
TAS: TCP Acceleration as an OS Service
Antoine Kaufmann

MPI-SWS
Tim Stamler

The University of Texas at Austin
Simon Peter

The University of Texas at Austin

Naveen Kr. Sharma
University of Washington

Arvind Krishnamurthy
University of Washington

Thomas Anderson
University of Washington

ACM Reference Format:
Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas Anderson. 2019. TAS: TCP
Acceleration as an OS Service. In Fourteenth EuroSys Conference
2019 (EuroSys ’19), March 25–28, 2019, Dresden, Germany.ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3302424.3303985

Abstract
As datacenter network speeds rise, an increasing fraction of
server CPU cycles is consumed by TCP packet processing, in
particular for remote procedure calls (RPCs). To free server
CPUs from this burden, various existing approaches have
attempted to mitigate these overheads, by bypassing the OS
kernel, customizing the TCP stack for an application, or by
offloading packet processing to dedicated hardware. In doing
so, these approaches trade security, agility, or generality
for efficiency. Neither trade-off is fully desirable in the fast-
evolving commodity cloud.

We present TAS, TCP acceleration as a service. TAS splits
the common case of TCP processing for RPCs in the data-
center from the OS kernel and executes it as a fast-path OS
service on dedicated CPUs. Doing so allows us to streamline
the common case, while still supporting all of the features
of a stock TCP stack, including security, agility, and gener-
ality. In particular, we remove code and data of less com-
mon cases from the fast-path, improving performance on the
wide, deeply pipelined CPU architecture common in today’s
servers. To be workload proportional, TAS dynamically allo-
cates the appropriate amount of CPUs to accommodate the
fast-path, depending on the traffic load. TAS provides up to
90% higher throughput and 57% lower tail latency than the
IX kernel bypass OS for common cloud applications, such as
a key-value store and a real-time analytics framework. TAS
also scales to more TCP connections, providing 2.2× higher
throughput than IX with 64K connections.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
EuroSys ’19, March 25–28, 2019, Dresden, Germany
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6281-8/19/03.
https://doi.org/10.1145/3302424.3303985

1 Introduction
As network speeds rise, while CPU speeds stay stagnant,
TCP packet processing efficiency is becoming ever more im-
portant. Many data center applications require low-latency
and high-throughput network access to deliver remote proce-
dure calls (RPCs). At the same time, they rely on the lossless,
in-order delivery properties provided by TCP. To provide this
convenience, software TCP stacks consume an increasing
fraction of CPU resources to process network packets.

TCP processing overheads have been known for decades.
In 1993, Van Jacobson presented an implementation of TCP
common-case receive processing within 30 processor instruc-
tions [21]. Common network stacks, such as Linux’s, still
use Van’s performance improvements [1]. Despite these op-
timizations, a lot of CPU time goes into packet processing
and TCP stack processing latencies are high. For a key-value
store, Linux spends 7.5µs per request in TCP packet process-
ing. While kernel-bypass TCP stacks bring direct overhead
down, they still introduce overhead in other ways. As net-
work speeds continue to rise, these overheads increasingly
consume the available CPU time.
We investigate TCP packet processing overhead in the

context of modern processor architecture. We find that ex-
isting TCP stacks introduce overhead in various ways (and
to varying degree): 1. By running in privileged mode on
the same processor as the application, they induce system
call overhead and pollute the application-shared L1, L2, and
translation caches. 2. They spread per-connection state over
several cache lines, causing false sharing and reducing cache
efficiency; 3. They share state over all processor cores in
the machine, resulting in cache coherence and locking over-
heads; 4. They execute the entire TCP state machine to com-
pletion for each packet, resulting in codewithmany branches
that do not make efficient use of batching and prefetching
opportunities.
We harken back to TCP’s origin as a computationally

efficient transport protocol, e.g., TCP congestion control
was designed to avoid the use of integer multiplication and
division [22]. Although TCP as a whole has become quite
complex with many moving parts, the common case data
path remains relatively simple. For example, packets sent
within the data center are never fragmented at the IP layer,
packets are almost always delivered reliably and in order,
and timeouts almost never fire. Can we use this insight to
eliminate the existing overheads?

https://doi.org/10.1145/3302424.3303985
https://doi.org/10.1145/3302424.3303985
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3302424.3303985&domain=pdf&date_stamp=2019-03-25

We present TCP acceleration as a service (TAS), a light-
weight software TCP network fast-path optimized for common-
case client-server RPCs and offered as a separate OS service
to applications. TAS interoperates with legacy Linux TCP
endpoints and can support a variety of congestion control
protocols including TIMELY [28] and DCTCP [6].

Separating the TCP fast-path from a monolithic OS kernel
and offering it as a separate OS service enables a number of
streamlining opportunities. Like Van Jacobson, we realize
that TCP packet processing can be separated into a common
and an uncommon case. TAS implements the fast-path that
handles common-case TCP packet processing and resource
enforcement. A heavier stack (the slow path), in concert with
the rest of the OS, processes less common duties, such as con-
nection setup/teardown, congestion control, and timeouts.
The TAS fast-path executes on a set of dedicated CPUs, hold-
ing the minimum state necessary for common-case packet
processing in processor caches. While congestion control
policy is implemented in the slow path, it is enforced by
the fast path, allowing precise control over the allocation
of network resources among competing flows by a trusted
control plane. The fast path takes packets directly from (and
directly delivers packets to) user-level packet queues. Un-
privileged application library code implements the POSIX
socket abstraction on top of these fast path queues, allowing
TAS to operate transparent to applications.

Beyond streamlining, another benefit of separating TAS
from the rest of the system is the opportunity to scale TAS
independent of the applications using it. Current TCP stacks
run in the context of the application threads using them,
sharing the same CPUs. Network-intensive applications of-
ten spend more CPU cycles in the TCP stack than in the
application. When sharing CPUs, non-scalable applications
limit TCP processing scalability, even if the TCP stack is
perfectly scalable. Separation not only isolates TAS from
cache and TLB pollution of the applications using it, but also
allows TAS to scale independently of these applications.

We implement TAS as a user-level OS service intended to
accelerate the Linux OS kernel TCP stack. TAS is workload
proportional—it acquires CPU cores dynamically depending
on network load and can share CPU cores with application
threads when less than one CPU is required. We evaluate
TAS on a small cluster of servers usingmicrobenchmarks and
common cloud application workloads. In particular, we com-
pare TAS’ per-packet CPU overheads, latency, throughput,
connection and CPU scalability, workload proportionality,
and resiliency to packet loss to those of Linux, IX [9], and
mTCP [24]. Finally, we evaluate TAS’ congestion control
performance with TCP-NewReno and DCTCP at scale using
simulations.
Within a virtualized cloud context, NetKernel [31] also

proposes to separate the network stack from guest OS ker-
nels and to offer it as a cloud service in a separate virtual
machine. NetKernel’s goal is to accelerate provider-driven

network stack evolution by enabling new network protocol
enhancements to be made available to tenant VMs transpar-
ently and simultaneously. TAS can provide the same benefit,
but our focus is on leveraging the separation of fast and slow
path to streamline packet processing.

We make the following contributions:
• We present the design and implementation of TAS, a low-
latency, low-overhead TCP network fast-path. TAS is fully
compatible with existing TCP peers.

• We analyze the overheads of TAS and other state-of-the-
art TCP stacks in Linux and IX, showing how they use
modern processor architecture.

• We present an overhead breakdown of TAS, showing that
we eliminate the performance and scalability problems
with existing TCP stacks.

• We evaluate TAS on a set of microbenchmarks and com-
mon data center server applications, such as a key-value
store and a real-time analytics framework. TAS provides
up to 57% lower tail latency and 90% better throughput
compared to the state-of-the-art IX kernel bypass OS. IX
does not provide sockets, which are heavy-weight [47], but
TAS does. TAS still provides 30% higher throughput than
IX when TAS provides POSIX sockets. TAS also scales to
more TCP connections, providing 2.2× higher throughput
than IX with 64K connections.

2 Background
Common case TCP packet processing can be accelerated when
split from its uncommon code paths and offered as a separate
service, executing on isolated processor cores. To motivate this
rationale, we first discuss the tradeoffs made by existing
software network stack architectures and TCP hardware
offload designs. We then quantify these tradeoffs for the TCP
stack used inside the Linux kernel, the IX OS, and TAS.

2.1 Network Stack Architecture
Network stack architecture has a well-established history
and various points in the design space have been investi-
gated. We cover the most relevant designs here. As we will
see, all designs split TCP packet processing into different
components to achieve a different tradeoff among perfor-
mance, security, and functionality. TAS builds on this history
to arrive at its own, unique point in the design space.

Monolithic, in-kernel. The most popular TCP stack design
is monolithic and resides completely in the OS kernel. A
monolithic TCP stack fulfills all of its functionality in soft-
ware, as a single block of code. Built for extensibility, it fol-
lows a deeply modular design approach with complex inter-
module dependencies. Each module implements a different
part of the stack’s feature set, interconnected via queues,
function call APIs, and software interrupts. The stack itself
is trusted and to protect it from untrusted application code, a
split is made between application-level and stack-level packet

2

processing at the system call interface, involving a processor
privilege mode switch and associated data copies for secu-
rity. This is the design of the Linux, BSD, and Windows TCP
network stacks. The complex nature of these stacks leads
them to execute a large number of instructions per packet,
with a high code and data footprint (§2.2).

Kernel bypass. To alleviate the protection overheads of in-
kernel stacks, such as kernel-crossings, software mutliplex-
ing, and copying, kernel bypass network stacks split the
responsibilities of TCP packet processing into a trusted con-
trol plane and an untrusted data plane. The control plane
deals with connection and protection setup and executes in
the kernel, while the data plane deals with common-case
packet processing on existing connections and is linked di-
rectly into the application. To enforce control plane policy
on the data plane, these approaches leverage hardware IO
virtualization support [24, 34]. In addition, this approach
allows us to tailor the stack to the needs of the application,
excluding unneeded features for higher efficiency [27]. The
downside of this approach is that, beyond coarse-grained rate
limiting and firewalling, there is no control over low-level
transport protocol behavior, such as congestion response.
Applications are free to send packets in any fashion they see
fit, within their limit. This can interact badly with the data
center’s congestion control policy, in particular with many
connections.

Protected kernel bypass. To alleviate this particular prob-
lem of kernel bypass network stacks, IX [9] leverages hard-
ware CPU virtualization to insert an intermediate layer of
protection, running the network stack in guest kernel mode,
while the OS kernel executes in host kernel mode. This al-
lows us to deploy trusted network stacks, while allowing
them to be tailored and streamlined for each application.
However, this approach re-introduces some of the overheads
of the kernel-based approach.

NIC offload. Various TCP offload engines have been pro-
posed in the past [12]. These engines leverage various splits
of TCP packet processing responsibilities and distribute them
among software executing on a CPU and a dedicated hard-
ware engine executing on the NIC. The most popular is TCP
chimney offload [2], which retains connection control within
the OS kernel and executes data exchange on the NIC. By
offloading work from CPUs to NICs, these designs achieve
high energy-efficiency and free CPUs from packet process-
ing work. Their downside is that they are difficult to evolve
and to customize. Their market penetration has been low for
this reason.

Dedicated CPUs. These approaches dedicate entire CPUs to
executing the TCP stack [40, 44]. These stacks interact with
applications via message queues instead of system calls, al-
lowing them to alleviate the indirect overheads of these calls,
such as cache pollution and pipeline stalls, and to batch calls

Linux IX TAS
Module kc % kc % kc %

Driver 0.73 4% 0.05 2% 0.09 4%
IP 1.53 9% 0.12 4% 0 0%
TCP 3.92 23% 1.05 39% 0.81 32%
Sockets/IX 8.00 48% 0.76 28% 0.62 24%
Other 1.50 9% 0.00 0% 0.00 0%
App 1.07 6% 0.76 28% 0.68 26%

Total 16.75 100% 2.73 100% 2.57 100%
Table 1. CPU cycles per request by network stack module.

for better efficiency. Barrelfish [8] subdivides the stack fur-
ther, executing the NIC device driver, stack, and application,
all on their own dedicated cores. These approaches attain
high and stable throughput via pipeline parallelism and per-
formance isolation among stack and application. However,
even when dedicating a number of processors to the TCP
stack, executing the entire stack can be inefficient, causing
pipeline stalls and cache misses due to complexity.

Dedicated fast path. TAS builds on the approaches dedi-
cating CPUs, but leverages a unique split. By subdividing
the TCP stack data plane into common and uncommon code
paths, dedicating separate threads to each, and revisiting
efficient stack implementation on modern processors, TAS
can attain higher CPU efficieny. In addition to efficiency,
this approach does not require new hardware (unlike NIC
offload), protects the TCP stack from untrusted applications
(unlike kernel bypass), retains the flexibility and agility of
a software implementation (unlike NIC offload), while min-
imizing protection costs (unlike protected kernel bypass).
The number of CPU cores consumed by TAS for this service
is workload proportional. TAS threads can also share CPUs
with application threads under low load.

2.2 TCP Stack Overheads
To demonstrate the inefficiencies of kernel and protected
kernel-bypass TCP stacks, we quantify the overheads of
the Linux and IX OS TCP stack architectures and compare
them to TAS. To do so, we instrument all stacks using hard-
ware performance counters, running a simple key-value store
server benchmark on 8 server cores. Our benchmark server
serves 32K concurrent connections from several client ma-
chines that saturate the server network bandwidthwith small
requests (64B keys, 32B values) for a small working set, half
the size of the server’s L3 cache (details of our experimental
setup in §5). We execute the experiment for two minutes and
measure for one minute after warming up for 30 seconds.

Linux overheads. Table 1 shows a breakdown of the re-
sult. We find that Linux executes 16.75 kilocycles (kc) for an
average request, of which only 6% are spent within the ap-
plication, while 85% of total cycles are spent in the network
stack. For each request, Linux executes 12.7 kilo-instructions

3

(ki), resulting in 1.32 cycles per instruction (CPI), 5.3× above
the ideal 0.25 CPI for the server’s 4-way issue processor
architecture. This results in high average per-request pro-
cessing latency of 8µs. The reason for these inefficiencies is
the computational complexity and high memory footprint
of a monolithic, in-kernel stack. Per-request privilege mode
switches and software interrupts stall processor pipelines;
software multiplexing, cross-module procedure calls, and se-
curity checks require additional instructions; large, scattered
per-connection state increases memory footprint and causes
stalls on cache and TLB misses; shared, scattered global state
causes stalls on locks and cache coherence, inflated by coarse
lock granularity and false sharing; covering all TCP packet
processing cases in one monolithic block causes the code to
have many branches, increasing instruction cache footprint
and branch mispredictions.
We measure these inefficiencies with CPU performance

counters [46]. The results are shown in Table 2 and indicate
cycles spent retiring instructions, and blocked fetching in-
structions (frontend bound), fetching data (backend bound),
and on bad speculation. We can see that Linux spends an
order of magnitude more of these cycles than the applica-
tion. In particular data fetches weigh heavily. Due to the
high memory footprint we encounter many cache and TLB
misses.

IX overheads. IX can tailor the network stack to the applica-
tion, simplifying it substantially. IX executes only 2.73 kc for
an average request. IX spends 28% of cycles doing work in the
application, while the rest (72%) are spent in the IX network
stack. We note that the comparison is not entirely fair, as IX
vastly simplifies the socket interface. IX does not support
POSIX sockets, instead relying on a custom libevent-based
API. With sockets, IX would spend a smaller proportion of
cycles in the application. For each request, IX executes 3.3
ki, resulting in a CPI 3.3× above the ideal for the server. This
results in an average per-request processing latency of 1.3µs.
Privilege mode switches remain for IX and while IX simpli-
fies the TCP stack, it still covers all TCP packet processing
cases in one monolithic block, causing its code to access
sizeable per-connection state and execute many branches,
increasing cache footprint. Table 2 shows that while IX re-
duces overheads dramatically across the board versus Linux,
it still spends many backend bound cycles.

TAS overheads. TAS (with sockets) executes 2.57 kc for an
average request, 26% of these in the application, while the
rest (74%) are spent in TAS. TAS executes 3.9 ki per request,
resulting in a CPI only 2.6× above the ideal. While TAS is
not perfect and executes more instructions, these instruc-
tions are executed on a separate fast-path, resulting in an
average per-request processing latency of 1.2µs, due to less
per-connection state, pipeline parallelism, and isolation. Ta-
ble 2 shows that TAS reduces application frontend overhead
by 15%, while reducing TCP stack backend overhead by 32%

Counter Linux IX TAS

CPU cycles 1.1k/15.7k 0.8k/1.9k 0.7k/1.9k
Instructions 12.7k 3.3k 3.9k
CPI 1.32 0.82 0.66

Retiring (cycles) 175/3591 190/753 167/848
Frontend Bound 173/2600 121/175 102/248
Backend Bound 388/9046 402/1005 353/684
Bad Speculation 141/515 48/52 63/129

Table 2. Per request app/stack overheads.

versus IX. TAS frontend overhead comes primarily from the
sockets emulation and is reduced to 168 cycles (4% lower
than IX) with a low-level interface. Speculation performance
did not improve. TAS spends these cycles on message queues.
3 Design
In this section we describe the design of TAS, with the fol-
lowing design goals:
• Efficiency: Data center network bandwidth growth con-
tinues to outpace processor performance. TASmust deliver
CPU efficient packet processing, especially for latency-
sensitive small packet communication that is the common
case behavior for data center applications and services.

• Connection scalability: As applications and services
scale up to larger numbers of servers inside the data center,
incast, where a single server handles a large number of
connections, continues to grow. TAS must support this
increasing number of connections.

• Performance predictability: Another consequence of
this scale is that predictable performance is becoming as
important as high common case performance for many ap-
plications. In large-scale systems, individual user requests
can access thousands of backend servers [23, 30] caus-
ing one-in-a-thousand request performance to determine
common case performance.

• Policy compliance: Applications from different tenants
must be prevented from intercepting and interfering with
network communication from other tenants. Thus, TAS
must be able to enforce policies such as bandwidth limits,
memory isolation, firewalls, and congestion control.

• Workload proportionality: TAS should not use more
CPUs than necessary to provide the required throughput
for the application workloads running on the server. This
requires TAS to scale its CPU usage up and down, depend-
ing on demand.
TAS has three components: Fast path, slow path, and un-

trusted per-application user-space stack. All components are
connected via a series of shared memory queues, optimized
for cache-efficient message passing [8]. The fast path is re-
sponsible for handling common case packet exchanges. It
deposits valid received packet payload directly in user-space
memory. On the send path, it fetches and encapsulates pay-
load from user memory according to per-connection rate or

4

App

epoll()

Slow path

Fast path

libTAS

context RX queue

0 1 2 3

deliver
payload

notify
app

Data
packets

ACKs

Exceptions

RX payload buffer

recv()

RSS to
RX threads

Figure 1. TAS receive flow.

window limits that are dynamically configured by the slow
path. User-level TCP stacks provide the standard POSIX API
to applications. Applications do not need to be modified,
only (dynamically) relinked. For connection setup and tear-
down, each user-level stack interacts with the slow path. We
describe each component in detail in this section.

3.1 Fast Path
To streamline RPC processing and improve performance, the
fast path handles the minimum functionality required for the
common-case exchange of RPC packets between untrusted
user applications and the network in a data center. To do so,
it processes protocol headers, sends TCP acknowledgements,
enforces network congestion policy, and performs payload
segmentation. To be fully functional, it must also detect ex-
ceptions, such as out-of-order arrivals, connection control
events, and unknown or unusual packets (such as unusual
IP and TCP header options). Data center applications typi-
cally pre-establish all required connections. Hence, the TAS
fast path handles connection establishment and teardown as
exceptions. Exceptions are generally forwarded to the slow
path (but see exceptions, below).

Common-case receive (Figure 1). The TAS fast path re-
ceives TCP packets from the NIC on a dynamic number
(cf. Section 3.4) of receive threads via the NIC’s receive-side
scaling (RSS) functionality. TAS assumes that packets are
commonly delivered in order by the network. This is true
for data center networks today due to connection-stable
multi-path routing [17, 43]. With in order packets, the fast
path can discard all network headers and directly insert the
payload into a user-level, per-flow, circular receive payload
buffer (identified by rx_start|size fields in per-flow state,
with rx_head|tail identifying write/read positions), noti-
fying an appropriate receive context queue (context field in
per-flow state) by identifying the connection and number of
bytes received. The application receives notifications when
polling for them (e.g., via epoll()) and copies received data
out of the payload buffer via socket calls (e.g., recv()).
When a payload buffer is full, the fast path simply drops

the packet—an uncommon situation, as TCP controls the flow
of packets into payload buffers via per-connection window
size. If a context queue is full, the fast path will inform the
user-level stack upon future packet arrivals when the queue
is available again—context queues only fill when payload is

send()

Set rate
Slow path

Fast path

libTAS

Data
packets

ACK
packets

0 1 2 3

State

tx_sent

cnt_ecnb

App

context TX queue

TX payload buffersbucket

Monitor
flow

Figure 2. TAS transmit flow.

queued at an application, providing that the application has
work to do and will check the context queue soon. User-level
stacks are free to define and configure contexts. We describe
them in more detail in Section 3.3. Per-flow payload receive
buffers simplify packet handling, flow control, and improve
isolation. Calculating an accurate flow control window with
shared buffers requires iteration over all connections sharing
the buffer, imposing non-constant per-packet overhead. To
avoid this overhead, we opt for per-flow payload buffers.

After depositing the payload of an in-order packet, the fast
path automatically generates an acknowledgement packet
and transmits it to the sender to update its TCP window.
Handling TCP acknowledgements in the fast path is im-
portant for security. If user-space was given control over
acknowledgements, as in many kernel-bypass solutions, it
can use it to defeat TCP congestion control [42]. Fast path
acknowledgements also provide correct explicit congestion
notification (ECN) feedback, and accurate TCP timestamps
for round-trip time (RTT) estimation. Finally, the fast path
updates local per-connection state (e.g., seq, ack, and window
fields).

Common-case send (Figure 2). User-level stacks send data
on a flow by appending it to a flow’s circular transmit buffer
(e.g., when invoked by send()). Per-flow send buffers are
required to alleviate head-of-line blocking under congestion
and flow control. To inform the fast path, the stack issues a
TX command on a context queue and wakes a waiting fast
path thread. The fast path fills a per-flow bucket (bucket
field in per-flow state) with the amount of new data to send.
Asynchronously, the fast path drains these buckets, depend-
ing on a slow path configured per-connection rate-limit or
send window size and the receiver’s TCP window, to enforce
congestion and flow control. When data can be sent, the fast
path fetches the appropriate amount from the transmit buffer,
produces TCP segments and packet headers for the connec-
tion, and transmits. The fast path also uses TCP timestamps
to provide the slow path with an accurate RTT estimate
for congestion control and timeouts (cf. Section 3.2), among
other relevant flow statistics (e.g., tx_sent and cnt_ecnb
fields).

Transmit payload buffer space reclamation. Any pay-
load that has been sent remains in the transmit buffer until
acknowledged by the receiver. The fast path parses incoming

5

Field Bits Description
opaque 64 Application-defined flow identifier
context 16 RX/TX context queue number
bucket 24 Rate bucket number
rx|tx_start 128 RX/TX buffer start
rx|tx_size 64 RX/TX buffer size
rx|tx_head|tail 128 RX/TX buffer head/tail position
tx_sent 32 Sent bytes from tx_head
seq 32 Local TCP sequence number
ack 32 Peer TCP sequence number
window 16 Remote TCP receive window
dupack_cnt 4 Duplicate ACK count
local_port 16 Local port number
peer_ip|port|mac 96 Peer 3-tuple (for segmentation)
ooo_start|len 64 Out-of-order interval
cnt_ackb|ecnb 64 ACK’d and ECN marked bytes
cnt_frexmits 8 Fast re-transmits triggered count
rtt_est 32 RTT estimate
Table 3. Required per-flow fast path state (102 bytes).

acknowledgements, updates per-flow sequence and window
state, frees acknowledged transmit payload buffer space, and
informs user-space of reliably delivered packets by issuing
a notification with the number of transmitted bytes for the
corresponding flow on an RX context queue (not shown in
figures). This requires constant time.

Per-flow state. To carry out its tasks, the fast path requires
the per-flow state shown in Table 3. The opaque field is
specified by and relayed to user-space to help it identify the
corresponding connection. RX/TX buffer state is used for
management of per-flow buffers in user-space. The slow path
has access to all fast path state via shared memory. In all,
we require 102 bytes of per-flow state. Current commodity
server CPUs supply about 2MB of L2/3 data cache per core
(§4). This allows us to keep the state of more than 20,000
active flows per core in the fast path. Integrating ideas to
reduce fast path state (e.g., SENIC [37]) is future work.

Exceptions (Figure 1). Unidentified connections, corrupted
packets, out-of-order arrivals, and packets with unhandled
flags, are exceptions. Exception packets are filtered and sent
to the slow path for processing. The fast path detects out-
of-order arrivals by matching arrivals against expected se-
quence numbers in the per-flow seq field. As an optimization,
we handle two exceptions on the fast path:
1. When processing incoming acknowledgements the fast

path counts duplicates and triggers fast recovery after
three duplicates, by resetting the sender state as if those
segments had not been sent. The fast path also increments
a per-flow retransmit counter to inform the slow path to
reduce the flow’s rate limit.

2. The fast path tracks one interval of out-of-order data in
the receive buffer (starting at ooo_start and of length
ooo_len). The fast path accepts out-of-order segments of
the same interval if they fit in the receive buffer. In that

App

Slow path
context
queue connect()

listen()

accept()

close()

Establish
connection

SYNACK Slow pathFast path

libTAS

State
…

SYN

Packets
ACKs

Exception queue

Figure 3. TAS slow path connection control.

case, the fast path writes the payload to the corresponding
position in the receive buffer. When an in-order segment
fills the gap between existing stream and interval, the fast
path notifies the user-level stack as if one big segment
arrived, and resets its out-of-order state. Other out-of-
order arrivals are dropped and the fast path generates an
acknowledgement specifying the next expected sequence
number to trigger fast retransmission.

3.2 Slow Path
The slow path implements all policy decisions and manage-
ment mechanisms that have non-constant per packet over-
head or are too expensive or stateful to process in the fast
path. This includes congestion control policy, connection
control, a user-space TCP stack registry, timeouts and other
exceptional situations.

Congestion control (Figure 2). TAS supports both rate and
window-based congestion control. The fast path runs a con-
trol loop iteration for each flow every control interval (by de-
fault every 2 RTTs). The slow path retrieves per-connection
congestion feedback from the fast path (cnt_ackb|ecnb,
cnt_frexmits, and rtt_est fields), then runs a congestion
control algorithm to calculate a new flow send rate or win-
dow size, and finally updates this information in the fast
path via shared memory.

This provides a generic framework to implement different
congestion control algorithms. We implement DCTCP [6]
and TIMELY [28] (adapted for TCP by adding slow-start).
We adapt DCTCP to operate on rates instead of windows
by applying its control law (rate-decrease proportional to
fraction of ECN marked bytes) to flow rates: during slow
start we double the rate every control interval until there
is an indication of congestion, and during additive increase
we add a configurable step size (10mbps by default) to the
current rate. To prevent rates from growing arbitrarily in
the absence of congestion, we ensure at the beginning of the
control loop that the rate is no more than 20% higher than
the flow’s send rate.
The choice for rate-based DCTCP for our prototype is

deliberate. Rate-based congestion control is more stable with
many flows. It smoothes bursts that otherwise occur due to
abrupt changes in congestion window size and thus provides

6

a fairer allocation of bandwidth among flows. Our rate-based
DCTCP implementation is compatible with Linux peers.

Connection control (Figure 3). Connection control is com-
plex. It includes port allocation, negotiation of TCP options,
maintaining ARP tables, and IP routing. We thus handle it in
the slow path. User-level TCP stacks issue a new_flow com-
mand on the slow path context queue to locally request new
connections (triggered by a connect() call). If granted, the
slow path establishes the connection by executing the TCP
handshake and, if successful, installs the established flow’s
state in the fast path and allocates a rate/window bucket.
Remote connection control requests are detected by the fast
path and forwarded to the slow path, which then completes
the handshake.

Servers can listen on a port by issuing a listen command
to the slow path (triggered by listen() socket call). Incom-
ing packets with a SYN flag are forwarded as exceptions to
the slow path. The slow path informs user-space of incom-
ing connections on registered ports by posting a notification
in the slow path context queue. If the application decides
to accept the connection (via accept()), its TCP stack may
issue the accept command to the slow path (via the slow
path context queue), upon which the slow path establishes
the flow by allocating flow state and bucket, and sending
a SYNACK packet. To tear down a connection (e.g., upon
close()), user-space issues close, upon which the slow
path executes the appropriate handshake and removes the
flow state from the fast path. Similarly, for remote teardowns,
the slow path informs user-space via a close command.

Retransmission timeouts. We handle retransmission time-
outs in the slow path. When collecting congestion statistics
for a flow from the fast path, the kernel also checks for unac-
knowledged data (i.e. tx_sent > 0). If a flow has unacknowl-
edged data with a constant sequence number for multiple
control intervals (2 by default) the slow path instructs the
fast path to start retransmitting by adding a command to the
slow path context queue. In response to this command the
fast path will reset the flow and start transmitting exactly as
described above for fast retransmits.

TCP stackmanagement. To associate new user-space TCP
stacks with TAS, the slow path has to be informed via a
special system call. If the request is granted, the slow path
creates an initial pair of context queues that the user-space
stack uses to create connection buffers, etc.

3.3 User-space TCP Stack
The user-space TCP stack presents the programming inter-
face to the application. The default interface is POSIX sockets
so applications can remain unmodified, but per-application
modifications and extensions are possible, as the interface
is at user-level [9, 27, 34]. For example, TAS also offers a
low-level API that is similar to the IX networking API. The

low-level API directly passes events from the context RX
queue to the application and offers functions to add entries
to the context TX queue. The TCP stack is responsible for
managing connections and contexts. To fulfill our perfor-
mance goal, common-case overhead of the TCP stack has to
be minimal.

Context management. User-space stacks are responsible
for defining and allocating contexts. Contexts are useful in
various ways, but typically stacks allocate one context per
application thread for scalability, as it allows cores to poll
(e.g., epoll()) only a private context queue, rather than a
number of shared payload buffers. Stacks allocate contexts
via management commands to the slow path.

3.4 Workload Proportionality
TAS executes protocol processing on dedicated processor
cores, and the number of cores needed depends on the work-
load. As a result, TAS has to dynamically adapt the number
of processor cores used for processing to be proportional
with the current system load. We implement this with three
separate mechanisms. On the fast path, we use hardware
and software packet steering to direct packets to the cor-
rect cores, while the slow path monitors the CPU utilization
and, as needed, adjusts steering tables to add or remove
cores. Finally, the fast path blocks threads when no packets
are received for a period of time (10 ms in our implemen-
tation). These cores can be woken up via kernel notifica-
tions (eventfd). This requires us to carefully handle packet
re-assignments among queues during scale up/down events.

Fast path. When initializing, TAS creates threads for the
configuredmaximumnumber of cores and assignsNIC queues
and application queues for all cores. Because of the adap-
tive polling with notifications, cores that do not receive any
packets automatically block and are de-scheduled.
We design the data path to handle packets arriving on

the wrong TAS core, either from the NIC or the application,
with a per-connection spinlock protecting the connection
state. This avoids the need for expensive coordination and
draining queues when adding or removing cores. Instead we
simply asynchronously update NIC and application packet
steering to route packets to or away from a specific core.
We eagerly update the NIC RSS redirection table to steer
incoming packets, and lazily update the routing for outgoing
packets from applications. This allows us to be robust during
scale up/down events.

Slow path. The slow path is responsible to decide when to
add or remove cores by monitoring fast path CPU utilization.
If it detects that in aggregate more than 1.25 cores are idle, it
initiates the removal of a core. If, on the other hand, less than
0.2 cores are idle in aggregate, it adds a core. The specific
thresholds are configuration parameters.

7

4 Implementation
We have implemented TAS from scratch in 10,127 lines of
C code (LoC). TAS’ fast path comprises 2,931 LoC. The slow
path comprises 3,744 LoC. The user-level library providing
the POSIX sockets API is dynamically linked to unmodified
application binaries and comprises 3,452 LoC. TAS runs in a
user-level process, separate from the applications. Both fast
and slow path run as separate threads within this process.

Fast path. The fast path uses DPDK [3] to directly access the
machine’s NIC, bypassing the Linux kernel. Unlike systems
that rely on batching to reduce kernel-user switches, TAS
uses a configurable number of dedicated host cores, which
we can vary based on the offered network load. Each core
replicates a linear packet processing pipeline and exposes a
queue pair to the slow path and to each application context
to avoid synchronization. The NIC’s RSS mechanism ensures
that packets within flows are assigned to the same pipeline
and not reordered.

Slow path. The slow path runs as a separate thread within
the TAS process. To bootstrap context queues, we require
applications to first connect to the slow path via a named
UNIX domain socket on which the slow path thread listens.
Applications use the socket to set up a shared memory region
for the context queues. The slow path also uses the socket for
automatic cleanup, to detect when application processes exit
by receiving a hangup signal via the corresponding socket.

4.1 Limitations
Fixed connection buffer sizes. TAS requires connection
send and receive buffers to be fixed upon connection cre-
ation. We do not currently implement any buffer resizing
depending on load. For workloads with large numbers of
inactive connections, buffer resizing (via additional manage-
ment commands) is desirable.

TCP slow start. Our prototype does not fully implement the
TCP slow start algorithm. Instead, we currently double the
sending rate every RTT until we reach steady-state. With the
exception of short-lived connections, our measurements are
concerned with steady-state performance and this limitation
does not impact the reported results. For short-lived connec-
tions, TAS might be slightly negatively impacted, as RTT
estimates are based on and thus may lag behind received
TCP acknowledgements.

No IP fragments. Our current prototype does not support
fragmented IP packets. We believe this is sufficient, as IP
fragmentation does not normally occur in the data center.

5 Evaluation
Our evaluation seeks to answer the following questions:
• How does TAS’ throughput, latency, and connection scal-
ability for remote procedure call operation compare to

state-of-the-art software solutions in the common case?
How in the case of short-lived connections? (§5.1)

• Does our simplified fast-path TCP operation negatively
affect performance under packet loss or congestion? (§5.2)

• Do these improvements result in better end-to-end through-
put and latency for data center applications? How do these
workloads scale with the number of CPU cores? (§5.3, 5.4)

• How does TAS perform at scale? Does the split of labor
into slow and fast path affect congestion control fidelity
with many connections and various round-trip times to
remote machines? (§5.5)

• Is TAS consuming CPU resources proportional to its work-
load? What is the impact on network throughput and
latency when TAS changes its CPU resource use? (§5.6)

To answer these questionswe first evaluate RPC performance
on a number of systems using microbenchmarks. We then
evaluate two data center application workloads: a typical,
read-heavy, key-value store application and a real-time an-
alytics framework. Finally, we validate our results at scale
with an ns-3 simulation.

Testbed cluster. Our evaluation cluster contains a 24-core
(48 hyperthreads) Intel Xeon Platinum 8160 (Skylake) system
at 2.1 GHz with 196 GB RAM, 33 MB aggregate cache, and
an Intel XL710 40Gb Ethernet adapter. We use this system
as the server. There are also six 6-core Intel Xeon E5-2430
(Sandy Bridge) systems at 2.2 GHz with 18MB aggregate
cache, which we use as clients. These systems have Intel
X520 (82599-based) dual-port 10Gb Ethernet adapters with
both ports connected to the switch. We run Ubuntu Linux
16.04 (kernel version 4.15) with DCTCP congestion control
on all machines. We use an Arista 7050S-64 Ethernet switch,
set up for DCTCP-style ECN marking at a threshold of 65
packets. The switch has 10G ports (connected to the clients)
and 40G ports (connected to the server).

Baseline. We compare TAS performance to the Linux mono-
lithic, in-kernel TCP stack (using epoll), to themTCP kernel-
bypass TCP stack [24], and to the IX protected kernel-bypass
TCP stack [9]. Unless stated, our benchmarks do not mix peer
systems. mTCP and IX do not provide the standard sockets
API, requiring significant application modification [9, 24].
Unless stated, we use the same application binary for TAS
and Linux.

Peer compatibility. We confirm that TAS interoperateswith
existing Linux TCP peers by comparing the aggregate through-
put of 100 flows between two hosts among all combinations
of Linux and TAS senders and receivers. Table 4 shows the
result. Line rate was achieved in all cases.

5.1 Remote Procedure Call (RPC)
RPC is a demanding, but necessary mechanism for many
server applications. RPCs are both latency and throughput

8

Sender Linux TAS

Receiver Linux 9.4Gbps 9.4Gbps
TAS 9.4Gbps 9.4Gbps

Table 4. Compatibility between Linux and TAS: 100 bulk
transfer flows from 1 sendingmachine to 1 receivingmachine
running the specified combination of network stacks.

 0

 5

 10

 15

 20

 25

 1 16 32 48 64 80 96

T
h
ro

u
g
h
p
u
t
[m

O
p
s
]

K Connections

TAS
IX

Linux

Figure 4. Connection scalability for RPC echo benchmark
on 20 core server.

sensitive. Scaling reliable RPCs to many connections has
been a long-standing challenge due to the high overhead of
software TCP packet processing [30, 39, 41]. To demonstrate
the per-core efficiency benefits of TAS, we evaluate a simple
event-based RPC echo server.

Connection scalability. For each benchmark run, we es-
tablish an increasing number of client connections to the
server and measure RPC throughput over 1 minute. To do
so, we use multi-threaded clients running on as many client
machines as necessary to offer the required load. Each client
thread leaves a single 64-byte RPC per connection in flight
and waits for a response in a closed loop.

Figure 4 shows throughput as we vary the number of client
connections. With 1k connections TAS shows a throughput
of 5.1× Linux, and 0.95× IX. The improvement relative to
Linux is because TAS streamlines processing and thus gains
efficiency. After reaching saturation, throughput for both IX
and Linux degrades as the number of connections increases,
by 40% for Linux and up to 60% for IX. TAS on the other
hand only degrades by up to 7% relative to peak throughput.
This is because of TAS’s minimal fast-path connection state
and streamlined packet processing code allowing the CPU
to prefetch state efficiently.

Short-lived connections. Separating packet processing into
a common case fast path and a separate slow path reduces
packet processing overheads in the common case. However,
operations that involve slow path processing do incur addi-
tional overheads because of handoff overheads between the
slow path and the fast path. The most heavy-weight such
operations in TAS are connection setup and teardown, in-
volving not just the slow path but also the application several
times during each handshake. To quantify these overheads
we measure throughput of 1,024 concurrent, short-lived con-
nections in our RPC echo benchmark.We use one application
core, and for TAS two fast-path cores and one partially used

 0.03

 0.1

 0.5

 1

 4

1 2 4 16 64 256 1k 4k

T
h
ro

u
g
h
p
u
t
[m

O
p
s
]

Messages per Connection

TAS
Linux

Figure 5. Throughput with short-lived connections.

1G

10G

40G

R
X

 T
h

ro
u

g
h

p
u

t

250 Cycles/Message 1000 Cycles/Message

.1G

1G

10G

40G

3
2

1
2

8

5
1

2

2
0

4
8

T
X

 T
h

ro
u

g
h

p
u

t

Message Size [bytes]

TAS

3
2

1
2

8

5
1

2

2
0

4
8

Message Size [bytes]

mTCP
Linux

Figure 6. Pipelined RPC throughput, varying per-RPC delay
and size, for a single-threaded server.

core for the slow-path. Figure 5 shows the results for vary-
ing numbers of RPCs before connections are torn down and
re-established with Linux and TAS. With 4 or more RPCs
per connection TAS outperforms Linux, and reaches 95%
bandwidth utilization with 256 RPCs per connection.

Pipelined RPC. In cases without dependencies, RPCs can
be pipelined on a single connection. These transfers can still
be limited by TCP stack overheads, depending on RPC size.
We compare pipelined RPC throughput for different sizes
by running a single-threaded event-based server processing
RPCs on 100 connections, partitioned equally over 4 client
machines using 4 threads each. After each RPC the server
waits for an artificial delay of 250 or 1000 cycles to simulate
application processing. To break out improvements in receive
and transmission overhead, we run separate benchmarks,
one where the server only receives RPCs and one where it
only sends.

Figure 6 shows the results. When receiving small (≤ 64B)
RPCs, TAS provides up to 4.5× better throughput than Linux.
TAS’s improvement reduces to 4× as RPCs become larger.
TAS reaches 40G line-rate with 2KB RPCs for 250 cycles of
processing while Linux barely reaches 10G. For 1000 cycles
of processing, no stack achieves line-rate and TAS provides
a steady throughput improvement around 2.5× regardless of
RPC size. mTCP locks up in this experiment.
When sending small and moderate (≤ 256B) RPCs at 250

cycles processing time, TAS provides up to 12.4× Linux and
9

 0

 5

 10

 15

 20

 25

 30
 0.1 0.2 0.5 1 2 5

T
h
ro

u
g
h
p
u
t
p
e
n
a
lt
y
 [
%

]

Packet drop rate [%]

Linux
TAS
TAS simple recovery

Figure 7. Throughput penalty with varying packet loss rate.

1.5× mTCP efficiency. For large (2KB) RPCs, TAS’s advan-
tage declines to 6.1× Linux, but improves to 2.6× mTCP.
mTCP reaches scalability limitations beyond 512B RPCs,
while Linux catches up as memory copying costs start to
dominate. TAS again achieves 40G line-rate at 2KB RPC size,
while Linux and mTCP do not reach beyond 10G. This shows
that simplifications in common-case send processing, such
as removing intermediate send queueing, can make a big
difference.

This difference again diminishes as application-level pro-
cessing grows to 1000 cycles. In this case, TAS provides a
steady improvement of up to 5–6× Linux, regardless of RPC
size. Compared to mTCP, TAS provides up to 2× improve-
ment. TAS performs comparably to mTCP in both transmit
cases, but does provide protection.
We conclude that TAS indeed provides better RPC latency
and throughput when compared to both state-of-the-art in-
kernel and kernel-bypass TCP stack solutions. Further, TAS
provides throughput on par with and better latency than
kernel-bypass stacks while retaining traditional OS safety
guarantees. Thus we improve performance and efficiency of
all networked data center applications relying on RPCs over
TCP.

5.2 Packet Loss
Even in a data center environment, minimal (≤1%) packet
loss can occur due to congestion and transmission errors.
TAS uses a simplified recovery mechanism and we are in-
terested in how packet loss affects TAS throughput in com-
parison to Linux. We quantify this effect in an experiment
measuring throughput of 100 flows over a single link be-
tween two machines under different rates of induced packet
loss between 0.1% and 5%. We compare TAS with receiver
out-of-order processing (cf. Exceptions in Section 3.1) and
without it (simple go-back-N).

Figure 7 shows the penalty relative to the throughput
achieved without loss. We can see that TAS throughput is
minimally affected (up to 1.5%) for loss rates up to 1%. For
a loss rate of 5%, TAS incurs a throughput penalty of 13%.
Overall, TAS’s penalty is about 2× that of Linux. Linux keeps
all received out-of-order segments and also issues selective
acknowledgements, allowing it to recover more quickly. TAS
only keeps one continuous interval of out-of-order data,
requiring the sender to resend more in some cases. Without

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 6 8 10 12 14 16

T
h

ro
u

g
h

p
u

t
[m

O
p

s
]

Cores

TAS LL

TAS SO

IX

Linux

Figure 8. Key-value store throughput scalability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 15 50 100 150 200

C
D

F

Latency [us]

TAS/TAS
IX/TAS

TAS/Linux
IX/Linux

Linux/TAS
Linux/Linux

Figure 9. Key-value store latency CDF with different con-
figurations (server stack / client stack).

Latency [µs] Median 90th 99th Max

Linux 97 129 177 1319
IX 20 27 30 280
TAS 17 20 30 122

Table 5. Key-value store request latency in microseconds
with TAS clients.

receiver out-of-order processing, the penalty increases by a
factor of 3. We conclude that limited out-of-order processing
has a benefit, but full out-of-order processing has minimal
impact for the loss rates common in data centers.

5.3 Key-Value Store
Key-value stores strongly rely on RPCs. Due to the high
TCP processing overhead, some cloud operators use UDP
for reads and use TCP only for writing. In this section, we
demonstrate that TAS is fast enough to be used for both
reading and writing, simplifying application design. To do
so, we evaluate a scalable key-value store, modeled after
memcached [4]. We send it requests at a constant rate us-
ing a tool similar to the popular memslap benchmark. The
workload consists of 100,000 key-value pairs of 32 byte keys
and 64 byte values, with a skewed access distribution (zipf,
s = 0.9). The workload contains 90% GET requests and 10%
SET requests. Throughput was measured over 2 minutes
after 1 minute of warm-up.

Throughput scalability. To conduct throughput bench-
marks we run 5 client machines, each using 12 cores in total
to generate requests directed at the server. For all cases we
run the clients on TAS to maximize the throughput they
can generate. We establish 32k connections with at most
one request in flight per connection, while the clients adjust
the offered load to maximize throughput without excessive

10

Total Cores 2 4 8 12 16

Sockets App 1 2 5 7 9
TAS 1 2 3 5 7

Lowlevel App 1 2 4 6 8
TAS 1 2 4 6 8

Table 6.Core split for TAS in the key-value store throughput
experiment from Figure 8.

queuing in the application receive buffers. We run the bench-
mark, varying the number of server cores available. Figure 8
shows the result, counting all server cores in use for the
application and TCP stack. We also measure throughput for
a version of the key-value store that uses the TAS low-level
API (TAS LL), skipping the sockets compatibility layer (TAS
SO). We can see that TAS LL outperforms Linux and IX in
total throughput by up to 9.6× and 1.9×, respectively, and by
up to 7.0× and 1.3× with TAS SO. Table 6 shows the split of
cores between the key-value store and TAS. TAS SO requires
up to 2 fewer cores for TCP processing, which we allocate
to the application instead.

Latency. We also conduct end-to-end latency experiments
under 15% bandwidth utilization, so that queues do not build
excessively. This experiment uses a single application core
(and one TAS fast-path core). To quantify both server-side
and client-side effects, we repeat the experiment with TAS
and Linux on the client side (IX does not support our client).
Figure 9 shows the resulting latency distributions and Table 5
summarizes the results. When using TAS clients, we can
see that TAS outperforms Linux and IX by a median 5.6×
and 15%, respectively. Both IX and TAS demonstrate much
better tail behavior than Linux, improving 99th percentile tail
latency versus Linux by 5.9×. While 99th percentile latency
of TAS and IX is identical, IX has a longer tail than TAS, with
a maximum latency 2.3× that of TAS. TAS also maintains
lower latencies than IX in the median to 99th percentile
range, with a 90th percentile improvement of 26%. We attain
similar improvements when using a Linux client.

Non-scalable workloads. We evaluate TAS’s performance
for workloads with scalability bottlenecks by increasing the
access skew to maximize contention on a single 4-byte key
and value. Our key-value store uses locks to serialize key
updates, causing it to scale badly in this case. This experiment
uses the same client setup with 256 connections.
Table 7 shows throughput with varying numbers of ag-

gregate cores used for TAS LL and SO, IX, and Linux. The
TAS core numbers use 1 application core with 1-3 fast path
cores. TAS scales to 4 cores and IX to 3 cores. In the limit TAS
improves throughput by 1.6× relative to IX, and by 5.7× rela-
tive to Linux (1.1× and 3.9× with sockets). We conclude that
TAS’s ability to scale the network stack independently from
the application can signficantly improve performance for

Throughput [mOps] 1 Core 2 C 3 C 4 C

TAS LL 2.4 3.8 4.6
TAS SO 2.4 3.1 3.1
IX 1.5 2.5 2.8 2.8
Linux 0.3 0.4 0.6 0.8

Table 7. Throughput for non-scalable key-value store work-
load, with a single 4-byte key and 4-byte value pair.

applications with scalability bottlenecks (e.g., Memcached)
or not designed to scale (e.g. Redis [5]).
We conclude that TAS can improve the performance of RPC-
based client-server applications, such as key-value stores,
even in cases where these applications have scalability bot-
tlenecks. It exceeds state-of-the-art network stacks in both
latency and throughput, both in median and the tail. TAS can
simplify the design of RPC-based applications by allowing
them to rely on the familiar TCP sockets interface.

5.4 Real-time Analytics
Real-time analytics platforms are useful tools to gain instan-
taneous, dynamic insight into vast datasets that change fre-
quently. These systems must be able to produce answers
within a short timespan and process millions of dataset
changes per second. To do so, analytics platforms utilize
data stream processing techniques: A set of workers run con-
tinuously on a cluster of machines; data tuples containing
updates stream through them according to a dataflow pro-
cessing graph, known as a topology. The system scales by
replicating workers over multiple cores and spreading in-
coming tuples over the replicas. To minimize loss, many
implementations transmit tuples via the TCP protocol.

To direct tuples to worker cores on each machine, a demul-
tiplexer thread is introduced that receives all incoming tuples
and forwards them to the correct executor for processing.
Similarly, outgoing tuples are first relayed to a multiplexer
thread that batches tuples before sending them onto their
destination connections for better performance.

Testbed setup. We evaluate the performance of the Flex-
Storm real-time analytics platform, obtained from the au-
thors of [25], by running the same benchmark presented in
[25]. Figure 10 and Table 8 show average achievable through-
put and latency at peak load on this workload. Throughput
is measured over a runtime of 20 seconds, shown raw and
per core over the entire deployment. Per-tuple latency is
broken down into time spent in processing, and in input and
output queues, as measured at user-level, within FlexStorm.
We deploy FlexStorm on 3 machines of our client cluster. We
evenly distribute workers over the machines to balance the
load.

Linux performance. Overhead introduced by the Linux
kernel network stack limits FlexStorm performance. Even

11

 0

 1

 2

 3

 4

Raw

T
h
ro

u
g
h
p
u
t
[m

 t
u
p
le

s
 /
 s

]

Linux mTCP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Per core

TAS

Figure 10. Average throughput on various FlexStorm con-
figurations. Error bars show min/max over 20 runs.

Input Processing Output Total

Linux 6.96 µs 0.37 µs 20 ms 20 ms
mTCP 4 ms 0.33 µs 14 ms 18 ms
TAS 7.47 µs 0.36 µs 8 ms 8 ms

Table 8. Average FlexStorm tuple processing time.

though per-tuple processing time is short, tuples spend sev-
eral milliseconds in queues after reception and before emis-
sion. Queueing before emission is due to batching in the
multiplexing thread, which batches up to 10 milliseconds of
tuples before emission. Input queueing is minimal in Flex-
Storm as it is past the bottleneck of the Linux kernel and thus
packets are queued at a lower rate than they are removed.

mTCPperformance. Running all FlexStormnodes onmTCP
yields a 2.1× raw throughput improvement versus Linux,
while utilizing an additional core per node to execute the
mTCP user-level network stack. The per-core throughput
improvement is thus lower, 1.8×. We could not run mTCP
threads on application cores, as mTCP relies on the NIC’s
symmetric RSS hash to distribute packets to isolated per-
thread stacks for scalability. This does not work for asymmet-
ric applications, like FlexStorm, where the sets of receiving
and sending threads are disjoint. The bottleneck is now the
FlexStorm multiplexer thread. Input queuing delay has in-
creased dramatically, while output queueing delay decreased
only slightly. This is primarily because mTCP collects pack-
ets into large batches to minimize context switches among
threads. Overall, tuple processing latency has decreased only
10% versus Linux due to the much higher amount of batching
in mTCP.

TAS performance. Running all FlexStorm nodes on TAS
yields an 8% raw throughput improvement versus mTCP and
the per-core throughput improvement is 26%. The improve-
ment is only small as the bottleneck remains the multiplexer
thread. Overall, tuple processing latency has decreased 56%
versus mTCP. This is because TAS does not require any
batching to achieve its performance.
While there are limited throughput improvements to using
TAS due to application-level bottlenecks, we conclude that
tuple processing latency can be improved tremendously com-
pared to approaches that use batching, as fewer tuples are

 0

 0.5

 1

 1.5

0 200 400 600 800 1ms

A
v
e

ra
g

e
 F

C
T

 [
m

s
]

Control interval (T) [us]

TCP
DCTCP

TAS

(a) Avg flow completion time

 10

 100

0 200 400 600 800 1ms

Q
u

e
u

e
 s

iz
e

 [
p

k
ts

]

Control interval (T) [us]

TCP
DCTCP

TAS

(b) Average queue length
Figure 11. Simulation of a single 10Gbps link.

held in queues. This provides the opportunity for tighter real-
time processing guarantees under higher workloads using
the same equipment.

5.5 Congestion Control
We implemented DCTCP congestion control in TAS with
the key difference that transmission is rate based, with rates
updated periodically for all flows by the kernel at a fixed
pre-defined control interval τ . We investigate the impact of
τ on congestion behavior via ns-3 simulations, comparing to
vanilla DCTCP. First, we simulate a single 10Gbps link with
an RTT of 100µs at 75% utilization with Pareto-distributed
flow sizes and varying τ . Next, we simulate a large cluster of
2560 servers and a total of 112 switches that are configured
in a 3-level FatTree topology with an oversubscription ratio
of 1:4. All servers follow and on-off traffic pattern, sending
flows to a random server in the data center at a rate such
that the core link utilization is approximately 30%. Finally,
we investigate congestion fairness experimentally with τ =
2 × RTT (as measured for each flow) under incast.

Single link. Figure 11 shows average flow completion time
(FCT) and average queue size with varying τ for the single
10Gbps link. The average FCT for TAS is very similar to that
of DCTCP when τ is greater than the RTT. However, if τ
is set too low, frequent fluctuations in congestion window
cause slow convergence and long completion times. The
average queue length is very similar to that of DCTCP and
grows, but slowly, as τ increases beyond the RTT, due to
delayed congestion window updates.

Large cluster. Figure 12 shows the average flow comple-
tion times for short and long flow sizes in the large cluster
simulation with the control interval τ set to 100µs. The per-
formance of TAS is similar to that of DCTCP in both cases.
100µs is a reasonable amount of time for the kernel to up-
date congestion windows for thousands of flows. Even with
larger values of τ , queue size is only minimally affected and
FCTs stay approximately identical.We thus conclude that our
out-of-band approach works to provide DCTCP-compatible
congestion behavior.

Tail-latency under incast. To evaluate performance un-
der congestion, we measure tail latency under incast with
4 machines sending to a single receiver (operating at line

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
D

F

Latency [ms]

TCP
DCTCP

TAS

(a) Short flows ≤ 50 pkts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
D

F

Latency [ms]

TCP
DCTCP

TAS

(b) Long flows > 50 pkts
Figure 12. Flow completion times for large cluster simula-
tion.

 0.01

 0.1

 1

 50 100 200 500 1000 2000

T
’p

u
t

[m
B

 /
 1

0
0

 m
s
]

of Connections

Linux Median
TAS Median
TAS 99th %

Fair Share

Figure 13. Distribution of connection rates under incast.

rate) with different numbers of connections. We record the
number of bytes received on each connection every 100ms
on the receiver over the period of a minute, discarding a
warmup 20 seconds. Figure 13 shows the median (and 99th
percentile) throughput over the measured intervals and con-
nections on Linux (using DCTCP) and TAS. For TAS, the
tail falls within 1.6× and 2.8× of the median, while the me-
dian is close to each connection’s fair share. Linux median
(and tail—not shown) behavior fluctuates widely, showing
significant starvation of flows in some cases.

Linux fairness is hurt in three interacting ways: (1) Linux
window based congestion control creates bursts when win-
dows abruptly widen and contract under congestion. (2)
Window-based congestion control limits the control granu-
larity for low-rtt links. (3) The Linux TCP stack architecture
requires many shared queues that can overflow when flows
are bursty, resulting in dropped packets without regard to
fairness. Rate-based packet scheduling and per-flow queue-
ing in TAS smoothes bursts and eliminates unfair packet
drops at end hosts.

5.6 Workload Proportionality
Finally, we analyze a dynamic workload to evaluate how TAS
adapts to workload changes and how this affects end-to-end
performance. For this experiment, we re-use and instrument
the key-value store server and vary the number of clients
over time. At time 0 we start with one client machine, and
add four additional client machines, one every 10 seconds,
after an additional 10 seconds we remove the client machines
again one by one. Figure 14 shows both the number of fast-
path cores for TAS as well as the total server throughput. TAS
starts out with just 1 core, and ramps up to 3 cores for the first
client, and continues to add additional cores until reaching
9 cores, before incrementally removing cores again as the

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90
 0

 2

 4

 6

 8

 10

 12

 14

C
o

re
s

T
h

ro
u

g
h

p
u

t
[m

o
p

s
]

Time [s]

Cores Throughput

Figure 14. Number of TAS processor cores and end-to-end
throughput as key-value store server load first increases and
then decreases again.

 0

 2

 4

 6

 8

 10

 36 38 40 42 44 46 48
 0

 10

 20

 30

 40

 50

 60

 70

C
o

re
s

L
a

te
n

c
y
 [

u
s
]

Time [s]

Cores Latency

Figure 15. End-to-end request latency as TAS acquires ad-
ditional processor cores in response to increasing load.

load reduces. Figure 15 shows request latency as measured
by clients as for the transition from 3 to 4 clients and with it
7 to 9 cores. During the adjustment the latency temporarily
spikes by about 15µs or 30% before quckly returning back
to the previous level. We conclude that TAS is able to adapt
to workload changes, acquiring and releasing processors as
needed, without significantly impacting end-to-end latency
or throughput.

6 Discussion
Our TAS prototype streamlines data center software TCP
processing. In light of recent interest in using different pro-
tocols for data center networking and hardware offload of
packet processing, we discuss how TAS fits in the picture.
We also discuss how TAS might be used to accelerate TCP
processing across the Internet.

Beyond TCP. A number of alternatives to TCP for data cen-
ter and Internet packet processing have been proposed [18,
20, 38]. While TCP still dominates both domains, it is worth-
while to ask if TAS can support these proposals. Beyond
differences in protocol details, such as header format and
framing, most high level ideas including the fast path/slow
path split for congestion control and timers generalize to
other protocols. While adding datagram framing to TAS is
simple, it is interesting to note that TCP’s byte stream ab-
straction requires less per-connection state. The fast path
only needs to track the stream position and length in the
circular buffer (constant size), instead of tracking a variable
number of message boundaries.

NIC offload. NIC offload of network packet processing also
received renewed recent interest [15, 25]. We believe that

13

offload is a promising long-term solution to accelerating reli-
able network packet exchange—as long as it is flexible. Data
center network infrastructure, protocols, and in particular
congestion control are constantly evolving [6, 11, 20, 28, 48].
NIC offload must adapt quickly to these new protocols. We
believe TAS’ division of labor can inform NIC offload de-
signs. The minimal but resource intensive fast path can be
offloaded to the NIC. The complex, but less intensive slow
path can remain on host CPUs. This includes the congestion
control policy, which can be changed quickly using familiar
software programming abstractions.

Internet TCP acceleration. Our focus in this paper is on
data center use of TCP. Another benefit of TCP support in
TAS is TCP’s strong use on the Internet, allowing TAS to be
potentially useful to edge applications. Supporting Internet
TCP is possible in principle, but requires revisiting some
common-case assumptions: Are packet loss rates compara-
ble to the data center scenario? Will IP packet fragmentation
need to be handled in the fast path? Will longer round-trip
times impact slow path mechanisms, such as congestion
control and timeouts? Are connection control events, such
as setup and teardown more common and need to be han-
dled on the fast path? Finally, Internet clients will want to
send RPCs over secure connections. This entails supporting
transport layer security (TLS) features. While doing so via an
application-level library is always possible, another potential
for fast-path acceleration of TLS within TAS presents itself.

7 Related Work
Software TCP stack improvements. A closely related line
of work aims to reduce TCP CPU overhead, often with some
level of NIC assistance. Many of these systems also use batch-
ing to reduce overhead at some cost in latency; our focus
is on reducing overhead for latency-sensitive RPCs where
batching is less appropriate. Affinity-accept [33] and Fast-
socket [26] use flow steering on the NIC to keep connections
local to cores. Arrakis [34] and mTCP [24] use NIC virtualiza-
tion to move the TCP stack into each application, eliminating
kernel calls in the common case, at the cost of trusting the
application to implement congestion control. StackMap [47]
takes a hybrid approach, using the featureful Linux in-kernel
TCP stack, but keeping packet buffers in user-space, elimi-
nating copies between user and kernel space; this provides
moderate speedups, but requires the application to be trusted
and modified to StackMap’s interface. Sandstorm [27] co-
designs the TCP stack using application-specific knowledge
about packet payloads; this is an interesting avenue for fu-
ture work. Megapipe [19] re-designs the kernel-application
interface around communication channels; we use a sim-
ilar idea in our design. IX [9] pushes this farther by also
changing the socket interface; we aim to keep compatibility
with existing applications. To improve load balancing, Zy-
gOS [36] introduces an object steering layer that is similar

to ours. Finally, CCP proposes separating congestion control
policy from its enforcement [29]; our work can be seen as
an implementation of that idea.

NIC-Software co-design. Earlier work on improving packet
processing performance used new HW/SW interfaces to re-
duce the number of required PCIe transitions [10, 16], to scale
rate limiting [37], and to enable kernel-bypass [14, 35, 45].
TCP Offload Engines [12, 13] and remote direct memory ac-
cess (RDMA) [38] go a step further, entirely bypassing the
remote CPU for their specific use-case. Scale-out NUMA [32]
extends the RDMA approach by integrating a remote mem-
ory access controller with the processor cache hierarchy that
automatically translates certain CPU memory accesses into
remote memory operations. Portals [7] is similar to RDMA,
but adds a set of offloadable memory and packet send opera-
tions triggered upon matching packet arrival. Out of these
approaches, only kernel bypass has found broad market ac-
ceptance. One hindrance to widespread adoption of network
stack offload is that hardware stack deployment is slower
than software stack deployment, while application demands
and datacenter network deployments change rapidly. Hard-
ware approaches are thus often not able to keep pace fast
enough with the changing world around them. By providing
an efficient software network stack, TAS side-steps this is-
sue, while providing performance close to that of hardware
solutions.

8 Conclusion
The continuing increase in data center link bandwidth, cou-
pled with a much slower improvement in CPU performance,
is threatening the viability of kernel software TCP process-
ing, pushing researchers to investigate alternative solutions.
Any alternative has to ensure that it is safe, efficient, scalable,
and flexible.
We present TAS, TCP acceleration as a software service.

TAS executes common-case TCP operation in an isolated
fast path, while handling corner cases in a slow path. TAS
achieves throughput up to 7× that of Linux and 1.3× that
of IX for common, unmodified cloud applications. Unlike
kernel bypass, TAS enforces congestion control on untrusted
applications, and achieves much higher levels of per-flow
fairness than Linux. TAS scales to many cores and connec-
tions, providing up to 2.2× higher throughput than IX on
64K connections, while facilitating TCP protocol innovation.

Acknowledgements
This work is supported in part by NSF grants NSF 1751231
and CNS-1518702, the Texas Systems Research Consortium,
Huawei Innovation Research Lab YBN2017120001, as well
as gifts from Google, Facebook, Huawei, VMware, Citadel
Securities, and ARM. We would like to thank the anony-
mous reviewers and our shepherd, Robert Soulé, for their
comments and feedback.

14

References
[1] [n. d.]. https://github.com/torvalds/linux/blob/master/net/ipv4/tcp_

input.c#L5302.
[2] [n. d.]. https://support.microsoft.com/en-us/help/951037/information-

about-the-tcp-chimney-offload-receive-side-scaling-and-net.
[3] [n. d.]. Intel Data Plane Development Kit. http://www.dpdk.org/.
[4] [n. d.]. http://memcached.org/.
[5] [n. d.]. http://redis.io/.
[6] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data Center TCP (DCTCP). In 2010 ACMConference on
SIGCOMM (SIGCOMM). 12. https://doi.org/10.1145/1851182.1851192

[7] Brian W. Barrett, Ron Brightwell, Scott Hemmert, Kevin Pedretti, Kyle
Wheeler, Keith Underwood, Rolf Riesen, Arthur B. Maccabee, and
Trammell Hudson. 2013. The Portals 4.0.1 Network Programming Inter-
face (sand2013-3181 ed.). Sandia National Laboratories.

[8] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,
Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and
Akhilesh Singhania. 2009. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In 16th ACM Symposium on Operating
Systems Principles (SOSP). 16. https://doi.org/10.1145/1629575.1629579

[9] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane
Operating System for High Throughput and Low Latency. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI). 17. http://dl.acm.org/citation.cfm?id=2685048.2685053

[10] Nathan L. Binkert, Ali G. Saidi, and Steven K. Reinhardt. 2006. Inte-
grated Network Interfaces for High-bandwidth TCP/IP. In 12th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). https://doi.org/10.1145/1168857.
1168897

[11] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2016. BBR: Congestion-Based Conges-
tion Control. ACM Queue 14, 5, Article 50 (Oct. 2016), 34 pages.
https://doi.org/10.1145/3012426.3022184

[12] Chelsio Communications. 2013. TCP Offload at 40Gbps. http://www.
chelsio.com/wp-content/uploads/2013/09/TOE-Technical-Brief.pdf.

[13] Andy Currid. 2004. TCP Offload to the Rescue. ACM Queue 2, 3 (June
2004).

[14] Peter Druschel, Larry Peterson, and Bruce Davie. 1994. Experiences
with a High-Speed Network Adaptor: A Software Perspective. In 1994
ACM Conference on SIGCOMM (SIGCOMM).

[15] Daniel Firestone, Andrew Putnam, SambhramaMundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18). USENIX Association, Renton, WA, 51–66. https:
//www.usenix.org/conference/nsdi18/presentation/firestone

[16] Mario Flajslik and Mendel Rosenblum. 2013. Network Interface Design
for Low Latency Request-response Protocols. In 2013 USENIX Annual
Technical Conference (ATC). 14. http://dl.acm.org/citation.cfm?id=
2535461.2535502

[17] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kan-
dula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel,
and Sudipta Sengupta. 2009. VL2: a scalable and flexible data center
network. In 2009 ACM Conference on SIGCOMM (SIGCOMM).

[18] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk. 2016. QUIC: A UDP-
Based Secure and Reliable Transport for HTTP/2. https://tools.ietf.

org/html/draft-tsvwg-quic-protocol-02.
[19] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy.

2012. MegaPipe: A New Programming Interface for Scalable Network
I/O. In 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 14. http://dl.acm.org/citation.cfm?id=2387880.
2387894

[20] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-
architecting Datacenter Networks and Stacks for Low Latency and
High Performance. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’17). ACM, New
York, NY, USA, 29–42. https://doi.org/10.1145/3098822.3098825

[21] Van Jacobson. [n. d.]. TCP in 30 instructions. http://www.pdl.cmu.
edu/mailinglists/ips/mail/msg00133.html.

[22] V. Jacobson. 1988. Congestion Avoidance and Control. SIGCOMM
Computer Communication Review 18, 4 (Aug. 1988), 314–329. https:
//doi.org/10.1145/52325.52356

[23] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache,
Mikhail Rybalkin, and Chenyu Yan. 2013. Speeding Up Distributed
Request-response Workflows. In 2013 ACM Conference on SIGCOMM
(SIGCOMM).

[24] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong,
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: A
Highly Scalable User-level TCP Stack for Multicore Systems. In 11th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI). 14. http://dl.acm.org/citation.cfm?id=2616448.2616493

[25] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas An-
derson, and Arvind Krishnamurthy. 2016. High Performance Packet
Processing with FlexNIC. In 21st International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS). 15. https://doi.org/10.1145/2872362.2872367

[26] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu,
and Yuanchun Shi. 2016. Scalable Kernel TCP Design and Implemen-
tation for Short-Lived Connections. In 21st International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 14. https://doi.org/10.1145/2872362.2872391

[27] Ilias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Net-
work Stack Specialization for Performance. In 2014 ACM Conference on
SIGCOMM (SIGCOMM). 12. https://doi.org/10.1145/2619239.2626311

[28] RadhikaMittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-
all, and David Zats. 2015. TIMELY: RTT-based Congestion Control for
the Datacenter. In 2015 ACM Conference on SIGCOMM (SIGCOMM). 14.
https://doi.org/10.1145/2785956.2787510

[29] Akshay Narayan, Frank J. Cangialosi, Prateesh Goyal, Srinivas
Narayana, Mohammad Alizadeh, and Hari Balakrishnan. 2017. The
Case for Moving Congestion Control Out of the Datapath. In Sixteenth
ACM Workshop on Hot Topics in Networks (HotNets). Palo Alto, CA.

[30] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek,
Paul Saab, David Stafford, Tony Tung, and Venkateshwaran Venkatara-
mani. 2013. Scaling Memcache at Facebook. In 10th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI). 14.
http://dl.acm.org/citation.cfm?id=2482626.2482663

[31] Zhixiong Niu, Hong Xu, Dongsu Han, Peng Cheng, Yongqiang Xiong,
Guo Chen, and Keith Winstein. 2017. Network Stack As a Service
in the Cloud. In Proceedings of the 16th ACM Workshop on Hot Topics
in Networks (HotNets-XVI). ACM, New York, NY, USA, 65–71. https:
//doi.org/10.1145/3152434.3152442

[32] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. 2014. Scale-out NUMA. In 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). https://doi.org/10.1145/2541940.2541965

[33] Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T.
Morris. 2012. Improving Network Connection Locality on Multicore

15

https://github.com/torvalds/linux/blob/master/net/ipv4/tcp_input.c#L5302
https://github.com/torvalds/linux/blob/master/net/ipv4/tcp_input.c#L5302
https://support.microsoft.com/en-us/help/951037/information-about-the-tcp-chimney-offload-receive-side-scaling-and-net
https://support.microsoft.com/en-us/help/951037/information-about-the-tcp-chimney-offload-receive-side-scaling-and-net
http://www.dpdk.org/
http://memcached.org/
http://redis.io/
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1629575.1629579
http://dl.acm.org/citation.cfm?id=2685048.2685053
https://doi.org/10.1145/1168857.1168897
https://doi.org/10.1145/1168857.1168897
https://doi.org/10.1145/3012426.3022184
http://www.chelsio.com/wp-content/uploads/2013/09/TOE-Technical-Brief.pdf
http://www.chelsio.com/wp-content/uploads/2013/09/TOE-Technical-Brief.pdf
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
http://dl.acm.org/citation.cfm?id=2535461.2535502
http://dl.acm.org/citation.cfm?id=2535461.2535502
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02
https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02
http://dl.acm.org/citation.cfm?id=2387880.2387894
http://dl.acm.org/citation.cfm?id=2387880.2387894
https://doi.org/10.1145/3098822.3098825
http://www.pdl.cmu.edu/mailinglists/ips/mail/msg00133.html
http://www.pdl.cmu.edu/mailinglists/ips/mail/msg00133.html
https://doi.org/10.1145/52325.52356
https://doi.org/10.1145/52325.52356
http://dl.acm.org/citation.cfm?id=2616448.2616493
https://doi.org/10.1145/2872362.2872367
https://doi.org/10.1145/2872362.2872391
https://doi.org/10.1145/2619239.2626311
https://doi.org/10.1145/2785956.2787510
http://dl.acm.org/citation.cfm?id=2482626.2482663
https://doi.org/10.1145/3152434.3152442
https://doi.org/10.1145/3152434.3152442
https://doi.org/10.1145/2541940.2541965

Systems. In 7th ACM European Conference on Computer Systems (Eu-
roSys). 14. https://doi.org/10.1145/2168836.2168870

[34] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, ThomasAnderson, and Timothy Roscoe. 2015. Arrakis:
The Operating System Is the Control Plane. ACM Transactions on
Computer Systems 33, 4, Article 11 (Nov. 2015), 30 pages. https://doi.
org/10.1145/2812806

[35] Ian Pratt and Keir Fraser. 2001. Arsenic: A User-Accessible Gigabit
Ethernet Interface. In 20th IEEE International Conference on Computer
Communications (INFOCOM).

[36] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-scale Networked Tasks.
In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP ’17). 17. https://doi.org/10.1145/3132747.3132780

[37] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyaku-
mar, Abdul Kabbani, George Porter, and Amin Vahdat. 2014.
SENIC: Scalable NIC for End-Host Rate Limiting. In 11th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI). https://www.usenix.org/conference/nsdi14/technical-sessions/
presentation/radhakrishnan

[38] RDMA Consortium. [n. d.]. Architectural specifications for RDMA
over TCP/IP. http://www.rdmaconsortium.org/.

[39] Rick Reed. 2012. Scaling to Millions of Simultaneous Connec-
tions. http://www.erlang-factory.com/upload/presentations/558/
efsf2012-whatsapp-scaling.pdf.

[40] Greg Regnier, Srihari Makineni, Ramesh Illikkal, Ravi Iyer, Dave
Minturn, Ram Huggahalli, Don Newell, Linda Cline, and Annie Foong.
2004. TCP Onloading for Data Center Servers. Computer 37, 11 (Nov.
2004), 48–58. https://doi.org/10.1109/MC.2004.223

[41] Mihai Rotaru. 2013. Scaling to 12 Million Concurrent Connections:
How MigratoryData Did It. https://mrotaru.wordpress.com/
2013/10/10/scaling-to-12-million-concurrent-connections-how-

migratorydata-did-it/.
[42] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson.

1999. TCP Congestion Control with a Misbehaving Receiver. SIG-
COMM Computer Communication Review 29, 5 (Oct. 1999), 71–78.
https://doi.org/10.1145/505696.505704

[43] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armis-
tead, Roy Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie
Germano, Anand Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2015.
Jupiter Rising: A Decade of Clos Topologies and Centralized Control
in Google’s Datacenter Network. In 2015 ACMConference on SIGCOMM
(SIGCOMM).

[44] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call
Scheduling with Exception-less System Calls. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation
(OSDI’10). USENIX Association, Berkeley, CA, USA, 33–46. http:
//dl.acm.org/citation.cfm?id=1924943.1924946

[45] T. von Eicken, A. Basu, V. Buch, and W. Vogels. 1995. U-Net: a user-
level network interface for parallel and distributed computing. In 15th
ACM Symposium on Operating Systems Principles (SOSP).

[46] Ahmad Yasin. 2014. A Top-Down method for performance analysis
and counters architecture. In ISPASS. IEEE Computer Society, 35–44.

[47] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert.
2016. StackMap: Low-latency Networking with the OS Stack and
Dedicated NICs. In Proceedings of the 2016 USENIX Conference on Usenix
Annual Technical Conference (USENIX ATC ’16). USENIX Association,
Berkeley, CA, USA, 43–56. http://dl.acm.org/citation.cfm?id=3026959.
3026964

[48] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamad Haj Yahia, and Ming Zhang. 2015. Congestion Control for
Large-Scale RDMA Deployments. In 2015 ACM Conference on SIG-
COMM (SIGCOMM). 14. https://doi.org/10.1145/2785956.2787484

16

https://doi.org/10.1145/2168836.2168870
https://doi.org/10.1145/2812806
https://doi.org/10.1145/2812806
https://doi.org/10.1145/3132747.3132780
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/radhakrishnan
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/radhakrishnan
http://www.rdmaconsortium.org/
http://www.erlang-factory.com/upload/presentations/558/efsf2012-whatsapp-scaling.pdf
http://www.erlang-factory.com/upload/presentations/558/efsf2012-whatsapp-scaling.pdf
https://doi.org/10.1109/MC.2004.223
https://mrotaru.wordpress.com/2013/10/10/scaling-to-12-million-concurrent-connections-how-migratorydata-did-it/
https://mrotaru.wordpress.com/2013/10/10/scaling-to-12-million-concurrent-connections-how-migratorydata-did-it/
https://mrotaru.wordpress.com/2013/10/10/scaling-to-12-million-concurrent-connections-how-migratorydata-did-it/
https://doi.org/10.1145/505696.505704
http://dl.acm.org/citation.cfm?id=1924943.1924946
http://dl.acm.org/citation.cfm?id=1924943.1924946
http://dl.acm.org/citation.cfm?id=3026959.3026964
http://dl.acm.org/citation.cfm?id=3026959.3026964
https://doi.org/10.1145/2785956.2787484

	1 Introduction
	2 Background
	2.1 Network Stack Architecture
	2.2 TCP Stack Overheads

	3 Design
	3.1 Fast Path
	3.2 Slow Path
	3.3 User-space TCP Stack
	3.4 Workload Proportionality

	4 Implementation
	4.1 Limitations

	5 Evaluation
	5.1 Remote Procedure Call (RPC)
	5.2 Packet Loss
	5.3 Key-Value Store
	5.4 Real-time Analytics
	5.5 Congestion Control
	5.6 Workload Proportionality

	6 Discussion
	7 Related Work
	8 Conclusion
	References

