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Abstract
Emerging Multicore SoC SmartNICs, enclosing rich computing re-

sources (e.g., a multicore processor, onboard DRAM, accelerators,

programmable DMA engines), hold the potential to offload generic

datacenter server tasks. However, it is unclear how to use a Smart-

NIC efficiently and maximize the offloading benefits, especially for

distributed applications. Towards this end, we characterize four

commodity SmartNICs and summarize the offloading performance

implications from four perspectives: traffic control, computing ca-

pability, onboard memory, and host communication.

Based on our characterization, we build iPipe, an actor-based

framework for offloading distributed applications onto SmartNICs.

At the core of iPipe is a hybrid scheduler, combining FCFS and DRR-

based processor sharing, which can tolerate tasks with variable

execution costs and maximize NIC compute utilization. Using iPipe,

we build a real-time data analytics engine, a distributed transaction

system, and a replicated key-value store, and evaluate them on com-

modity SmartNICs. Our evaluations show that when processing

10/25Gbps of application bandwidth, NIC-side offloading can save

up to 3.1/2.2 beefy Intel cores and lower application latencies by

23.0/28.0 µs.
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ing; • Hardware → Networking hardware;
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1 Introduction
Multicore SoC (system-on-a-chip) SmartNICs have emerged in the

datacenter, aiming to mitigate the gap between increasing network

bandwidth and stagnating CPU computing power [13, 14, 19]. In the
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last two years, major network hardware vendors have released dif-

ferent SmartNIC products, such as Mellanox’s BlueField [43], Broad-

com’s Stingray [7], Marvell (Cavium)’s LiquidIO [42], Huawei’s

IN5500 [24], and Netronome’s Agilio [47]. They not only target

acceleration of protocol processing (e.g., Open vSwitch [52], TCP

offloading, traffic monitoring, and firewall), but also bring a new

computing substrate into the data center to expand the server com-

puting capacity at a low cost: SmartNICs usually enclose computing

cores with simple microarchitectures that make them cost-effective.

Generally, these SmartNICs comprise amulticore, possiblywimpy,

processor (i.e., MIPS/ARM), onboard SRAM/DRAM, packet process-

ing and domain-specific accelerators, and programmable DMA en-

gines. The different components are connected by high-bandwidth

coherent memory buses or interconnects. Today, most of these

SmartNICs are equipped with one or two 10/25GbE ports, and

100/200GbE products are imminent. These computing resources

allow hosts to offload generic computations (including complex al-

gorithms and data structures) without sacrificing performance and

program generality. The question we ask in this paper is how to
use SmartNICs efficiently to maximize offloading benefits for
distributed applications?.
There have been some recent research efforts that offload net-

working functions onto FPGA-based SmartNICs (e.g., ClickNP [38],

AzureCloud [20]). They take a conventional domain-specific acceler-

ation approach that consolidates most application logic onto FPGA

programmable logic blocks. This approach is applicable to a specific

class of applications that exhibit sufficient parallelism, deterministic

program logic, and regular data structures that can be synthesized

efficiently on FPGAs. Our focus, on the other hand, is to target dis-

tributed applications with complex data structures and algorithms

that cannot be realized efficiently on FPGA-based SmartNICs.

Towards this end, we perform a detailed performance charac-

terization of four commodity SmartNICs (i.e., LiquidIOII CN2350,

LiquidIOII CN2360, BlueField 1M332A, and Stingray PS225). We

break down a SmartNIC into four architectural components – traffic

control, computing units, onboard memory, and host communica-

tion – and use microbenchmarks to characterize their performance.

The experiments identify the resource constraints that we have to

be cognizant of, illustrate the utility of hardware acceleration units,

and provide guidance on how to efficiently utilize the resources.

We design and implement the iPipe framework based on our char-

acterization study. iPipe introduces an actor programming model

for distributed application development. Each actor has its own

self-contained private state and communicates with other actors

via messages. Our framework provides a distributed memory object

abstraction and enables actor migration, responding to dynamic

workload changes and ensuring the delivery of line-rate traffic. A

central piece of iPipe is the actor scheduler that combines FCFS

318



SIGCOMM ’19, August 19–23, 2019, Beijing, China M. Liu et al.

Packet buffer

L2/DRAMScratchpad

Packet processing

Multicore processor

L1Cache
NIC core

Traffic manager/NIC 
switch

Domain specificTX/RX 
ports

DMA 
engine

DMA 
engine

Accelerators

Onboard memory Host communication

Traffic control Computing units

Multi-queue

PCIe

N
IC

 cores

TX/RX ports

Host cores

Traffi
c m

anager

Traffi
c

(a). SmartNIC architecture

(b). On-path SmartNIC

NIC switch

TX/RX portsNIC cores

Host cores

Traffi
c

(c). Off-path SmartNIC

Figure 1: Architectural block diagram for aMulticore SoC SmartNIC
and packet processing for the two types of SmartNICs.

(first come first serve) and DRR (deficit round robin) based proces-

sor sharing, which tolerates tasks with variable execution costs and

maximizes a SmartNIC’s resource utilization. iPipe allows multiple

actors from different applications to coexist safely on the Smart-

NIC, protecting against actor state corruption and denial-of-service

attacks. Taken together, iPipe’s mechanisms enable dynamic and

workload-aware offloading of arbitrary application logic, in con-

trast to prior work that focused on static offloading of specialized

tasks (e.g., Floem [53] and ClickNP [38]).

We prototype iPipe and build three applications (i.e., a data an-

alytics engine, a transaction processing system, and a replicated

key-value store) using commodity 10GbE/25GbE SmartNICs. We

evaluate the system using an 8-node testbed and compare the per-

formance against DPDK-based implementations. Our experimental

results show that we can significantly reduce the host load for real-

world distributed applications; iPipe saves up to 3.1/2.2 beefy Intel

cores used to process 25/10Gbps of application bandwidth, along

with up to 23.0µs and 28.0µs savings in request processing latency.

2 CharacterizingMulticore SoC SmartNICs
This section provides detailed performance characterizations of

Multicore SoC SmartNICs. We explore their computational capa-

bilities and summarize implications that guide the design of iPipe.

2.1 Multicore SoC SmartNICs

A Multicore SoC SmartNIC consists of four major parts (as shown

in Figure 1-a): (1) computing units, including a general-purpose

ARM/MIPS multicore processor, along with accelerators for packet

processing (e.g., deep packet inspection, packet buffer management)

and specialized functions (e.g., encryption/decryption, hashing, pat-

tern matching, compression); (2) onboard memory, enclosing fast

self-managed scratchpad and slower L2/DRAM; (3) traffic control

module that transfers packets between TX/RX ports and the packet

buffer, accompanied by an internal traffic manager or NIC switch

that delivers packets to NIC cores; (4) DMA engines for communi-

cating with the host.

Table 1 lists the HW/SW specifications of four commercial Mul-

ticore SoC SmartNICs evaluated in this paper. They represent

different design tradeoffs regarding performance, programmabil-

ity, and flexibility. The first two LiquidIOII SmartNICs enclose an

OCTEON [9] processor with a rich set of accelerators but run in the

context of a light-weight firmware. Programmers have to use native

hardware primitives to process raw packets, issue DMA commands,

and trigger accelerator computations. BlueField and Stingray cards

run a ARM Cortex-A72 [5] processor and host a full-fledged operat-

ing system. They offer a lower barrier for application development,

and one can use traditional Linux/DPDK/RDMA stacks to commu-

nicate with local and external endpoints. The BlueField card even

has NVDIMM support for fault-tolerant storage. Current Smart-

NICs typically have link speeds of 10/25 GbE, and 100/200 GbE

units are starting to appear. Generally, a SmartNIC is a bit more

expensive than a traditional dumb NIC. For example, a 10/25GbE

SmartNIC typically costs 100∼400$ more than a corresponding

standard NIC [62].

Based on how SmartNIC cores interact with traffic, we further

categorize SmartNICs into two types: on-path and off-path Smart-

NICs. The cores for on-path SmartNICs (Figure 1-b) are on the

packet communication path and hold the capability to manipu-

late each incoming/outgoing packet. LiquidIOII CN2350/CN2360

are both on-path SmartNICs. Off-path SmartNICs (Figure 1-c), de-

liver traffic flows to host cores (bypassing NIC cores) based on

forwarding rules installed on a NIC switch. Mellanox BlueField and

Broadcom Stingray are examples of off-path SmartNICs. Both NIC

vendors are further improving the programmability of the NIC

switch (e.g., Broadcom TruFlow [8], Mellanox ASAP2 [44]).

For both types of SmartNICs, host processing is the same as that

with standard NICs. On the transmit path (where a host server sends

out traffic), the host processor first creates a DMA control command

(including the instruction header and packet buffer address) and

then writes it into a command ring. The NIC DMA engine then

fetches the command and data from host memory and writes into

the packet buffer (located in the NICmemory). NIC cores on on-path

SmartNICs pull in incoming packets (usually represented as work

items), perform some processing, and then deliver them to TX/RX

ports via the DMA engine. For off-path ones, packets are directly

forwarded to either NIC cores or TX/RX ports based on switching

rules. Receive processing (where a host server receives traffic from

the SmartNIC) is similar but performed in the reverse order.

2.2 Performance Characterization

We characterize four Multicore SoC SmartNICs (listed in Table 1)

from four perspectives: traffic control, computing units, onboard

memory, host communication.

2.2.1 Experiment setup. We use Supermicro 1U/2U boxes

as host servers for both the client and server and an Arista DCS-

7050S/Cavium XP70 ToR switch for 10/25GbE network. The client

is equipped with a dumb NIC (i.e., Intel XL710 for 10GbE and Intel

XXV710-DA2 for 25GbE). We insert the SmartNIC on one of the

PCIe 3.0 ×8 slots in the server. The server box has a 12-core E5-

2680 v3 Xeon CPU running at 2.5GHz with hyperthreading enabled,

64GB DDR3 DRAM, and 1TB Seagate HDD. When evaluating Blue-

Field and Stingray cards, we use a 2U Supermicro server with two
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SmartNICmodel Vendor Processor BW L1 L2 DRAM Deployed SW Nstack To/From host
LiquidIOII CN2350 [42] Marvell cnMIPS 12 core, 1.2GHz 2× 10GbE 32KB 4MB 4GB Firmware Raw packet Native DMA

LiquidIOII CN2360 [42] Marvell cnMIPS 16 core, 1.5GHz 2× 25GbE 32KB 4MB 4GB Firmware Raw packet Native DMA

BlueField 1M332A [43] Mellanox ARMA72 8 core, 0.8GHz 2× 25GbE 32KB 1MB 16GB Full OS Linux/DPDK/RDMA RDMA

Stingray PS225 [7] Broadcom ARMA72 8 core, 3.0GHz 2× 25GbE 32KB 16MB 8GB Full OS Linux/DPDK/RDMA RDMA

Table 1: Specifications of the four SmartNICs used in this study. BW = bandwidth. Nstack = networking stack.

8-core Intel E5-2620 v4 processors at 2.1GHz, 128GB memory, and

7 Gen3 PCIe slots.

We take the DPDK pkt-gen as the workload generator and aug-

ment it with the capability to generate different application layer

packet formats at the desired packet interval. We use the Linux

RDMA perftest utility [50] to measure the performance for var-

ious verbs. We report end-to-end performance metrics (e.g., la-

tency/throughput), as well as readings from microarchitectural

counters (e.g., IPC, L2 cache misses per kilo instruction or MPKI).

2.2.2 Traffic control. As described above, traffic control is

responsible for delivering packets to either NIC computing cores

or the host. Here, we use an ECHO server that entirely runs on a

SmartNIC to answer the following questions regarding computation

offloading: (1) howmany NIC cores are sufficient to saturate the link

speed for different packet sizes, and how much computing capacity

is available for "offloaded applications"? (2) what are the synchro-

nization overheads in supplying packets to multiple NIC cores?

Figures 2 and 3 present experimental data for 10GbE LiquidIOII

CN2350 and 25GbE Stingray PS225. When packet size is 64B/128B,

neither NIC can achieve full link speed even if all NIC cores are

used. However, when packet size is 256B/512B/1024B/1500B(MTU),

the LiquidIOII requires 10/6/4/3 cores to achieve line rate, while

Stingray needs 3/2/1/1 cores. Stingray uses fewer cores due to its

higher core frequency (3.0GHz v.s. 1.20GHz). These measurements

quantify the packet transmission costs, which is the default exe-

cution tax of a SmartNIC. Figure 4 further presents the achieved

bandwidth as we increase the per-packet processing latency of 256B

and 1024B size packets when we use all the NIC cores on the two

SmartNICs. The maximum tolerated latency limit (or computing

headroom) for these packet sizes is 2.5/9.8us and 0.7/2.6us for 10GbE

LiquidIOII and 25GbE Stingray, respectively.

On-path SmartNICs often enclose a unique hardware traffic man-

ager that can feed packets to NIC cores in an efficient way. Figure 5

reports the average and tail (p99) latency when achieving the max-

imum throughput for four different packet sizes using 6 and 12

cores. Interestingly, the latencies do not increase as we increase the

core count; compared to the 6 core case, the 12 core experiments

only add 4.1%/3.4% average/p99 latency on average across the four

scenarios. These measurements indicate that the hardware traffic

manager is effective at providing a shared queue abstraction with

little synchronization overhead for packet buffer management.

Design implications: I1: Packet transmission through a Smart-

NIC core incurs a nontrivial cost. Further, the packet size distri-

bution of incoming traffic significantly impacts the availability of

computing cycles on a Multicore SmartNIC. One should monitor

the packet (request) sizes to adaptively offload application logic.

I2: For on-path SmartNICs, hardware support reduces synchroniza-

tion overheads and enables scheduling paradigms where multiple

workers can efficiently pull incoming traffic from a shared queue.

2.2.3 Computing units. To explore the execution behavior

of the computing units, we use the following: (1) a microbenchmark

suite comprising of representative in-network offloaded workloads

from recent literature; (2) low-level primitives to trigger the domain-

specific accelerators. We conduct experiments on the 10GbE Liquid-

IOII CN2350 and report both system and microarchitecture results

in Table 3 (in Appendix A).

We observe the following results. First, the execution times of the

offloaded tasks vary significantly from 1.9/2.0us (replication and

load balancer) to 34.0/71.0us (ranker/classifier). Second, low IPC

(instruction per cycle)
1
or high MPKI (misses per kilo-instructions)

are indicators of high computing cost, as in the case of the rate

limiter, packet scheduler, and classifier. Tasks with high MPKI are

memory-bound tasks. As they are less likely to benefit from the com-

plex microarchitecture on the host, they might be ideal candidates

for offloading. Third, SmartNIC accelerators provide fast domain-

specific processing appropriate for networking/storage tasks. For

example, the MD5/AES engine is 7.0X/2.5X faster than the one on

the host server (even using the Intel AES-NI instructions). However,

invoking an accelerator is not free since the NIC core has to wait

for execution completion and also incurs cache misses (i.e., higher

MPKI) in feeding data to the accelerator. Batching can amortize

invocation costs but could result in tying up NIC cores for extended

periods. Other SmartNICs (e.g., BlueField and Stingray) display

similar characteristics.

SmartNICs also enclose specialized accelerators for packet pro-

cessing. Consider the LiquidIOII ones (CN2350/CN2360), for exam-

ple. It has packet input (PKI) and packet output units (PKO) for

moving data between MAC and the packet buffer and a hardware-

managed packet buffer equipped with fast packet indexing. When

compared with the SEND operations for two host-side kernel-

bypass networking stacks, DPDK and RDMA, the hardware assisted

messaging on LiquidIOII shows 4.6X and 4.2X speedups, respec-

tively, when averaged across the different packet sizes (as shown

in Figure 6).

Design implications: I3: The wimpy processor on a SmartNIC

presents cheap parallelism (in terms of cost), and one should take

advantage of such computing power by running applications with

low IPC or high MPKI. Further, the offloading framework should

be able to handle tasks with a wide range of execution latencies

without compromising the packet forwarding latency for on-path

SmartNICs and the execution latency of lightweight operations

for both types of SmartNICs. I4: Accelerators are critical resources
on a SmartNIC. For example, one can offload networking protocol

processing, such as checksum calculation, tunneling encapsula-

tion/decapsulation, using the packet processing units. The crypto

engines (e.g., AES, MD5, SHA-1, KASUMI) enable various encryp-

tion, decryption, and authentication tasks. The compression unit

and pattern matching block will benefit inline data reduction and

1
Note that the cnMIPS OCTEON [9] is a 2-way processor and the ideal IPC is 2.
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L1 (ns) L2 (ns) L3 (ns) DRAM (ns)
LiquidIOII CNXX 8.3 55.8 N/A 115.0

BlueField 1M332A 5.0 25.6 N/A 132.0

Stingray PS225 1.3 25.1 N/A 85.3

Host Intel server 1.2 6.0 22.4 62.2

Table 2: Access latency of different levels of thememory hierarchies
on the SmartNICs and the Intel server. The cache line sizes for
LiquidIOII NICs are 128B while the rest are 64B. The performance
of LiquidIOII CN2350 and CN2360 is similar.

flow/string classification, respectively. When using these accelera-

tors, one should consider performing batched execution if necessary

(at the risk of increasing queueing for incoming traffic).

2.2.4 Onboardmemory. Generally, a SmartNIC has five on-

board memory resources in its hierarchy: (1) Scratchpad/L1 cache

is per-core local memory. It has limited size (e.g., LiquidIO has 54

cache lines of scratchpad) with fast access speed. (2) Packet buffer.

This is onboard SRAM along with fast indexing. On-path Smart-

NICs (like LiquidIOII) usually have hardware-based packet buffer

management, while off-path ones (such as BlueField and Stingray)

do not have a dedicated packet buffer region. (3) L2 cache, which

is typically shared across all NIC cores. (4) NIC local DRAM, which

is accessed via the onboard high-bandwidth coherent memory bus.

Note that a SmartNIC can also read/write the host memory using

its DMA engine, and this capability is evaluated in the next section.

We use a pointer chasing microbenchmark (with random stride

distance) to characterize the access latency for different memory

hierarchies for four SmartNICs and compare it with the host server.

Table 2 illustrates that there is significant diversity in memory

subsystem performance across SmartNICs. Also, the memory per-

formance of many of the SmartNICs is worse than the host server

(e.g., the access latency of SmartNIC L2 cache is comparable to the

L3 cache on the host server), but the well-provisioned Stingray has

performance comparable to the host.

Designimplications: I5:On-path SmartNICs favor inline packet

manipulation with the help of a hardware-based packet buffer man-

ager. For stateful computation offloading, when the application

working set exceeds the L2 cache size of a SmartNIC, executing

memory-intensive workloads on the SmartNIC might result in a

performance loss than running on the host.

2.2.5 Hostcommunication. ASmartNIC communicateswith

host processors using DMA engines through the PCIe bus. PCIe is

a packet-switched network with 500ns-2us latency and 7.87 GB/s

theoretical bandwidth per Gen3 x8 endpoint (which is the version

used by all of our SmartNICs). Many runtime factors usually impact

communication performance. With respect to latency, DMA engine

queueing delay, PCIe request size and its response ordering, PCIe

completion word delivery, and host DRAM access costs will all slow

down PCIe packet delivery [21, 28, 48]. With respect to throughput,

PCIe is limited by the transaction layer packet overheads (i.e., 20-28

bytes for header and addressing), the maximum number of credits

used for flow control, the queue size in DMA engines, and PCIe

tags used for identifying unique DMA reads.

Generally, a DMA engine provides two kinds of primitives: block-

ing accesses, which wait for the DMA completion word from the

engine, and non-blocking ones, which allow the processing core to

continue executing after sending the DMA commands into the com-

mand queue. Figures 7 and 8 show our performance measurements

of the 10GbE LiquidIO CN2350. Non-blocking operations insert a

DMA instruction word into the queue and do not wait for comple-

tion. Hence, the read/write latency of non-blocking operations are

independent of the packet size. For blocking DMA reads/writes, a

large message can fully utilize the PCIe bandwidth. For example,

with 2KB payloads, one can achieve 2.1/1.4 GB/s per-core PCIe

write/read bandwidth, outperforming the 64B case by 8.7X/6.0X.

These measurements indicate that one should take advantage of

the DMA scatter and gather technique to aggregate PCIe transfers.
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Some SmartNICs (like BlueField and Stingray) expose RDMA

verbs instead of native DMA primitives. We characterize the one-

sided RDMA read/write latency from a SmartNIC to its host using

the Mellanox BlueField card, as these operations resemble the DMA

blocking operations. We find that RDMA primitives nearly dou-

ble the read/write latency of blocking DMA ones (Figure 9). In

terms of throughput, as shown in Figure 10, when message size

is less than 256B, RDMA read/write only achieves a third of the

per-core throughput of blocking DMA read/write. When the mes-

sage is larger than 512B, RDMA and native DMA achieve similar

performance.

Design implications: I6: There are significant performance

benefits to using non-blocking DMA and aggregating transfers

into large PCIe messages (via DMA scatter and gather). RDMA

read/write verbs perform worse than native DMA primitives for

small messages, likely due to software overheads.

3 iPipe framework

This section describes the design and implementation of our iPipe

framework. We use the insights gathered from our characterization

experiments to address the following challenges.

• Programmability: A commodity server equipped with a Smart-

NIC is a non-cache-coherent heterogeneous computing platform

with asymmetric computing power. We desire simple program-

ming abstractions that can be used for developing general dis-

tributed applications.

• Computation efficiency: There are substantial computing re-

sources on a SmartNIC (e.g., amulticore processor, modest L2/DRAM,

and plenty of accelerators), but one should use them efficiently.

Inappropriate offloading could cause NIC core overloading, band-

width loss, and wasteful execution stalls.

• Isolation: A SmartNIC can hold multiple applications simulta-

neously. One should guarantee that different applications cannot

touch each others’ state, there is no performance interference be-

tween applications, and tail latency increases, if any, are modest.

3.1 Actor programmingmodel and APIs

iPipe applies an actor programming model [1, 23, 59] for applica-

tion development. iPipe uses the actor-based model for two reasons.

First, the actor model can support computing heterogeneity and

hardware parallelism automatically. One can easily map an actor

execution instance onto a physical computing unit, such as a NIC

or host core. Second, actors have well-defined associated states and

can be migrated between the NIC and the host dynamically. This

attribute enables dynamic control over a SmartNIC’s computing

capabilities and allows the system to adapt to traffic workload char-

acteristics. More importantly, unlike dataflow or pipeline models

(as in Floem [53]), which are designed to support data-intensive

control-light workloads, the actor-based model can support control-

intensive, non-deterministic, and irregular communication patterns

that arise in complex distributed applications.

An actor is a computation agent that performs two kinds of op-

erations based on the type of an incoming message: (1) trigger an

execution handler and manipulate its private state; (2) interact with

other actors by sending messages asynchronously. Actors do not

share memory. We choose message passing as the communication

paradigm given the following considerations: (1) the communica-

tion latencies that we observe between the NIC and host are in the

order of microseconds; (2) actors are independent entities without

shared state. In our system, every actor has an associated structure

with the following fields: (1) init_handler and exec_handler for state
initialization and message execution; (2) private_state, which can

use different data types (as described in Section 3.3); (3) mailbox is

a multi-producer multi-consumer concurrent FIFO queue, which is

used to store incoming asynchronous messages; (4) exec_lock, used
to decide whether an actor can be executed on multiple cores; (5)

some runtime information, such as port, actor_id, and a reference

to the actor_tbl, which contains the communication addresses of

other actors. An actor runs on one or more cores, and it is the

programmers’ responsibility to provide concurrency control for

operating on an actor’s private state.

The iPipe runtime enables the actor-based model by providing

support for actor allocation/destruction, runtime scheduling of

actor handlers, and transparent migration of actors and its associ-

ated state. (See Table 4 in the Appendix B.1 for the runtime API.)

Specifically, iPipe has three key system components: (1) an actor

scheduler that works across both SmartNIC and host cores and

uses a hybrid FCFS/DRR scheduling discipline to enable execution

of actor handlers with diverse execution costs; (2) a distributed

object abstraction that enables flexible actor migration and sup-

ports a software managed cache to mitigate the cost of SmartNIC

to host communications; (3) a security isolation mechanism that

protects actor state from corruption and denial-of-service attacks.

We describe these components below.

3.2 iPipe Actor Scheduler

iPipe schedules actor executions on both the SmartNIC and the host

cores. The scheduler assigns actor execution tasks to computing

cores and specifies a custom scheduling discipline for each actor

task. In designing the scheduler, we not only want to maximize
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the computing resource utilization on the SmartNIC but also en-

sure that the computing efficiency does not come at the cost of

increased tail latencies or compromising the NIC’s ability to convey

traffic. Recall that, in the case of on-path SmartNICs, all traffic is

conveyed through SmartNIC cores, so executing actor handlers

could adversely impact the latency and throughput of other traffic.

3.2.1 Problem formulation and background. The runtime

system executes on both the host and the SmartNIC, determines

on which side an actor executes, and schedules the invocation of

actor handlers. There are two critical decisions in the design of

the scheduler: (a) whether the scheduling system is modeled as a

centralized, single queue model or as a decentralized, multi-queue

model, and (b) the scheduling discipline used for determining the

order of task execution. We consider each of these issues below.

It is well-understood that the decentralized multi-queue model

can be implemented without synchronization but suffers from tem-

porary load imbalances leading to increased tail latencies. Fortu-

nately, on-path SmartNICs enclose hardware traffic managers that

provide support for a shared queue abstraction with low synchro-

nization overheads (see Section 2.2.2). We, therefore, resort to using

a centralized queue model on the SmartNIC and a decentralized

multi-queue model on the host side, along with NIC-side support

for flow steering. We discuss later how to build such a scheduler

for off-path SmartNICs.

We next consider the question of what scheduling discipline to

use and how that impacts the average and tail response times for

scheduled operations (i.e., both actor handlers andmessage forward-

ing operations). Note that the response time or sojourn time is the

total time spent, including queueing delay and request processing

time. If our goal is to optimize mean response time, then Shortest

Remaining Processing Time (SRPT) and its non-preemptive coun-

terpart, Shortest Job First (SJF), are considered optimal regardless

of the task size and interarrival time distributions [56]. However, in

our setting, we also care about the tail response time; even if a given

application can tolerate it, other applications sharing the resources

might be impacted. Further, a high response latency also means that

an on-path SmartNIC would not be able to perform its basic duty

of forwarding traffic in a timely manner. If we were to consider

minimizing the tail response time, then First Come First Served

(FCFS) is considered optimal when task size distribution has low

variance [61]. However, FCFS has been shown to perform poorly

when the task size distribution has high dispersion or is heavy-

tailed [3]. In contrast, Processor Sharing is considered optimal for

high variance distributions [64].

In addition to the issues described above, the overall setting of

our problem is unique. Our runtime manages the scheduling on

both the SmartNIC and the host with the flexibility to move actors

between the two computing zones. Crucially, we want to increase

the occupancy on the SmartNIC, without overloading it or causing

tail latency spikes, and the runtime can shed load to the host if nec-

essary. Furthermore, given that the offloaded tasks will likely have

different cost distributions (as we saw in our characterization experi-

ments), we desire a solution that is suitable for a broad class of tasks.

….

reqs

Actors
downgrade 

Cond: Tail > Tail_thresh

upgrade 
Cond: Tail < (1-a) Tail_threshNIC FCFS core

Host server

….
Actors

NIC DRR core

FCFS push migration 
Cond: Mean > Mean_thresh

FCFS pull migration 
Cond: Mean < (1-a) Mean_thresh

DRR push migration 
Cond: Mailbox.len > Q_thresh

Figure 11: An overview of iPipe scheduler on the SmartNIC. Cond is
the condition that triggers an operation.

3.2.2 Scheduling algorithm. We propose a hybrid scheduler

that: (1) combines FCFS and DRR (deficit round robin) service dis-

ciplines; (2) migrates actors between SmartNIC and host proces-

sors when necessary. Essentially, the scheduler takes advantage

of FCFS for tasks that have low dispersion in their service times

and delegates tasks with a higher variance in service times to a

DRR service discipline. The scheduler uses DRR for high variance

tasks as DRR is an efficient approximation of Processor Sharing

in a non-preemptible setting [58]. Further, the scheduler places

as much computation as possible on the SmartNIC and migrates

actors when the NIC cannot promptly handle incoming packets.

For performing these transitions, the scheduler collects statistics

regarding the average and the tail execution latencies, actor-specific

execution latencies, and queueing delays. We mainly describe the

NIC-side scheduler below and then briefly describe how the host-

side scheduler differs from it.

The scheduler works as follows. Initially, all scheduling cores

start in FCFS mode, where they fetch packet requests from the

shared incoming queue, dispatch requests to the target actor based

on their flow information, and perform run-to-completion execu-

tion (see lines 5-6, 11-12 of ALG 1 in Appendix). When the measured

tail latency of operations in the FCFS core is higher than tail_thresh,
the scheduler downgrades the actor with the highest dispersion (a

measure that we describe later) by pushing the actor into a DRR

runnable queue and spawns a DRR scheduling core if necessary

(lines 13-16 ALG 1). All DRR cores share one runnable queue to

take advantage of the execution parallelism.

We next consider the DRR cores (see ALG 2 in Appendix). These

cores scan all actors in the DRR runnable queue in a round-robin

way. When the deficit counter of an actor is larger than its esti-

mated latency, the core pops a request from the actor’s mailbox and

conducts its execution. The DRR quantum value for an actor, which

is added to the counter in each round, is the maximum tolerated for-

warding latency for the actor’s average request size (obtained from

the measurements in Section 2.2.2). When the measured tail latency

of operations performed by FCFS is less than (1 − α)tail_thresh
(where α is a hysteresis factor), the actor with the lowest dispersion

in the DRR runnable queue is pushed back to the FCFS group (lines

10-12 of ALG 2).

Finally, when the scheduler detects that the mean request latency

for FCFS jobs is larger than mean_thresh, it recognizes that there is
a queue build-up at the SmartNIC. It then migrates to the host pro-

cessor the actor that contributes the most to the NIC’s processing
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load (lines 17-23 ALG 1). Similarly, when the mean request latency

of the FCFS core group is lower than (1 − α)mean_thresh and if

there is sufficient CPU headroom in the FCFS cores, the scheduler

pulls from the host server the actor that will incur the least load

back to the SmartNIC. To minimize synchronization costs, we use

a dedicated core of the FCFS group for the migration tasks.

3.2.3 Bookeeping execution statistics. Our runtime mon-

itors the following statistics to assist the scheduler: (1) Request

execution latency distribution of all actors: We measure µ, the exe-
cution latency of each request (including its queueing delay) using

microarchitectural time stamp counters. To efficiently approximate

the tail of the distribution, we also track the standard deviation of

the request latency σ and use µ+3σ as a tail latency measure. Note

that this is close to the P99 measure for normal distributions. All of

these estimates are updated using exponentially weighted moving

averages (EWMA). (2) Per-actor execution cost and dispersion sta-

tistics. For each actor i , we track its request latency µi , the standard
deviation of the latency σi , request sizes, and the request frequency.
We use µi + 3σi as a measure of the dispersion of the actor’s re-

quest latency. Again, we use EWMA to update these measures. (3)

Per-core/per-group CPU utilization. We monitor the per-core CPU

usage for the recent past and also use its EWMA to estimate its

current utilization. The CPU group utilization (for FCFS or DRR) is

the average CPU usage of the corresponding cores. Finally, we use

measurements from our characterization study to set the thresh-

oldsmean_thresh and tail_thresh. We consider the MTU packet size

at which the SmartNIC can sustain line rate and use the average

and P99 tail latencies experienced by traffic forwarded through the

SmartNIC as the corresponding thresholds (Section 2.2.2). These

thresholds mean that we provide the same level of service with

offloaded computations as when we have full line-rate processing

of moderately sized packets.

3.2.4 FCFS and DRR core auto-scaling. All cores start in
FCFS mode. When an actor is pushed into the DRR runnable queue,

the scheduler spawns a core for DRR execution. When all cores in

the DRR group is nearly fully used (CPUDRR ≥ 95% and the CPU

usage of the FCFS group is less than
100×(FCFSCore#−1)

FCFSCore# %, FCFS is

able to spare a core for DRR service, and the scheduler will migrate

a core to the DRR group. We use a similar condition for moving a

core back to the FCFS group.

3.2.5 SmartNIC push/pull migration. We only allow the

SmartNIC to initiate the migration operation since it is much more

sensitive than the host processor in case of overloading. As de-

scribed above, when there is persistent queueing (i.e., the mean

response time is above a threshold), the scheduler will move an ac-

tor to the host side. In particular, actor migration is triggered based

on the SmartNIC’s processing load and the incoming request traffic.

We pick the actor with the highest load (i.e., average execution la-

tency scaled by frequency of invocation) for migration and ensure

that the actor does not serve requests when it is being migrated.

We perform migration in four steps. First, the actor transitions into

the Prepare state and removes itself from the runtime dispatcher.

An actor in the DRR group is also removed from the DRR runnable

queue. The actor stops receiving incoming requests and buffers

them in the iPipe runtime. Second, the actor finishes the execution

Object ID SizeStart addressActor ID
0 1KB0x10f0000000

Object ID SizeStart addressActor ID
1 1KB0xfc00000001

iPipe-host object table iPipe-NIC object table

x 2KB0x10f001234xx 2KB0xfc0001234x
y 4KB0x10f005678yz 4KB0x10f005678z
x 8KB0x10f00abcdxx 8KB0x10f00abcdx

struct node{
    char key[KEY_LEN];    
    char *val;
    struct node *forwards[MAX_LEVEL];
}

Normal SkipList node

(a). Object migration

struct node{
    char key[KEY_LEN];    
    int val_object;
    int forward_obj_id[MAX_LEVEL];
}

DMO SkipList node 

(b). Skiplist node implementation in DMO

Figure 12: iPipe’s distributedmemory objects.

of its current tasks and transitions to the Ready state. Note that, for

an actor in the DRR group, it finishes executing all the requests in

its mailbox. Third, the scheduler moves the distributed objects of an

actor to the host runtime, starts the host actor, and marks the NIC

actor state as Gone. Finally, the scheduler forwards the buffered
requests from the NIC to the host and rewrites their destination

addresses. We will then label the NIC actor as Clean. Appendix B.3
provides more details on the migration process and its performance.

3.2.6 SmartNICs with no hardware trafficmanagers. We

now consider SmartNICs that do not provide a shared queue abstrac-

tion to the NIC processor (especially off-path ones like BlueField

and Stingray). There are two possible ways to overcome this lim-

itation. One is to apply a dedicated kernel-bypass component (such

as the IOKernel module in Shenango [51]) that processes all in-

coming traffic and exposes FCFS cores a single queue abstraction.

This module will run on one or several NIC cores exclusively, de-

pending on the traffic load. Another way is to add an intermediate

shuffle layer across FCFS cores. Essentially, this shuffle queue is a

single-producer, multiple-consumer one. This approach could cause

load imbalances due to flow steering. Similar to ZygOS [54], one

should also allow a FCFS core to steal other cores’ requests when

it becomes idle with no pending requests in its local queue. Note

that both approaches bring in performance overheads, so future

on-path/off-path SmartNICs could benefit from adding a hardware

traffic manager to simplify NIC-side computation scheduling.

Summary: The scheduler manages the execution of actor requests

on both the SmartNIC and the host. We use a hybrid scheme that

combines FCFS and DRR on both sides. With the scheme outlined

above, lightweight tasks with low dispersion are executed on the

SmartNIC’s FCFS cores, lightweight tasks with high dispersion are

executed on the SmartNIC’s DRR cores, and heavyweight tasks are

migrated to the host. These decisions are performed dynamically

to meet the desired average and tail response times.

3.3 Distributedmemory objects

iPipe provides a distributedmemory object (DMO) abstraction to en-

able flexible actor migration. Actors allocate and de-allocate DMOs

as needed, and a DMO is associated with the actor that allocated it;

there is no sharing of DMOs across actors. iPipe maintains an ob-

ject table (Figure 12-a) on both sides and utilizes the local memory

manager to allocate/de-allocate copies. At any given time, a DMO

has only one copy, either on the host or on the NIC. We also do

not allow an actor to perform reads/writes on objects across the
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PCIe because remote memory accesses are 10x slower than local

ones (as shown in Section 2.2). Instead, iPipe would automatically

move DMOs along with the actor, and all DMO read/write/copy-

/move operations are performed locally. During the initialization

phase, iPipe creates large equal-sized chunks of memory regions

for each registered actor. On LiquidIOII SmartNICs, we realize this

via the "global bootmem region" of the firmware. The iPipe runtime

maintains the mapping between actor ID, its base address, and size.

During execution, an actor can only allocate/reclaim/access objects

within its region. When an actor consumes more memory than the

framework provides, the DMO allocation will fail.

When using DMOs to design a data structure, one has to use

object ID for indexing instead of pointers. This approach provides

a level of indirection so that we can change the actual location of

the object (say during migration to/from the host) without impact-

ing an actor’s local state regarding DMOs. As an example, in our

replicated key-value store application (discussed later), we built a

Skip List based Memtable via a DMO. As shown in Figure 12-b, a

traditional Skip List node includes a key string, a value string, and

a set of forwarding pointers. With a DMO, the key field is the same,

but value and forwarding pointers are replaced by object IDs. When

traversing the list, one will use the object ID to get the start address

of the object, cast the type, and then read/write its contents.

Our characterization experiments (Section 2.2.4) have shown that

the scratchpad memory on the LiquidIOII NIC provides the fastest

performance but has limited resources. Instead of exposing this to

applications, we decide to keep this memory resource internally

and use it for storing the iPipe bookkeeping information (such as

the framework and actor execution statistics).

3.4 Security Isolation

iPipe allows multiple actors to execute concurrently on a SmartNIC.

iPipe handles the following two attacks: (1) actor state corruption,

where a malicious actor manipulates other actors’ states; (2) denial-

of-service, where an actor occupies a SmartNIC core and violates

the service availability of other actors. We first describe how to

protect against these two attacks on the LiquidIOII SmartNICs, us-

ing a lightweight firmware, and then discuss how to apply similar

techniques to other SmartNICs that have a full-fledged OS.

Actor state corruption. Since iPipe provides the distributed

memory object abstraction to use the onboard memory DRAM,

we rely on the processor paging mechanism to secure the object

accesses. LiquidIOII CN2350/CN2360 SmartNICs employ a MIPS

processor (which has a software-managed TLB) and a lightweight

firmware for memory management. As discussed above in Section

3.3, we partition memory into regions and allocate each region to

an actor. Invalid reads/writes from an actor causes a TLB miss and

will trap into the iPipe runtime. If the address is not in the region,

access is not granted.

Denial-of-service. A malicious actor might occupy a NIC core

forever (e.g., execute an infinite loop), violating actor availabil-

ity. We address this issue using a timeout mechanism. LiquidIOII

CN2350/CN2360 SmartNICs include a hardware timer with 16 timer

rings. We give each core a dedicated timer. When an actor executes,

it clears out the timer and initializes the time interval. The timeout

unit will traverse all timer rings and notify the NIC core when there

is a timeout event. If a NIC receives the timeout notification, iPipe

deregisters the actor, removes it from the dispatch table/runnable

queue (if it is in the DRR group), and frees the actor resource.

SmartNICswith full OS.When there is an OS deployed on the

SmartNIC (such as with BlueField/Stingray), iPipe will run each ac-

tor as individual threads in different address spaces. Thus, the hard-

ware paging mechanism prevents actors from accessing the private

state of other actors. Further, given the availability of a full OS, iPipe

can employ a software timeout mechanism based on POSIX signals.

3.5 Host/NIC communication

We use a message-passing mechanism to communicate between the

host and the SmartNIC. iPipe creates a set of I/O channels, and each

one includes two circular buffers for sending and receiving. A buffer

is unidirectional and stored in the host memory. One can also reuse

the NIC driver buffer for such communication. NIC cores write into

the receive buffer, and a host core polls it to detect new messages.

The send buffer works in reverse. We use a lazy-update mechanism

to synchronize the header pointer between the host and the NIC,

wherein the host notifies the SmartNIC when it has processed half

of the buffer via a dedicated message. We use batched non-blocking

DMA reads/writes for the implementation. In order to avoid the

case of a DMA engine not writing the message contents in a mono-

tonic sequence (unlike RDMA NICs), we add a 4B checksum into

the message header to verify the integrity of the whole message.

Table 4 (in the Appendix B.1) shows the messaging API.

4 Applications built with iPipe
When using iPipe to develop distributed applications, there are four

basic steps: (1) refactor the application logic into functionally in-

dependent components and represent them as actors; (2) define the

actors’ request formats and register them into the iPipe runtime;

(3) allocate and initialize the actor private state (with the DMO

APIs); (4) realize the actor exec_handler based on its application

logic using iPipe provided utilities. We implement three distributed

applications with iPipe: a replicated key-value store, a distributed

transaction system, and a real-time analytics engine.

Replicated key-value store. Replicated key-value store (RKV)

is a critical datacenter service, comprising of two system compo-

nents: a consensus protocol, and a key-value data store. We use the

traditional Multi-Paxos algorithm [34] to achieve consensus among

multiple replicas. Each replica maintains an ordered log for every

Paxos instance. There is a distinguished leader that receives client

requests and performs consensus coordination using Paxos pre-

pare/accept/learningmessages. In the common case, consensus for a

log instance can be achieved with a single round of accept messages,

and the consensus value can be disseminated using an additional

round (learning phase). Each node of a replicated state machine can

then execute the sequence of commands in the ordered log to imple-

ment the desired replicated service. When the leader fails, replicas

will run a two-phase Paxos leader election (which determines the

next leader), choose the next available log instance, and learn ac-

cepted values from other replicas if its log has gaps. Typically, the

Multi-Paxos protocol can be expressed as a sequence of messages

that are generated and processed based on the state of the RSM log.

For the key-value store, we implement the log-structured merge

tree (LSM) that is widely used for many KV systems (such as

Google’s Bigtable [11], LevelDB [36], Cassandra [4]). An LSM tree
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accumulates recent updates in memory and serves reads of recently

updated values from an in-memory data structure, flushes the up-

dates to the disk sequentially in batches, and merges long-lived

on-disk persistent data to reduce disk seek costs. There are two key

system components: Memtable, a sorted data structure (i.e., Skip

List) and SSTables, collections of data items sorted by their keys and

organized into a series of levels. Each level has a size limit on its

SSTables, and this limit grows exponentially with the level number.

Low-level SSTables are merged into high-level ones via minor/ma-

jor compact operations. Deletions are a special case of insertions

wherein a deletion marker is added. Data retrieval might require

multiple lookups on the Memtable and the SSTables (starting with

level 0 and moving to high levels) until a matching key is found.

In iPipe, we implement RKV with four kinds of actors: (1) consen-

sus actor, receives application requests and triggers the Multi-Paxos

logic; (2) LSMMemtable actor, accumulates incoming writes/deletes

and serves fast reads; (3) LSM SSTable read actor, serves SSTable

read requests when requests are missing in the Memtable; (4) LSM

compaction actor, performs minor/major compactions. The consen-

sus actor sends a message to the LSM Memtable once during the

commit phase. When requests miss in the Memtable actor, they are

forwarded to the SSTable read actor. Upon a minor compaction, the

Memtable actor migrates its Memtable object to the host and issues

a message to the compaction actor. Our system has multiple shards,

based on the NIC DRAM capacity. The two SSTable related actors

are on the host because they have to interact with persistent storage.

Distributed Transactions.We build a distributed transaction

processing system that uses optimistic concurrency control and

two-phase commit for distributed atomic commit, following the

design used by other systems [29, 65]. Note that we choose not to

include a replication layer as we want to eliminate the application

function overlap with our replicated key-value store. The applica-

tion includes a coordinator and participants that run a transaction

protocol. Given a read set (R) and a write set (W ), the protocol works

as follows: Phase 1 (read and lock): the coordinator reads values

for the keys in R and locks the keys inW . If any key in R orW is

already locked, the coordinator aborts the transaction and replies

with the failure status; Phase 2 (validation): after locking the write

set, the coordinator checks the version of keys in its read set by

issuing a second read. If any key is locked or its version has changed

after the first phase, the coordinator aborts the transaction; Phase

3 (log): the coordinator logs the key/value/version information into

its coordinator log; Phase 4 (commit): the coordinator sends commit

messages to nodes that store theW set. After receiving this mes-

sage, the participant will update the key/value/version, as well as

unlock the key. When the coordinator receives acknowledgments,

it sends a reply to the client with the result. The commit point of the

transaction protocol is when the coordinator successfully records

the transaction information in its log.

In iPipe, we implement the coordinator and participant as actors

running on the NIC. The storage abstractions required to imple-

ment the protocol are the coordinator log [60] and the data store,

which we realize using a traditional extensible hashtable [22]. Both

of these are realized using distributed shared objects. We also cache

responses from outstanding transactions. There is also a logging

actor pinned to the host since it requires persistent storage access.

When the coordinator log reaches a storage limit, the coordinator

migrates its log object to the host side and sends a checkpointing

message to the logging actor.

Real-timeAnalytics. Data processing pipelines use a real-time

analytics engine to gain instantaneous insights into vast and fre-

quently changing datasets. We acquired the implementation of

FlexStorm [30] and extended its functionality. All data tuples are

passed through three workers: filter, counter, and ranker. The filter
applies a pattern matching module [15] to discard uninteresting

data tuples. The counter uses a sliding window and periodically

emits a tuple to the ranker. Ranking workers sort incoming tuples

based on count and then emit the top-n data to an aggregated ranker.
Each worker uses a topology mapping table to determine the next

worker to which the result should be forwarded.

In iPipe, we implement the three workers as actors. Filter actor is

a stateless one. Counter uses a software-managed cache for statis-

tics. Ranker is implemented using a distributed shared object, and

we consolidate all top-n data tuples into one object. Among them,

ranker performs quicksort to order tuples, which could impact the

NIC’s ability to receive new data tuples when the network load is

high. In such cases, iPipe will migrate the actor to the host side.

5 Evaluation
Our evaluations aim to answer the following questions:

• What are host CPU core savings when offloading computations

using iPipe? (§5.2)

• What are the latency savings with iPipe? (§5.3)

• How effective is the iPipe actor scheduler? (§5.4)

• What is the overhead of the iPipe framework? ($5.5)

• When comparedwith the SmartNIC programming system Floem [53],

what are the design trade-offs in terms of performance and pro-

grammability? (§5.6)

• Can we use iPipe to build other applications such as network

functions? How does it perform? (§5.7)

5.1 Experimental methodology

We use the same testbed as our characterization experiments in

Section 2.2.1. For evaluating our application case studies, we mainly

use the LiquidIOII CN2350/CN2360 (10/25 GbE) as we had a suffi-

cient number of cards to build a small distributed testbed. We built

iPipe into the LiquidIOII firmware using the Cavium Development

Kit [10]. On the host side, we use pthreads for iPipe execution and

allocate 1GB pinned huge pages for the message ring. Each runtime

thread periodically polls requests from the channel and performs

actor execution. The iPipe runtime spans across the NIC firmware

andthe host system with 10683 LOC and 4497 LOC, respectively.

To show the effectiveness of the actor scheduler, we also present

results for the Stingray card.

Programmers use the C language to build applications (which

are compiled with GNU toolchains for the SmartNIC and the host).

Our three applications, real-time analytics (RTA), distributed trans-

actions (DT), and replicated key-value store (RKV), built with iPipe

have 1583 LOC, 2225 LOC, and 2133 LOC, respectively. We compare

them with similar implementations that use DPDK. Our workload

generator is implemented using DPDK and invokes operations in

a closed-loop manner. For RTA, we generate the requests based on

a Twitter dataset [35]. The number of data tuples in each request

vary based on the packet size. For DT, each request is a multi-key
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Figure 13: Number of CPU cores used by DPDK and iPipe as we vary the packet size on 10GbE and 25GbE networks.
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Figure 14: Latency versus per-core throughput for three applications on 10GbE network. Packet size is 512B.
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Figure 15: Latency versus per-core throughput for three applications on 25GbE network. Packet size is 512B.

read-write transaction including two reads and one write (as used

in prior work [29]). For RKV, we generate the <key,value> pair in

each packet, with the following characteristics: 16B key, 95% read

and 5%write, zipf distribution with skew of 0.99, and 1 million keys

(following the settings in prior work[39, 49]). For both DT and RKV,

the value size increases with the packet size.

We deploy each of the applications on three servers, equipped

with SmartNICs in the case of iPipe and standard Intel NICs in the

case of DPDK. The RTA application runs an RTA worker on each

server, the DT application runs coordinator logic on one server and

participant logic on two servers, and the RKV application involves

a leader node and two follower nodes.

5.2 Host core savings

We find that we can achieve significant host core savings by offload-

ing computations to the SmartNIC. Figure 13 reports the average

host server CPU usage of three applications when achieving the

maximum throughput for different packet sizes under 10/25GbE

networks. First, when packet size is small (i.e., 64B), iPipe will use

all NIC cores for packet forwarding, leaving no room for actor exe-

cution. In this case, one will not save host CPU cores. Second, host

CPU usage reduction is related to both packet size and bandwidth.

Higher link bandwidth and smaller packet size bring in more packet

level parallelism. When the SmartNIC is able to absorb enough re-

quests for execution, one can reduce host CPU loads significantly.

For example, applications built on iPipe save 3.1, 2.6, and 2.5 host

cores for 256/512/1KB cases, on average across three applications

using the 25GbE CN2360 cards. Such savings are marginally re-

duced with the 10GbE CN2350 ones (i.e., 2.2, 1.8, 1.8 core savings).

Among these three applications, DT participant saves the most

since it is able to run all its actors on the SmartNIC, followed by

the DT coordinator, RTA worker, RKV follower, and RKV leader.

5.3 Latency versus Throughput

We next examine the latency reduction and per-core throughput

increase provided by iPipe and find that SmartNIC offloading pro-

vides considerable benefits. Figures 14 and 15 report the results

comparing DPDK and iPipe versions of the applications, when we

configure the system to achieve the highest possible throughput

with the minimal number of cores. When calculating the per-core

throughput of three applications, we use the CPU usage of RTA

worker, DT coordinator, and RKV leader to account for fractional
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Figure 16: P99 tail latency at different networking loads for 10GbE LiquidIOII CN2350 and 25GbE Stingray. We consider both low and high
dispersion distributions for request execution costs.

core usage. First, under 10GbE SmarNICs, applications (RTA, DT,

and RKV) built with iPipe outperform the DPDK ones by 2.3X,

4.3X, and 4.2X, respectively, as iPipe allows applications to offload

some of the computation to the SmartNIC. The benefits diminish

a little under the 25GbE setup (with 2.2X, 2.9X, and 2.2X improve-

ments) since actors running on the host CPU receive more requests

and require more CPU power. Second, at low to medium request

rates, NIC-side offloading reduces request execution latency by

5.7µs, 23.0µs, 8.7µs for 10GbE and 5.4µs, 28.0µs, 12.5µs for 25GbE,
respectively. Even though the SmartNIC has only a wimpy proces-

sor, the iPipe scheduler keeps the lightweight, fast-path tasks on

the NIC and moves the heavyweight, slow ones to the host. As a

result, PCIe transaction savings, fast networking primitives, and

hardware-accelerated buffer management can help reduce the fast

path execution latency. DT benefits the most as (1) both the coordi-

nator and the participants mainly run on the SmartNIC processor;

(2) the host CPU is only involved for the logging activity.

P99tail latency.Wemeasured the tail latency (P99) when achiev-

ing 90% of the maximum throughput for the two link speeds. For

the three applications, iPipe reduces tail latency by 7.3µs, 11.6µs,
7.5µs for 10GbE and by 3.4µs, 10.9µs, 12.8µs for 25GbE. This reduc-
tion is not only due to fast packet processing (discussed above), but

also because iPipe’s NIC-side runtime guarantees that there is no

significant queue build up.

5.4 iPipe actor scheduler

We evaluate the effectiveness of iPipe’s scheduler, comparing

it with standalone FCFS and DRR schedulers under two different

request cost distributions: one is exponential with low dispersion;

the other one is bimodal-2 with high dispersion. We choose two

SmartNICs (i.e., 10GbE LiquidIOII CN2350 and 25GbE Stingray)

representing the cases where the scheduling runtime uses firmware

hardware threads and OS pthreads, respectively. The workload gen-

erator is built using packet traces obtained from our three real-world

applications, and it issues requests assuming a Poisson process. We

measure the latency from the client. The mean service times of the

exponential distribution on the two SmartNICs (i.e., LiquidIOII and

Stingray) is 32µs and 27µs, while b1/b2 of the bimodal-2 distribution

is 35µs/60µs and 25µs/55µs.
Figure 16 shows the P99 tail latency as we increase the network

load for four different cases. For the low dispersion one, iPipe’s

scheduler behaves similar to FCFS but outperforms DRR. Under

0.9 networking load, iPipe can reduce 9.6% and 21.7% of DRR’s tail
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latency for LiquidIOII and Stingray, respectively. For the high disper-

sion one, iPipe’s scheduler is able to tolerate the request execution

variation and serve short tasks in time, outperforming the other

two. For example, when the networking load is 0.9, iPipe can reduce

68.7% (61.4%) and 10.9% (12.9%) of the tail latency for FCFS and DRR

cases on LiquidIOII (Stingray). In this case, our approximate tail la-

tency threshold (measured via µ+3σ ) for LiquidIOII and Stingray is
52.8µs and 44.6µ, respectively. Thus, requests with latencies higher

than the threshold are processed on the iPipe DRR cores.

5.5 iPipe framework overheads

We evaluate the CPU overhead of the iPipe framework by compar-

ing two host-only implementations of RKV (one with iPipe and one

without iPipe). To make a fair comparison, when running these

two versions, we pin the communication thread to the same core

using the same epoll interface. We generate 512B requests and

gradually increase the networking load. Figure 17 reports the host

CPU utilization of the RKV leader and the follower when achieving

the same throughput. On average, iPipe consumes 12.3% and 10.8%

more CPU cycles for RKV leader and follower, respectively. Overall,

iPipe brings in three kinds of overheads: message handling, DMO

address translation when accessing objects, and the cost of the

iPipe scheduler that orchestrates traffic and maintains statistics of

execution costs. Since the message handling is not unique to iPipe,

the other two parts dominate the above-measured overheads.

5.6 Comparison with Floem

Floem [53] is a programming system aimed at easing the program-

ming effort for SmartNIC offloading. It applies a data-flow language

to express packet processing and proposes a few programming ab-

stractions, such as logic queue and per-packet state. iPipe also has

related concepts, such as message rings and packet metadata. How-

ever, compared with iPipe, the key difference is that the language
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runtime of Floem does not use the SmartNIC’s computing power ef-

ficiently. First, the offloaded elements (computations) on Floem are

stationary, no matter what the incoming traffic is. Note, however,

that under high network traffic load comprising of small packets,

Multicore SoC SmartNICs have no room for application computa-

tion (as shown in Section 2.2.2). In iPipe, under such settings, we

will migrate the computation to the host side. Second, the common

computation elements of Floem mainly comprise of simple tasks

(like hashing, steering, or bypassing). Complex ones are performed

on the host side. This approach misses the opportunity of using the

cheap computing parallelism and domain-specific accelerators on

the SmartNIC. In contrast, iPipe, can be used to manage and offload

complex operations, and the runtime will dynamically schedule

them in the right place.

We take the real-time analytics (RTA) workload, and compare

its Floem and iPipe implementations. With the same experimen-

tal setup, Floem-RTA achieves at most 1.6Gbps/core (in the best

case), while iPipe-RTA can achieve 2.9Gbps. As described above,

this is because iPipe can offload the entire actor computation while

Floem utilizes a NIC-side bypass queue to mitigate the multiplex-

ing overhead. For the small packet size case (i.e., 64B), iPipe-RTA

delivers 0.6Gbps/core, outperforming Floem by 88.3%, since iPipe

moves all the actors to the host and uses all NIC cores for packet

forwarding, while Floem’s static policy persists with performing

the computations on the SmartNIC.

5.7 Network functions on iPipe

The focus of iPipe is to accelerate distributed applications with

significant complexity in program logic and maintained state. For

network functions with easily expressed states (or even stateless

ones) that have sufficient parallelism, FPGA-based SmartNICs are

an appropriate fit. We now consider how well iPipe running on mul-

ticore SmartNICs can approximate FPGA-based SmartNICs for such

workloads. We built two network functions with iPipe (i.e., Firewall

and IPSec gateway) and evaluated them on the 10/25GbE LiquidIOII

cards. For the firewall, we use a software-based TCAM implementa-

tion matching wildcard rules. Under 8K rules and 1KB packet size,

the average packet processing latency ranges from 3.65µs to 19.41µs
as we increase the networking load. These latencies are higher than

an FPGA based solution (i.e., 1.23∼1.6µs reported in [38]). We also

implemented an IPSec datapath that processes IPSec packets with

AES-256-CTR encryption and SHA-1 authentication. We take ad-

vantage of the crypto engines to accelerate packet processing. For

1KB packets, iPipe achieves 8.6Gbps and 22.9Gbps bandwidth on

the 10/25 GbE SmartNIC cards, respectively. These results are com-

parable to the ClickNP ones (i.e., 37.8Gbps under 40GbE link speed).

In other words, if one can use the accelerators on a Multicore SoC

SmartNIC for implementing the network functions, one can achieve

performance comparable to FPGA based ones.

6 Related work
SmartNIC acceleration. In addition to Floem [53], ClickNP [38]

is another framework using FPGA-based SmartNICs for network

functions. It uses the Click [33] dataflow programming model and

statically allocates a regular dataflow graph model during config-

uration, whereas iPipe can move computations based on runtime

workload (e.g., request execution latency, incoming traffic). There

are a few other studies that use SmartNICs for application accel-

eration. For example, KV-Direct [37] is an in-memory key-value

store system, which runs key-value operations on the FPGA and

uses the host memory as a storage pool.

In-networkcomputations. Recent RMT switches [6] and Smart-

NICs enable programmability along the packet data plane. Re-

searchers have proposed the use of in-network computation to

offload compute operations from endhosts into these network de-

vices. For example, IncBricks [41] is an in-network caching fabric

with some basic computing primitives. NetCache [25] is another in-

network caching design, which uses a packet-processing pipeline

on a Barefoot Tofino switch to detect, index, store, invalidate, and

serve key-value items. DAIET [55] conducts data aggregation along

the network path on programmable switches.

RDMA-baseddatacenterapplications. Recent years have seen
growing use of RDMA in datacenter environments due to its low-

latency, high-bandwidth, and low CPU utilization benefits. These

applications include key-value store system [16, 27, 45], DSM (dis-

tributed sharedmemory) system [16, 46], database and transactional

system [12, 17, 29, 63]. Generally, RDMA provides fast data access

capabilities but limited opportunities to reduce the host CPU com-

puting load. While one-sided RDMA operations allow applications

to bypass remote server CPUs, they are hardly used in general

distributed systems given the narrow set of remote memory access

primitives associated with them. In contrast, iPipe provides a frame-

work to offload simple but general computations onto SmartNICs.

It does, however, borrow some techniques approaches from related

RDMA projects (e.g., lazy updates for the send/receive rings in

FaRM [16]).

Microsecond-scalescheduler.Researchers have proposed sched-
ulers to reduce the tail latency of µs-scale tasks. ZygOS [54] builds
a work-conserving scheduler that applies the d-FCFS queueing

discipline and enables low-overhead task stealing. Shinjuku [26] ad-

dresses a similar problem (i.e., handling tasks with variable service

times) as the iPipe scheduler. It provides a fast preemptive schedul-

ing mechanism by mapping the local APIC address into the guest

physical address space. However, triggering an interrupt is not only

a costly operation on the SmartNIC, it is also disabled on SmartNICs

that are firmware-based (such as LiquidIOII ones). Instead, we ex-

plore a hybrid scheduling discipline that runs heavy-weight actors

on DRR cores and executes light-weight actors on FCFS cores.

7 Conclusion
This paper makes a case for offloading distributed applications onto

a Multicore SoC SmartNICs. We conduct a detailed performance

characterization on different commodity Multicore SoC SmartNICs

and build the iPipe framework based on experimental observations.

We then develop three applications using iPipe and prototype them

on these SmartNICs. Our evaluations show that by offloading com-

putation to a SmartNIC, one can achieve considerable host CPU

and latency savings. This work does not raise any ethical issues.

8 Acknowledgments
This work is supported in part by NSF grants CNS-1616774, CNS-

1714508, and 1751231. We would like to thank the anonymous

reviewers and our shepherd, Bruce Maggs, for their comments and

feedback.

329



Offloading Distributed Applications onto SmartNICs using iPipe SIGCOMM ’19, August 19–23, 2019, Beijing, China

References
[1] Gul Agha. 1986. Actors: AModel of Concurrent Computation in Distributed Systems.
[2] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,

Balaji Prabhakar, and Scott Shenker. 2013. pFabric:MinimalNear-optimalDatacen-

ter Transport. In Proceedings of the ACM SIGCOMM2013 Conference on SIGCOMM.

[3] Venkat Anantharam. 1999. Scheduling strategies and long-range dependence.

Queueing systems 33, 1-3 (1999), 73–89.
[4] Apache. 2017. The Apache Cassandra Database. http://cassandra.apache.org.

(2017).

[5] ARM. 2019. ARMCortex-A72Multi-core Processor. https://developer.arm.com/

products/processors/cortex-a/cortex-a72. (2019).

[6] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin

Izzard, FernandoMujica, andMark Horowitz. 2013. Forwarding metamorphosis:

Fast programmable match-action processing in hardware for SDN. In ACM
SIGCOMMComputer Communication Review, Vol. 43. 99–110.

[7] Broadcom. 2019. Broadcom Stingray SmartNIC. https://www.broadcom.com/

products/ethernet-connectivity/smartnic/ps225. (2019).

[8] Broadcom. 2019. The TruFlow Flow processing engine. https:

//www.broadcom.com/applications/data-center/cloud-scale-networking. (2019).

[9] Cavium. 2017. Cavium OCTEONMulti-core Processor. http://www.cavium.com/

octeon-mips64.html. (2017).

[10] Cavium. 2017. OCTEON Development Kits. http://www.cavium.com/octeon_

software_develop_kit.html. (2017).

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.

2006. Bigtable: A Distributed Storage System for Structured Data. In 7th USENIX
Symposium on Operating Systems Design and Implementation.

[12] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen. 2016. Fast

and general distributed transactions using RDMA and HTM. In Proceedings of
the Eleventh European Conference on Computer Systems.

[13] Cisco. 2015. The New Need for Speed in the Datacenter Net-

work. http://www.cisco.com/c/dam/en/us/products/collateral/switches/

nexus-9000-series-switches/white-paper-c11-734328.pdfdf. (2015).

[14] Cisco. 2016. Cisco Global Cloud Index: Forecast and Methodology, 2015-2020.

http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/

global-cloud-index-gci/white-paper-c11-738085.pdf. (2016).

[15] Russ Cox. 2019. Implementing Regular Expressions. https://swtch.com/~rsc/

regexp/. (2019).

[16] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, andMiguel Castro.

2014. FaRM: Fast remote memory. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation.

[17] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B Nightingale, Matthew

Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No

compromises: distributed transactions with consistency, availability, and

performance. In Proceedings of the 25th symposium on operating systems principles.
[18] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, RomanKononov, Eric

Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and Jinnah Dy-

lan Hosein. 2016. Maglev: A Fast and Reliable Software Network Load Balancer.

In 13th USENIX Symposium on Networked Systems Design and Implementation.
[19] Daniel Firestone. 2017. Hardware-Accelerated Networks at Scale in the

Cloud. https://conferences.sigcomm.org/sigcomm/2017/files/program-kbnets/

keynote-2.pdf. (2017).

[20] Daniel Firestone, Andrew Putnam, SambhramaMundkur, Derek Chiou, Alireza

Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric

Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack

Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,

Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,

Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug

Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure

Accelerated Networking: SmartNICs in the Public Cloud. In 15th USENIX
Symposium on Networked Systems Design and Implementation.

[21] Alex Goldhammer and John Ayer Jr. 2008. Understanding performance of PCI

express systems. XilinxWP350, Sept 4 (2008).
[22] Troy D. Hanson. 2017. Uthash Hashtable. https://troydhanson.github.io/uthash/.

(2017).

[23] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. AUniversalModular ACTOR

Formalism for Artificial Intelligence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence (IJCAI’73).

[24] Huawei. 2018. Huawei IN550 SmartNIC. https://e.huawei.com/us/news/it/

201810171443. (2018).

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,

Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores

with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating
Systems Principles.

[26] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David

Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for

µsecond-scale Tail Latency. In 16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 19).
[27] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2014. Using RDMA

efficiently for key-value services. InACM SIGCOMMComputer Communication
Review, Vol. 44. 295–306.

[28] AnujKalia,Michael Kaminsky, andDavidG.Andersen. 2016. Design guidelines for

high performance RDMA systems. In 2016 USENIX Annual Technical Conference.
[29] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, Scalable

and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs. In

12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16).

[30] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas Anderson, and

Arvind Krishnamurthy. 2016. High Performance Packet Processing with FlexNIC.

In Proceedings of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems.

[31] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,

Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson, Vyas Sekar,

and Srinivasan Seshan. 2018. Hyperloop: Group-based NIC-offloading to Accel-

erate Replicated Transactions in Multi-tenant Storage Systems. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication.

[32] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun Shim, and

Sue Moon. 2015. NBA (Network Balancing Act): A High-performance Packet

Processing Framework for Heterogeneous Processors. In Proceedings of the Tenth
European Conference on Computer Systems.

[33] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.

2000. The Click modular router. ACM Transactions on Computer Systems (TOCS)
18, 3 (2000), 263–297.

[34] Leslie Lamport. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 18–25.
[35] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[36] LevelDB. 2017. LevelDB Key-Value Store. http://leveldb.org. (2017).

[37] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew

Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance

In-Memory Key-Value Store with Programmable NIC. In Proceedings of the 26th
Symposium on Operating Systems Principles.

[38] Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,

Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016. Clicknp: Highly flexible

and high performance network processing with reconfigurable hardware. In

Proceedings of the 2016 ACM SIGCOMMConference.
[39] Hyeontaek Lim, Dongsu Han, David G. Andersen, andMichael Kaminsky. 2014.

MICA: A Holistic Approach to Fast In-memory Key-value Storage. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and Implementation.

[40] Jianxiao Liu, Zonglin Tian, Panbiao Liu, Jiawei Jiang, and Zhao Li. 2016. An

approach of semantic web service classification based on Naive Bayes. In Services
Computing (SCC), 2016 IEEE International Conference on.

[41] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and

Kishore Atreya. 2017. IncBricks: Toward In-Network Computation with an

In-Network Cache. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating Systems.

[42] Marvell. 2018. Marvell LiquidIO SmartNICs. https://www.marvell.com/

documents/08icqisgkbtn6kstgzh4/. (2018).

[43] Mellanox. 2018. Mellanox BuleField SmartNIC. http://www.mellanox.com/page/

products_dyn?product_family=275&mtag=bluefield_smart_nic. (2018).

[44] Mellanox. 2019. Accelerated Switch and Packet Processing. http:

//www.mellanox.com/page/asap2?mtag=asap2. (2019).

[45] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA

Reads to Build a Fast, CPU-Efficient Key-Value Store.. In USENIX Annual Technical
Conference.

[46] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon

Kahan, and Mark Oskin. 2015. Latency-Tolerant Software Distributed Shared

Memory.. In USENIX Annual Technical Conference.
[47] Netronome. 2018. Netronome Agilio SmartNIC. https://www.netronome.com/

products/agilio-cx/. (2018).

[48] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio

López-Buedo, and AndrewW. Moore. 2018. Understanding PCIe Performance

for End Host Networking. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication.

[49] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,

Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,

Tony Tung, and Venkateshwaran Venkataramani. 2013. Scaling Memcache at

Facebook. In Presented as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation.

[50] OFED. 2019. Infiniband Verbs Performance Tests. https://github.com/linux-rdma/

perftest. (2019).

[51] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-

ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive

DatacenterWorkloads. In 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19).

330



SIGCOMM ’19, August 19–23, 2019, Beijing, China M. Liu et al.

[52] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno

Rajahalme, Jesse Gross, AlexWang, Joe Stringer, Pravin Shelar, Keith Amidon, and

Martin Casado. 2015. The Design and Implementation of Open vSwitch. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15).

[53] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,

Rastislav Bodik, and Thomas Anderson. 2018. Floem: A Programming System for

NIC-Accelerated Network Applications. In 13th USENIX Symposium on Operating
Systems Design and Implementation.

[54] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving

Low Tail Latency for Microsecond-scale Networked Tasks. In Proceedings of the
26th Symposium on Operating Systems Principles.

[55] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos

Kalnis. 2017. In-network computation is a dumb idea whose time has come. In

Proceedings of the 16th ACMWorkshop on Hot Topics in Networks.
[56] Linus Schrage. 1968. Letter to the editor−a proof of the optimality of the shortest

remaining processing time discipline. Operations Research 16, 3 (1968), 687–690.
[57] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.

Approximating Fair Queueing on Reconfigurable Switches. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18).

[58] Madhavapeddi Shreedhar and George Varghese. 1996. Efficient fair queuing using

deficit round-robin. IEEE/ACM Transactions on networking 4, 3 (1996), 375–385.
[59] Sriram Srinivasan and AlanMycroft. 2008. Kilim: Isolation-typed actors for java.

In European Conference on Object-Oriented Programming.
[60] JamesW Stamos and Flaviu Cristian. 1993. Coordinator log transaction execution

protocol. Distributed and Parallel Databases 1, 4 (1993), 383–408.
[61] Alexander L Stolyar andKavita Ramanan. 2001. Largestweighted delay first sched-

uling: Large deviations and optimality. Annals of Applied Probability (2001), 1–48.

[62] SmartNIC Vendors. 2019. Marvell, Private communications. unpublished. (2019).

[63] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast

in-memory transaction processing using RDMA and HTM. In Proceedings of the
25th Symposium on Operating Systems Principles.

[64] Adam Wierman and Bert Zwart. 2012. Is tail-optimal scheduling possible?

Operations research 60, 5 (2012), 1249–1257.
[65] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,

and Dan R. K. Ports. 2015. Building Consistent Transactions with Inconsistent

Replication. In Proceedings of the 25th Symposium on Operating Systems Principles.

331



Offloading Distributed Applications onto SmartNICs using iPipe SIGCOMM ’19, August 19–23, 2019, Beijing, China

 0

 10

 20

 30

 40

 50

 60

Filter
Count

Rank Coord.
Parti.

Consensus
LSMmem.

E
la

p
s
e
d

 t
im

e
 (

m
s
) Phase1

Phase2
Phase3
Phase4

Figure 18: Migration elapsed time breakdown of 8 actors from three
applications evaluated with 10GbE CN2350 cards.

Appendix A SmartNIC computing unit characteriza-
tion

Appendices are supportingmaterial that has not been peer reviewed.

Table 3 summarizes the microarchietcture results for LiquidIOII

CN2350 multicore processor and accelerators.

Appendix B More details in the iPipe framework
This section describes more details of the iPipe framework that is

not included in the main paper.

B.1 iPipe runtime APIs

Table 4 presents the major APIs. Specifically, the actor management

APIs are used by our runtime. We provide five calls for manag-

ing DMOs. When creating an object on the NIC, iPipe first allo-

cates a local memory region using the dlmalloc2 allocator and

then inserts an entry (i.e., object ID, actor ID, start address, size)

into the NIC object table. Upon dmo_free, iPipe frees the space

allocated for the object and deletes the entry from the object ta-

ble. dmo_memset, dmo_memcpy, dmo_memmove resemble mem-

set/memcpy/memmove APIs in glibc, except that it uses the object

ID instead of a pointer.

For the networking stack, iPipe takes advantage of packet pro-

cessing accelerators (if the SmartNIC has) to build a shim cus-

tomized networking stack for the SmartNIC. This stack performs

simple Layer2/Layer3 protocol processing, such as packet encap-

sulating/decapsulation, checksum verification, etc. When building

a packet, it uses the DMA scatter-gather technique to combine

the header and payload if they are not colocated. This helps im-

prove the bandwidth utilization, as shown in our characterization

(Section 2.2.5).

B.2 iPipe actor scheduling algorithm

Algorithms 1 and 2 show the details of our iPipe hybrid scheduler.

B.3 iPipe actormigration evaluation

When migrating an actor to the host, as shown in Figure 12, our

runtime (1) collects all objects that belong to the actor; (2) sends the

Algorithm 1 iPipe FCFS scheduler algorithm
1: wqe : contains packet data and metadata

2: DRR_queue : the runnable queue for the DRR scheduler

3: procedure FCFS_sched ▷ on each FCFS core

4: while true do
5: wqe = iPipe_nstack_r ecv()
6: actor = iPipe_dispatcher (wqe)
7: if actor.is_DRR then
8: actor .mailbox_push(wqe)
9: Continue

10: end if
11: actor .actor_exe(wqe)
12: actor .bookeepinд() ▷ Update execution statistics

13: if T_tail > Tail_thresh then ▷ Downgrade

14: actor .is_DRR=1
15: DRR_queue .push(actor )
16: end if
17: if core_id is 0 then ▷Management core

18: if T_mean >Mean_thresh then ▷Migration

19: iPipe_actor_miдrate(actor_chosen)
20: end if
21: if T_mean < (1-α )Mean_thresh then ▷Migration

22: iPipe_actor_pull ()
23: end if
24: end if
25: endwhile
26: end procedure

object data to the host side using messages and DMA primitives;

(3) creates new objects on the host side and then inserts entries

into the host-side object table; (4) deletes related entries from the

NIC-side object table upon deleting the actor. The host-side DMO

works similarly, except that it uses the glibc memory allocator.

We estimate the migration cost (SmartNIC-pushed) by breaking

down the time elapsed of four phases 3.2.5. We choose 8 actors

from three applications. our experiments are conducted under 90%

networking load and we force the actor migration after the warm

up (5s). Figure 18 presents our results. First, phase 3 dominates the

migration cost (i.e., 67.8% on average of 8 actors) since it requires

to move the distributed objects to the host side. For example, the

LSMmemtable actor has around 32MB object and consumes 35.8ms.

Phase 4 ranks the second (i.e., 27.2%) as it pushes buffered requests

to the host. Also, it varies based on the networking load. Phase 1 and

Phase 2 are two lightweight parts because they only introduce the

iPipe runtime locking/unlocking and state manipulation overheads.
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Applications Computation DS Exe. Lat.(us) IPC MPKI Accelerator IPC MPKI Exe. Lat.(us)
bsz=1 bsz=8 bsz=32

Baseline (echo) N/A N/A 1.87 1.4 0.6 CRC 1.2 2.8 2.6 0.7 0.3

Flowmonitor [57] Count-min sketch 2-D array 3.2 1.4 0.8 MD5 0.7 2.6 5.0 3.1 3.0

KV cache [37] key/value Rr/Wr/Del Hashtable 3.7 1.2 0.9 SHA-1 0.9 2.6 3.5 1.2 0.9

Top ranker [53] Quick sort 1-D array 34.0 1.7 0.1 3DES 0.8 0.9 3.4 1.3 1.1

Rate limiter [38] Leaky bucket FIFO 8.2 0.7 4.4 AES 1.1 0.9 2.7 1.0 0.8

Firewall [38] Wildcard match TCAM 3.7 1.3 1.6 KASUMI 1.0 0.9 2.7 1.1 0.9

Router [32] LPM lookup Trie 2.2 1.3 0.6 SMS4 0.8 0.9 3.5 1.4 1.2

Load balancer [18] Maglev LB Permut. table 2.0 1.3 1.3 SNOW3G 1.4 0.5 2.3 0.9 0.8

Packet scheduler [2] pFabric scheduler BST tree 12.6 0.5 4.9 FAU 1.4 0.6 1.9 1.4 1.0

Flow classifier [40] Naive Bayes 2-D array 71.0 0.5 15.2 ZIP 1.0 0.2 190.9 N/A N/A

Packet replication [31] Chain replication Linklist 1.9 1.4 0.6 DFA 1.3 0.2 9.2 7.5 7.3

Table 3: Performance comparison among generic offloaded applications and accelerators for the 10GbE LiquidIOII CN2350. Request size is 1KB
for all cases. We report both per-request execution time as well as microarchitectural counters. DS=Data structure. IPC=Instruction per cycle.
MPKI=L2 cachemisses per kilo-instructions. bsz=Batch size. DFA=Deterministic Finite Automation.

API Explanation

A
c
t
o
r

actor_create (*) create an actor

actor_register (*) register an actor into the runtime

actor_init (*) initialize an actor private state

actor_delete (*) delete the actor from the runtime

actor_migrate (*) migrate an actor to host

D
M
O

dmo_malloc allocate a dmo obj.

dmo_free free a dmo obj.

dmo_mmset set space in a dmo with value.

dmo_mmcpy copy data from a dmo to a dmo.

dmo_mmmove move data from a dmo to a dmo.

dmo_migrate migrate a dmo to the other side.

M
S
G

msg_init initialize a remoge message I/O ring

msg_read (*) read newmessages form the ring

msg_write write messages into the ring

N
s
t
a
c
k

nstack_new_wqe create a newWQE

nstack_hdr_cap build the packet header

nstack_send send a packet to the TX

nstack_get_wqe get theWQE based on the packet

nstack_recv(*) receive a packet from the RX

Table 4: iPipe major APIs. There are four categories: actor manage-
ment (Actor), distributed memory object (DMO), message passing
(MSG), and networking stack (Nstack). The Nstack has additional
methods for packet manipulation. APIs with * are mainly used by
the runtime as opposed to actor code.

Algorithm 2 iPipe DRR scheduler algorithm

1: procedureDRR_sched ▷ On each DRR core

2: while true do
3: for actor in all DRR_queue do
4: if actor.mailbox is not empty then
5: actor .update_def icit_val ()
6: if actor.deficit > actor.exe_lat then
7: wqe =actor .mailbox_pop()
8: actor .actor_exe(wqe)
9: actor .bookeepinд()
10: if T_tail < (1-α )Tail_thresh then ▷ Upgrade

11: actor .is_DRR=0
12: DRR_queue .r emove(actor )
13: end if
14: end if
15: if actor.mailbox is empty then
16: actor .def icit =0
17: end if
18: if actor.mailbox.len > Q_thresh then ▷Migration

19: iPipe_actor_miдrate(actor )
20: end if
21: end if
22: end for
23: endwhile
24: end procedure
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