don't fit, an action not supported, etc: return an error.

Pod 3

Pod 2

Pod 1

Pod 0

From PortLand, SIGCOMM'09

Example

header ethernet {
fields {

src_addr : 48;
ethertype : 16;

dst_addr : 48; // width in bits

}
}
header vlan {
fields {
pcp : 3;
cfi : 1;
vid : 12;
ethertype
}
}

: 16;

header mTag {
fields {
upl : 8;
up2 : 8;
downl : 8;
down2 : 8;

ethertype :

16;

Example

parser start {
ethernet;

}

parser ethernet {
switch(ethertype) {
case 0x8100: vlan;
case 0x9100: vlan;
case 0x800: ipv4;
// Other cases

parser vlan {
switch(ethertype) {
case Oxaaaa: mTag;
case 0x800: ipv4;
// Other cases

parser mTag {
switch(ethertype) {
case 0x800: ipv4;
// Other cases

Example

Source Local Hit E
5 Check > Switching c%f:;
Table [- Table

e
Miss: Not Local

\

control main() {
// Verify mTag state and port are consistent mTag
table(source_check); Table |

// If no error from source_check, continue
if (!defined(metadata.ingress_error)) {
// Attempt to switch to end hosts
table(local_switching);

if (!defined(metadata.egress_spec)) {
// Not a known local host; try mtagging
table (mTag_table) ;

// Check for unknown egress state or
// bad retagging with mTag.
table(egress_check) ;

Example

table mTag_table {
reads {
ethernet.dst_addr : exact;
vlan.vid : exact;

}

actions {
// At runtime, entries are programmed with params
// for the mTag action. See below.
add_mTag;

}

max_size : 20000;

Example

action add_mTag(upl, up2, downl, down2, egr_spec) {
add_header (mTag) ;
// Copy VLAN ethertype to mTag

copy_field(mTag.ethertype, vlan.ethertype);
// Set VLAN’s ethertype to signal mTag
set_field(vlan.ethertype, Oxaaaa);
set_field(mTag.upl, upl);
set_field(mTag.up2, up2);
set_field(mTag.downl, downl);
set_field(mTag.down2, down2);

// Set the destination egress port as well
set_field(metadata.egress_spec, egr_spec);

Example

* This was the edge switch's mTag match-action table.

 What will the core do!

* [able will have ternary match on mTag

* Action will be mTag_forward
* Forward on specified port.
* The rule about which mTag matches to which port is part of the
configuration file.

WWhat are some new opportunities
enabled by P4?

Limitations of P4 or PISA?

Event-driven packet processing

* Restricted to packet ingress and egress events.

* May want to react to other types of events:
* Periodic (generate probes, reset counters), link failures.

* Updated switch architecture design that allows reacting
on such events.

e |Ibanez et. al., HotNets' | 9.

External memory for switches

* Switches require high memory bandwidth.
* Use fast, but expensive on-chip SRAM and TCAM.
* Limited in size.

* Memory size could be a limiting factor for many
applications.

* Let's access endhost memory remotely.. ..

e Kim et. al., HotNets' | 8, SIGCOMM™20

On P4 compilers and programs

* Some "target-awareness’ is still needed when writing P4 program (e.g.
array sizes etc). How to enable true target-independence!
* Use elastic data structures

* P4AIl, Hogan et. al,, HotNets20, NSDI22

* Compiler must somehow map a given P4 program to target
hardware. How to optimize this!
* Profile-guided optimizations, Wintermeyer et. al., HotNets20

* Mapping a P4 program to multiple subprograms on different switches

and running them as a distributed system.
* FlightPlan, Sultana et. al., NSDI'2 |

Enabling runtime programmability

* In-situ Programmable Switching
* Feng et. al, HotNets2 |, NSDI'22

* Runtime Programmable Switches
* Xing et. al, HotNets2 |, NSDI'22

o ActiveRMT
e Das et. al., HotNets20, SIGCOMM™23

Extending/testing capabilities

e Statistics in P4
 Gao et. al., HotNets'2 |

* Floating point operations in P4
* Yuan et al, NSDI22

On state management

* Vision for enabling more stateful packet processing
* Gebara et. al,, HotNets20

* Distributed state management for a program running on

multiple switches
e /eno et. al.,, HotNets20, NSDI'22

e Fault-tolerance for switch state
e RedPlane, Kim et. al., SIGCOMM2

Flexible queuing and scheduling

RRIYY!

HUH

Later in the course.....

Logistics

* Project proposals:
* Have you signed up for a slot for tomorrow?! Any questions?

* Warm-up assignment 2 has been released! Due next week.

