
Understanding Host Network Stack Overheads

Qizhe Cai
Cornell University

Shubham Chaudhary
Cornell University

Midhul Vuppalapati
Cornell University

Jaehyun Hwang
Cornell University

Rachit Agarwal
Cornell University

ABSTRACT

Traditional end-host network stacks are struggling to keep up with

rapidly increasing datacenter access link bandwidths due to their

unsustainable CPU overheads. Motivated by this, our community is

exploring a multitude of solutions for future network stacks: from

Linux kernel optimizations to partial hardware offload to clean-slate

userspace stacks to specialized host network hardware. The design

space explored by these solutions would benefit from a detailed

understanding of CPU inefficiencies in existing network stacks.

This paper presents measurement and insights for Linux kernel

network stack performance for 100Gbps access link bandwidths.

Our study reveals that such high bandwidth links, coupled with

relatively stagnant technology trends for other host resources (e.g.,

core speeds and count, cache sizes, NIC buffer sizes, etc.), mark a

fundamental shift in host network stack bottlenecks. For instance,

we find that a single core is no longer able to process packets at line

rate, with data copy from kernel to application buffers at the receiver

becoming the core performance bottleneck. In addition, increase in

bandwidth-delay products have outpaced the increase in cache sizes,

resulting in inefficient DMA pipeline between the NIC and the CPU.

Finally, we find that traditional loosely-coupled design of network

stack and CPU schedulers in existing operating systems becomes a

limiting factor in scaling network stack performance across cores.

Based on insights from our study, we discuss implications to design

of future operating systems, network protocols, and host hardware.

CCS CONCEPTS

• Networks → Transport protocols; Network performance

analysis; Data center networks; • Hardware → Networking

hardware;

KEYWORDS

Datacenter networks, Host network stacks, Network hardware

ACM Reference Format:

Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang,

and Rachit Agarwal. 2021. Understanding Host Network Stack Overheads.

In ACM SIGCOMM 2021 Conference (SIGCOMM ’21), August 23–27, 2021,

Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.
org/10.1145/3452296.3472888

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00
https://doi.org/10.1145/3452296.3472888

1 INTRODUCTION

The slowdown of Moore’s Law, the end of Dennard’s scaling, and

the rapid adoption of high-bandwidth links have brought tradi-

tional host network stacks at the brink of a breakdown—while

datacenter access link bandwidths (and resulting computing needs

for packet processing) have increased by 4 − 10× over the past few

years, technology trends for essentially all other host resources

(including core speeds and counts, cache sizes, NIC buffer sizes,

etc.) have largely been stagnant. As a result, the problem of design-

ing CPU-efficient host network stacks has come to the forefront,

and our community is exploring a variety of solutions, including

Linux network stack optimizations [11, 12, 21, 24, 32, 41], hardware

offloads [3, 6, 9, 16], RDMA [31, 34, 43], clean-slate userspace net-

work stacks [4, 27, 30, 33, 36], and even specialized host network

hardware [2]. The design space explored by these solutions would

benefit from a detailed understanding of CPU inefficiencies of tradi-

tional Linux network stack. Building such an understanding is hard

because the Linux network stack is not only large and complex, but

also comprises of many components that are tightly integrated into

an end-to-end packet processing pipeline.

Several recent papers present a preliminary analysis of Linux

network stack overheads for short flows [21, 30, 32, 38, 40]. This

fails to provide a complete picture due to two reasons. First, for

datacenter networks, it is well-known that an overwhelmingly large

fraction of data is contained in long flows [1, 5, 28]; thus, even if

there are many short flows, most of the CPU cycles may be spent in

processing packets from long flows. Second, datacenter workloads

contain not just short flows or long flows in exclusion, but a mixture

of different flow sizes composed in a variety of traffic patterns; as

we will demonstrate, CPU characteristics change significantly with

varying traffic patterns and mixture of flow sizes.

This paper presents measurement and insights for Linux kernel

network stack performance for 100Gbps access link bandwidths.

Our key findings are:

High-bandwidth links result in performance bottlenecks

shifting from protocol processing to data copy.Modern Linux

network stack can achieve ∼42Gbps throughput-per-core by ex-

ploiting all commonly available features in commodity NICs, e.g.,

segmentation and receive offload, jumbo frames, and packet steer-

ing. While this throughput is for the best-case scenario of a single

long flow, the dominant overhead is consistent across a variety of

scenarios—data copy from kernel buffers to application buffers (e.g.,

> 50% of total CPU cycles for a single long flow). This is in sharp

contrast to previous studies on short flows and/or low-bandwidth

links, where protocol processing was shown to be the main bottle-

neck. We also observe receiver-side packet processing to become a

bottleneck much earlier than the sender-side.

65

• Implications. Emerging zero-copy mechanisms from the Linux

networking community [11, 12] may alleviate data copy over-

heads, and may soon allow the Linux network stack to process as

much as 100Gbps worth of data using a single core. Integration

of other hardware offloads like I/OAT [37] that transparently

mitigate data copy overheads could also lead to performance

improvements. Hardware offloads of transport protocols [3, 43]

and userspace network stacks [21, 27, 30] that do not provide

zero-copy interfaces may improve throughput in microbench-

marks, but will require additional mechanisms to achieve CPU

efficiency when integrated into an end-to-end system.

The reducing gap between bandwidth-delay product (BDP)

and cache sizes leads to suboptimal throughput.Modern CPU

support for Direct Cache Access (DCA) (e.g., Intel DDIO [25]) allows

NICs to DMA packets directly into L3 cache, reducing data copy

overheads; given its promise, DDIO is enabled by default in most

systems. While DDIO is expected to improve performance during

data copy, rather surprisingly, we observe that it suffers from high

cache miss rates (49%) even for a single flow, thus providing limited

performance gains. Our investigation revealed that the reason for

this is quite subtle: host processing becoming a bottleneck results

in increased host latencies; combined with increased access link

bandwidths, BDP values increase. This increase outpaces increase

in L3 cache sizes—data is DMAed from the NIC to the cache, and

for larger BDP values, cache is rapidly overwritten before the ap-

plication performs data copy of the cached data. As a result, we

observe as much as 24% drop in throughput-per-core.

• Implications. We need better orchestration of host resources

among contending connections to minimize latency incurred

at the host, and to minimize cache miss rates during data copy. In

addition, window size tuning should take into account not only

traditional metrics like latency and throughput, but also L3 sizes.

Host resource sharing considered harmful. We observe as

much as 66% difference in throughput-per-core across different traf-

fic patterns (single flow, one-to-one, incast, outcast, and all-to-all)

due to undesirable effects of multiple flows sharing host resources.

For instance, multiple flows on the same NUMA node (thus, sharing

the same L3 cache) make the cache performance even worse—the

data DMAed by the NIC into the cache for one flow is polluted by

the data DMAed by the NIC for other flows, before application for

the first flow could perform data copy. Multiple flows sharing host

resources also results in packets arriving at the NIC belonging to

different flows; this, in turn, results in packet processing overheads

getting worse since existing optimizations (e.g., coalescing packets

using generic receive offload) lose a chance to aggregate larger

number of packets. This increases per-byte processing overhead,

and eventually scheduling overheads.

• Implications. In the Internet and in early-generation datacenter

networks, performance bottlenecks were in the network core;

thus, multiple flows “sharing” host resources did not have per-

formance implications. However, for high-bandwidth networks,

such is no longer the case—if the goal is to design CPU-efficient

network stacks, one must carefully orchestrate host resources so

as to minimize contention between active flows. Recent receiver-

driven transport protocols [18, 35] can be extended to reduce the

number of concurrently scheduled flows, potentially enabling

high CPU efficiency for future network stacks.

The need to revisit host layering and packet processing

pipelines. We observe as much as ∼43% reduction in throughput-

per-core compared to the single flow case when applications gen-

erating long flows share CPU cores with those generating short

flows. This is both due to increased scheduling overheads, and also

due to high CPU overheads for short flow processing. In addition,

short flows and long flows suffer from very different performance

bottlenecks—the former have high packet processing overheads

while the latter have high data copy overheads; however, today’s

network stacks use the same packet processing pipeline indepen-

dent of the type of the flow. Finally, we observe ∼20% additional

drop in throughput-per-core when applications generating long

flows are running on CPU cores that are not in the same NUMA

domain as the NIC (due to additional data copy overheads).

• Implications. Design of CPU schedulers independent of the net-

work layer was beneficial for independent evolution of the two

layers; however, with performance bottlenecks shifting to hosts,

we need to revisit such a separation. For instance, application-

aware CPU scheduling (e.g., scheduling applications that generate

long flows on NIC-local NUMA node, scheduling long-flow and

short-flow applications on separate CPU cores, etc.) are required

to improve CPU efficiency. We should also rethink host packet

processing pipelines—unlike today’s designs that use the same

pipeline for short and long flows, achieving CPU efficiency re-

quires application-aware packet processing pipelines.

Our study1 not only corroborates many exciting ongoing activities

in systems, networking and architecture communities on designing

CPU-efficient host network stacks, but also highlights several inter-

esting avenues for research in designing future operating systems,

network protocols and network hardware. We discuss them in §4.

Before diving deeper, we outline several caveats of our study.

First, our study uses one particular host network stack (the Linux

kernel) running atop one particular host hardware. While we fo-

cus on identifying trends and drawing general principles rather

than individual data points, other combinations of host network

stacks and hardware may exhibit different performance characteris-

tics. Second, our study focuses on CPU utilization and throughput;

host network stack latency is another important metric, but re-

quires exploring many additional bottlenecks in end-to-end system

(e.g., network topology, switches, congestion, etc.); a study that

establishes latency bottlenecks in host network stacks, and their

contribution to end-to-end latency remains an important and rel-

atively less explored space. Third, kernel network stacks evolve

rapidly; any study of our form must fix a version to ensure consis-

tency across results and observations; nevertheless, our preliminary

exploration [7] suggests that the most recent Linux kernel exhibits

performance very similar to our results. Finally, our goal is not to

take a position on how future network stacks will evolve (in-kernel,

userspace, hardware), but rather to obtain a deeper understanding

of a highly mature and widely deployed network stack.

1All Linux instrumentation code and scripts along with all the documentation
needed to reproduce our results are available at https://github.com/
Terabit-Ethernet/terabit-network-stack-profiling.

66

skb

skb

Figure 1: Sender and receiver-side data path in the Linux network stack. See §2.1 for description.

Component Description

Data copy
From user space to kernel
space, and vice versa.

TCP/IP
All the packet processing at
TCP/IP layers.

Netdevice sub-
system

Netdevice and NIC driver op-
erations (e.g., NAPI polling,
GSO/GRO, qdisc, etc.).

skb manage-
ment

Functions to build, split, and
release skb.

Memory
de-/alloc

skb de-/allocation and page-
related operations.

Lock/unlock
Lock-related operations (e.g.,
spin locks).

Scheduling
Scheduling/context-
switching among threads.

Others
All the remaining functions
(e.g., IRQ handling).

Table 1: CPU usage taxonomy. The compo-

nents are mapped into layers as shown in Fig. 1.

2 PRELIMINARIES

The Linux network stack tightly integrates many components into

an end-to-end pipeline. We start this section by reviewing these

components (§2.1). We also discuss commonly used optimizations,

and corresponding hardware offloads supported by commodity

NICs. A more detailed description is presented in [7]. We then

summarize the methodology used in our study (§2.2).

2.1 End-to-End Data Path

The Linux network stack has slightly different data paths for the

sender-side (application to NIC) and the receiver-side (NIC to ap-

plication), as shown in Fig. 1. We describe them separately.

Sender-side. When the sender-side application executes a write
system call, the kernel initializes socket buffers (skbs). For the data
referenced by the skbs, the kernel then performs data copy from the

userspace buffer to the kernel buffer. The skbs are then processed

by the TCP/IP layer. When ready to be transmitted (e.g., conges-

tion control window/rate limits permitting), the data is processed

by the network subsystem; here, among other processing steps,

skbs are segmented into Maximum Transmission Unit (MTU) sized

chunks by Generic Segmentation offload (GSO) and are enqueued

in the NIC driver Tx queue(s). Most commodity NICs also support

hardware offload of packet segmentation, referred to as TCP seg-

mentation offload (TSO); see more details in [7]. Finally, the driver

processes the Tx queue(s), creating the necessary mappings for the

NIC to DMA the data from the kernel buffer referenced by skbs.
Importantly, almost all sender-side processing in today’s Linux

network stack is performed at the same core as the application.

Receiver-side. The NIC has a number of Rx queues and a per-Rx

queue page-pool from which DMA memory is allocated (backed by

the kernel pageset). The NIC also has a configurable number of

Rx descriptors, each of which contains a memory address that the

NIC can use to DMA received frames. Each descriptor is associated

with enough memory for one MTU-sized frame.

Upon receiving a new frame, the NIC uses one of the Rx descrip-

tors, and DMAs the frame to the kernel memory associated with the

descriptor. Ordinarily, the NIC DMAs the frame to DRAM; however,

modern CPUs have support for Direct Cache Access (DCA) (e.g.,

using Intel’s Data Direct I/O technology (DDIO) technology [25])

that allows NIC to DMA the frames directly to the L3 cache. DCA

enables applications to avoid going to DRAM to access the data.

Asynchronously, the NIC generates an Interrupt ReQuests (IRQ)

to inform the driver of new data to be processed. The CPU core that

processes the IRQ is selected by the NIC using one of the hardware

steering mechanisms; see Table 2 for a summary, and [7] for details

on how receiver-side flow steering techniques work. Upon receiving

an IRQ, the driver triggers NAPI polling [17], that provides an

alternative to purely interrupt-based network layer processing—the

system busy polls on incoming frames until a certain number of

frames are received or a timer expires2. This reduces the number of

IRQs, especially for high-speed networks where incoming data rate

is high. While busy polling, the driver allocates an skb for each
frame, and makes a cross reference between the skb and the kernel
memory where the frame has been DMAed. If the NIC has written

enough data to consume all Rx descriptors, the driver allocates more

DMA memory using the page-pool and creates new descriptors.

The network subsystem then attempts to reduce the number of

skbs by merging them using Generic Receive Offload (GRO), or its

corresponding hardware offload Large Receive Offload (LRO); see

discussion in [7]. Next, TCP/IP processing is scheduled on one of the

CPU cores using the flow steering mechanism enabled in the system

(see Table 2). Importantly, with aRFS enabled, all the processing (the

2These NAPI parameters can be tuned via net.core.netdev_budget and
net.core.netdev_budget_usecs kernel parameters, which are set to 300 and 2ms
by default in our Linux distribution.

67

Mechanism Description

Receive Packet Steering (RPS) Use the 4-tuple hash for core selection.

Receive Flow Steering (RFS) Find the core that the application is running on.

Receive Side Steering (RSS) Hardware version of RPS supported by NICs.

accelerated RFS (aRFS) Hardware version of RFS supported by NICs.

Table 2: Receiver-side flow steering techniques.

IRQ handler, TCP/IP and application) is performed on the same CPU

core. Once scheduled, the TCP/IP layer processing is performed and

all in-order skbs are appended to the socket’s receive queue. Finally,
the application thread performs data copy of the payload in the

skbs in the socket receive queue to the userspace buffer. Note that

at both the sender-side and the receiver-side, data copy of packet

payloads is performed only once (when the data is transferred

between userspace and kernel space). All other operations within

the kernel are performed using metadata and pointer manipulations

on skbs, and do not require data copy.

2.2 Measurement Methodology

In this subsection, we briefly describe our testbed setup, experimen-

tal scenarios, and measurement methodology.

Testbed setup. To ensure that bottlenecks are at the network

stack, we setup a testbed with two servers directly connected

via a 100Gbps link (without any intervening switches). Both of

our servers have a 4-socket NUMA-enabled Intel Xeon Gold 6128

3.4GHz CPU with 6 cores per socket, 32KB/1MB/20MB L1/L2/L3

caches, 256GB RAM, and a 100Gbps Mellanox ConnectX-5 Ex NIC

connected to one of the sockets. Both servers run Ubuntu 16.04

with Linux kernel 5.4.43. Unless specified otherwise, we enable

DDIO, and disable hyperthreading and IOMMU in our experiments.

Experimental scenarios. We study network stack performance

using five standard traffic patterns (Fig. 2)—single flow, one-to-one,

incast, outcast, and all-to-all—using workloads that comprise long

flows, short flows, and even a mix of long and short flows. For

generating long flows, we use a standard network benchmarking

tool, iPerf [14], which transmits a flow from sender to receiver;

for generating short flows, we use netperf [22] that supports ping-

pong style RPC workloads. Both of these tools perform minimal

application-level processing, which allows us to focus on perfor-

mance bottlenecks in the network stack (rather than those arising

due to complex interactions between applications and the network

stack); many of our results may have different characteristics if

applications were to perform additional processing. We also study

the impact of in-network congestion, impact of DDIO and impact

of IOMMU. We use Linux’s default congestion control algorithm,

TCP Cubic, but also study impact of different congestion control

protocols. For each scenario, we describe the setup inline.

Performance metrics.We measure total throughput, total CPU

utilization across all cores (using sysstat [19], which includes

kernel and application processing), and throughput-per-core—ratio

of total throughput and total CPU utilization at the bottleneck

(sender or receiver). To perform CPU profiling, we use the standard

sampling-based technique to obtain a per-function breakdown of

CPU cycles [20]. We take the top functions that account for ∼95%

of the CPU utilization. By examining the kernel source code, we

classify these functions into 8 categories as described in Table 1.

(a) Single (b) One-to-one (c) Incast (d) Outcast (e) All-to-all

Figure 2: Traffic patterns used in our study. (a) Single flow from one

sender core to one receiver core. (b) One flow from each sender core to a

unique receiver core. (c) One flow from each sender core, all to a single

receiver core. (d) One flow to each receiver core all from a single sender

core. (e) One flow between every pair of sender and receiver cores.

3 LINUX NETWORK STACK OVERHEADS

We now evaluate the Linux network stack overheads for a variety of

scenarios, and present detailed insights on observed performance.

3.1 Single Flow

We start with the case of a single flow between the two servers, each

running an application on a CPU core in the NIC-local NUMA node.

We find that, unlike the Internet and early incarnations of datacenter

networks where the throughput bottlenecks were primarily in the

core of the network (since a single CPU was sufficient to saturate

the access link bandwidth), high-bandwidth networks introduce

new host bottlenecks even for the simple case of a single flow.

Before diving deeper, we make a note on our experimental con-

figuration for the single flow case. When aRFS is disabled, obtaining

stable and reproducible measurements is difficult since the default

RSS mechanism uses hash of the 4-tuple to determine the core for

IRQ processing (§2.1). Since the 4-tuple can change across runs,

the core that performs IRQ processing could be: (1) the application

core; (2) a core on the same NUMA node; or, (3) a core on a differ-

ent NUMA node. The performance in each of these three cases is

different, resulting in non-determinism. To ensure deterministic

measurements, when aRFS is disabled, we model the worst-case sce-

nario (case 3): we explicitly map the IRQs to a core on a NUMA node

different from the application core. For a more detailed analysis of

other possible IRQ mapping scenarios, see [7].

A single core is no longer sufficient. For 10 − 40Gbps access

link bandwidths, a single thread was able to saturate the network

bandwidth. However, such is no longer the case for high-bandwidth

networks: as shown in Fig. 3(a), even with all optimization enabled,

Linux network stack achieves throughput-per-core of ∼42Gbps3.

Both Jumbo frames4 and TSO/GRO reduce the per-byte processing

overhead as they allow each skb to bring larger payloads (up to

9000B and 64KB respectively). Jumbo frames are useful even when

GRO is enabled, because the number of skbs to merge is reduced

with a larger MTU size, thus reducing the processing overhead for

packet aggregation in software. aRFS, along with DCA, generally

3We observe a maximum throughput-per-core of upto 55Gbps, either by tuning NIC
Rx descriptors and TCP Rx buffer size carefully (See Fig. 3(e)), or using LRO instead
of GRO (See [7]). However, such parameter tuning is very sensitive to the hardware
setup, and so we leave them to their default values for all other experiments. Moreover,
the current implementation of LRO causes problems in some scenarios as it might
discard important header data, and so is often disabled in the real world [10]. Thus we
use GRO as the receive offload mechanism for the rest of our experiments.
4Using larger MTU size (9000 bytes) as opposed to the normal (1500 bytes).

68

(a) Throughput-per-core (Gbps) (b) CPU utilization (%) (c) Sender CPU breakdown

(d) Receiver CPU breakdown (e) Cache miss rate (%)

 0

 500

 1000

 1500

 2000

 2500

 3000

100 200 400 800 1600 3200 6400 12800

L
at

e
n
cy

 f
ro

m
 N

A
P

I
to

 A
p

p
 (

u
s)

TCP Rx buffer size(KB)

Avg. Latency
Tail (99p) Latency

(f) Latency from NAPI to start of data copy

Figure 3: Linuxnetwork stack performance for the case of a singleflow. (a) Each column shows throughput-per-core achieved for different combinations

of optimizations. Within each column, optimizations are enabled incrementally, with each colored bar showing the incremental impact of enabling the

corresponding optimization. (b) Sender and Receiver total CPU utilization as all optimizations are enabled incrementally. Independent of the optimizations

enabled, receiver-side CPU is the bottleneck. (c, d)With all optimizations enabled, data copy is the dominant consumer of CPU cycles. (e) Increase in NIC ring

buffer size and increase in TCP Rx buffer size result in increased cache miss rates and reduced throughput. (f) Network stack processing latency from NAPI to

start of data copy increases rapidly beyond certain TCP Rx buffer sizes. See §3.1 for description.

improves throughput by enabling applications on the NIC-local

NUMA node cores to perform data copy directly from L3 cache.

Receiver-side CPU is the bottleneck. Fig. 3(b) shows the overall

CPU utilization at sender and receiver sides. Independent of the

optimizations enabled, receiver-side CPU is the bottleneck. There

are two dominant overheads that create the gap between sender and

receiver CPU utilization: (1) data copy and (2) skb allocation. First,
when aRFS is disabled, frames are DMAed to remote NUMA mem-

ory at the receiver; thus, data copy is performed across different

NUMA nodes, increasing per-byte data copy overhead. This is not

an issue on the sender-side since the local L3 cache is warm with

the application send buffer data. Enabling aRFS alleviates this issue

reducing receiver-side CPU utilization by as much as 2× (right-most

bar in Fig. 3(b)) compared to the case when no optimizations are

enabled; however, CPU utilization at the receiver is still higher than

the sender. Second, when TSO is enabled, the sender is able to allo-

cate large-sized skbs. The receiver, however, allocates MTU-sized

skbs at device driver and then the skbs are merged at GRO layer.

Therefore, the receiver incurs higher overheads for skb allocation.

Where are the CPU cycles going? Figs. 3(c) and 3(d) show the

CPU usage breakdowns of sender- and receiver-side for each com-

bination of optimizations. With none of the optimizations, CPU

overheads mainly come from TCP/IP processing as per-skb pro-
cessing overhead is high (here, skb size is 1500B at both sides5).

When aRFS is disabled, lock overhead is high at the receiver-side

because of the socket contention due to the application context

thread (recv system call) and the interrupt context thread (softirq)

attempting to access the same socket instance.

5Linux kernel 4.17 onwards, GSO is enabled by default. We modified the kernel to
disable GSO in “no optimization” experiments to evaluate benefits of skb aggregation.

These packet processing overheads are mitigated with several

optimizations: TSO allows using large-sized skb at the sender-

side, reducing both TCP/IP processing and Netdevice subsystem

overheads as segmentation is offloaded to the NIC (Fig. 3(c)). On

the receiver-side, GRO reduces the CPU usage by reducing the

number of skbs, passed to the upper layer, so TCP/IP processing

and lock/unlock overheads are reduced dramatically, at the cost of

increasing the overhead of the network device subsystem where

GRO is performed (Fig. 3(d)). This GRO cost can be reduced by

66% by enabling Jumbo frames as explained above. These reduced

packet processing overheads lead to throughput improvement, and

the main overhead is now shifted to data copy, which takes almost

49% of total CPU utilization at the receiver-side when GRO and

Jumbo frames are enabled.

Once aRFS is enabled, co-location of the application context

thread and the IRQ context thread at the receiver leads to improved

cache and NUMA locality. The effects of this are two-fold:

(1) Since the application thread runs on the same NUMA node as

the NIC, it can now perform data copy directly from the L3

cache (DMAed by the NIC via DCA). This reduces the per-byte

data copy overhead, resulting in higher throughput-per-core.

(2) skbs are allocated in the softirq thread and freed in the appli-

cation context thread (once data copy is done). Since the two

are co-located, memory deallocation overhead reduces. This

is because page free operations to local NUMA memory are

significantly cheaper than those for remote NUMA memory.

Even a single flow experiences high cache misses. Although

aRFS allows applications to perform data copy from local L3 cache,

we observe as much as 49% cache miss rate in this experiment.

This is surprising since, for a single flow, there is no contention

69

for L3 cache capacity. To investigate this further, we varied various

parameters to understand their effect on cache miss rate. Among

our experiments, varying the maximum TCP receive window size,

and the number of NIC Rx descriptors revealed an interesting trend.

Fig. 3(e) shows the variation of throughput and L3 cachemiss rate

with varying number of NIC Rx descriptors and varying TCP Rx

buffer size6. We observe that, with increase in either of the number

of NIC Rx descriptors or the TCP buffer size, the L3 cache miss

increases and correspondingly, the throughput decreases. We have

found two reasons for this phenomenon: (1) BDP values being larger

than the L3 cache capacity; and (2) suboptimal cache utilization.

To understand the first one, consider an extreme case of large

TCP Rx buffer sizes. In such a case, TCP will keep BDP worth of

data in flight, where BDP is defined as the product of access link

bandwidth and latency (both network and host latency). It turns

out that large TCP buffers can cause a significant increase in host

latency, especially when the core processing packets becomes a

bottleneck. In addition to scheduling delay of IRQ context and

application threads, we observe that each packet observe large

queueing behind previous packets. We measure the delay between

frame reception and start of data copy by logging the timestamp

when NAPI processing for an skb happens, and the timestamp

when the data copy of it starts, and measure the difference between

the two. Fig. 3(f) shows the average and 99th percentile delays

observed with varying TCP Rx buffer size. As can be seen, the delays

rise rapidly with increasing TCP Rx buffer size beyond 1600KB.

Given that DCA cache size is limited7, this increase in latency has

significant impact: since TCP buffers and BDP values are large, NIC

always has data to DMA; thus, since the data DMAed by the NIC

is not promptly copied to userspace buffers, it is evicted from the

cache when NIC performs subsequent DMAs (if the NIC runs out of

Rx descriptors, the driver replenishes the NIC Rx descriptors during

NAPI polling). As a result, cache misses increase and throughput

reduces. When TCP buffer sizes are large enough, this problem

persists independent of NIC ring buffer sizes.

To understand the second reason, consider the other extreme

where TCP buffer sizes are small but NIC ring buffer sizes are large.

We believe cache misses in this case might be due to an imperfect

cache replacement policy and/or cache’s complex addressing, re-

sulting in suboptimal cache utilization; recent work has observed

similar phenomena, although in a different context [15, 39]. When

there are a large number of NIC Rx descriptors, there is a corre-

spondingly larger number of memory addresses available for the

NIC to DMA the data. Thus, even though the total amount of in-

flight data is smaller than the cache capacity, the likelihood of a

DCA write evicting some previously written data increases with

the number of NIC Rx descriptors. This limits the effective utiliza-

tion of cache capacity, resulting in high cache miss rates and low

throughput-per-core.

Between these two extremes, both of the factors contribute to the

observed performance in Fig. 3(e). Indeed, in our setup, DCA cache

capacity is ∼3MB and hence TCP buffer size of 3200KB and fewer

than 512 NIC Rx descriptors (512 × 9000 bytes ≈ 4MB) delivers

6The kernel uses an auto-tuning mechanism for the TCP Rx socket buffer size with the
goal of maximizing throughput. In this experiment, we override the default auto-tuning
mechanism by specifying an Rx buffer size.
7DCA can only use 18% (∼3 MB) of the L3 cache capacity in our setup.

 0

 10

 20

 30

 40

 50

 60

 NIC-local NUMA NIC-remote NUMA
 0

 20

 40

 60

 80

 100

 120

T
h
ro

u
gh

p
u
t

Pe
r

C
o

re
(G

b
p

s)

C
ac

h
e
 M

is
s

R
at

e
(%

)

Throughput Per Core
Receiver: Cache Miss Rate

Figure 4: Linux network stack performance for the case of a single

flow on NIC-remote NUMA node. When compared to the NIC-local

NUMA node case, single flow throughput-per-core drops by ∼20%.

the optimal single-core throughput of ∼55Gpbs. An interesting

observation here is that the default auto-tuning mechanism used

in the Linux kernel network stack today is unaware of DCA effects,

and ends up overshooting beyond the optimal operating point.

DCA limited to NIC-local NUMA nodes. In our analysis so far,

the application was run on a CPU core on the NIC-local NUMA

node. We now examine the impact of running the application on

a NIC-remote NUMA node for the same single flow experiment.

Fig. 4 shows the resulting throughput-per-core and L3 cache miss

rate relative to the NIC-local case (with all optimizations enabled in

both cases). When the application runs on NIC-remote NUMA node,

we see a significant increase in L3 cache miss rate and ∼20% drop in

throughput-per-core. Since aRFS is enabled, the NIC DMAs frames

to the target CPU’s NUMA node memory. However, because the

target CPU core is on a NIC-remote NUMA node, DCA is unable to

push the DMAed frame data into the corresponding L3 cache [25].

As a result, cache misses increase and throughput-per-core drops.

3.2 Increasing Contention via One-to-one

We now evaluate the Linux network stack with higher contention

for the network bandwidth. Here, each sender core sends a flow to

one unique receiver core, and we increase the number of core/flows

from 1 to 24. While each flow still has the entire host core for itself,

this scenario introduces two new challenges compared to the single-

flow case: (1) network bandwidth becomes saturated as multiple

cores are used; and (2) flows run on both NIC-local and NIC-remote

NUMA nodes (our servers have 6 cores on each NUMA node).

Similar to §3.1, to obtain deterministic measurements when aRFS

is disabled, we explicitly map IRQs for individual applications to a

unique core on a different NUMA node.

Host optimizations become less effective with increasing

number of flows. Fig. 5(a) shows that, as the number of flows

increases, throughput-per-core decreases by 64% (i.e., 15Gbps at

24 flows), despite each core processing only a single flow. This is

because of reduced effectiveness of all optimizations. In particular,

when compared to the single flow case, the effectiveness of aRFS

reduces by as much as 75% for the 24-flow case; this is due to re-

duced L3 cache locality for data copy for NIC-local NUMA node

cores (all cores share L3 cache), and also due to some of the flows

running on NIC-remote NUMA nodes (that cannot exploit DCA, see

§3.1, Fig. 4). The effectiveness of GRO also reduces: since packets

at the receiver are now interleaved across flows, there are fewer

opportunities for aggregation; this will become far more prominent

in the all-to-all case, and is discussed in more depth in §3.5.

70

 0

 10

 20

 30

 40

 50

1 8 16 24
 0

 20

 40

 60

 80

 100

T
h
ro

u
gh

p
u
t

Pe
r

C
o

re
(G

b
p

s)

T
o

ta
l T

h
ro

u
gh

p
u
t(

G
b

p
s)

Flows

No Opt.
TSO/GRO

Jumbo
aRFS

Total Thpt

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

1 ow
8 ows

16 ows
24 ows

(b) Sender CPU breakdown

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

1 ow
8 ows

16 ows
24 ows

(c) Receiver CPU breakdown

Figure 5: Linux network stack performance for one-to-one traffic pattern. (a) Each column shows throughput-per-core achieved for different number

of flows. At 8 flows, the network is saturated, however, throughput-per-core decreases with more flows. (b, c) With all optimizations enabled, as the number

of flows increase, the fraction of CPU cycles spent in data copy decreases. On the receiver-side, network saturation leads to lower memory management

overhead (due to better page recycling) and higher scheduling overhead (due to frequent idling). The overall receiver-side CPU utilizations for x= 1, 8, 16 and

24 cases are, 1, 3.75, 5.21 and 6.58 cores, respectively. See §3.2 for description.

 0

 10

 20

 30

 40

 50

 60

1 8 16 24
 0

 10

 20

 30

 40

 50

 60

T
h
ro

u
gh

p
u
t

Pe
r

C
o

re
(G

b
p

s)

T
o

ta
l T

h
ro

u
gh

p
u
t(

G
b

p
s)

Flows

No Opt.
TSO/GRO

Jumbo
aRFS

Total Thpt

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

1 ow
8 ows

16 ows
24 ows

(b) Receiver CPU breakdown

 30

 35

 40

 45

1 8 16 24
 40

 50

 60

 70

 80

 90

 100

T
h
ro

u
gh

p
u
t

Pe
r

C
o

re
(G

b
p

s)

C
ac

h
e
 M

is
s

R
at

e
(%

)

Flows

Throughput Per Core
Receiver: Cache Miss Rate

(c) L3 cache miss rate (%)

Figure 6: Linux network stack performance for incast traffic pattern. (a) Each column shows throughput-per-core for different number of flows

(receiver core is bottlenecked in all cases). Total throughput decreases with increase in the number of flows. (b) With all optimizations enabled, the fraction of

CPU cycles used by each component does not change significantly with number of flows. See [7] for sender-side CPU breakdown. (c) Receiver-side cache miss

rate increases with number of flows, resulting in higher per-byte data copy overhead, and reduced throughput-per-core. See §3.3 for description.

Processing overheads shift with network saturation. As

shown in Fig. 5(a), at 8 flows, the network link becomes the bottle-

neck, and throughput ends up getting fairly shared among all cores.

Fig. 5(c) shows that bottlenecks shift in this regime: scheduling

overhead increases and memory management overhead decreases.

Intuitively, when the network is saturated, the receiver cores start

to become idle at certain times—threads repeatedly go to sleep while

waiting for data, and wake up when new data arrives; this results in

increased context switching and scheduling overheads. This effect

becomes increasingly prominent with increase in number of flows

(Fig. 5(b), Fig. 5(c)), as the CPU utilization per-core decreases.

To understand reduction in memory alloc/dealloc overheads, we

observe that the kernel page allocator maintains per-core pageset
that includes a certain number of free pages. Upon an allocation re-

quest, pages can be fetched directly from the pageset, if available;
otherwise the global free-list needs to be accessed (which is a more

expensive operation). When multiple flows share the access link

bandwidth, each core serves relatively less amount of traffic com-

pared to the single flow case. This allows used pages to be recycled

back to the pageset before it becomes empty, hence reducing the

memory allocation overhead (Fig. 5(c)).

3.3 Increasing Receiver Contention via Incast

We now create additional contention at the receiver core using an

incast traffic pattern, varying number of flows from 1 to 24 (each

using a unique core at the sender). Compared to previous scenarios,

this scenario induces higher contention for (1) CPU resources such

as L3 cache and (2) CPU scheduling among application threads. We

discuss how these changes affect the network processing overheads.

Per-byte data copy overhead increases with increasing flows

per-core. Fig. 6(a) shows that throughput-per-core decreases with

increase in number of flows, observing as much as ∼19% drop with

8 flows when compare to the single-flow case. Fig. 6(b) shows that

the CPU breakdown does not change significantly with increasing

number of flows, implying that there is no evident shift in CPU

overheads. Fig. 6(c) provides some intuition for the root cause of

the throughput-per-core degradation. As number of flows per core

increases at the receiver side, applications for different flows com-

pete for the same L3 cache space resulting in increased cache miss

rate (the miss rate increases from 48% to 78%, as the number of

flows goes from 1 to 8.). Among other things, this leads to increased

per-byte data copy overhead and reduced throughput-per-core. As

shown in Fig. 6(c), the increase in L3 cache miss rate with increasing

flows correlates well with degradation in throughput-per-core.

Sender-driven nature of TCP precludes receiver-side sched-

uling. Higher cache contention observed above is the result of

multiple active flows on the same core. While senders could po-

tentially reduce such contention using careful flow scheduling, the

issue at the receiver side is fundamental: the sender-driven nature

of the TCP protocol precludes the receiver to control the number of

active flows per core, resulting in unavoidable CPU inefficiency. We

believe receiver-driven protocols [18, 35] can provide such control

to the receiver, thus enabling CPU-efficient transport designs.

71

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

1 ow
8 ows

16 ows
24 ows

(b) Sender CPU breakdown (c) CPU utilization (%)

Figure 7: Linux network stack performance for outcast traffic pattern. (a) Each column shows throughput-per-sender-core achieved for different

number of flows, that is the maximum throughput sustainable using a single sender core (we ignore receiver core utilization here). Throughput-per-sender-core

increases from 1 to 8 flows, and then decreases as the number of flows increases. (b) With all optimizations enabled, as the number of flows increases from 1

to 8, data copy overhead increases but does not change much when the number of flows is increased further. Refer to [7] for receiver-side CPU breakdown. (c)

For 1 flow, sender-side CPU is underutilised. Sender-side cache miss rate increases slightly as the number of flows increases from 8 to 24, increasing the

per-byte data copy overhead, and there is a corresponsing decrease in throughput-per-core. See §3.4 for description.

3.4 Increasing Sender Contention via Outcast

All our experiments so far result in receiver being the bottleneck.

To evaluate sender-side processing pipeline, we now use an outcast

scenario where a single sender core transmits an increasing number

of flows (1 to 24), each to a unique receiver core. To understand the

efficiency of sender-side processing pipeline, this subsection focuses

on throughput-per-sender-core: that is, the maximum throughput

achievable by a single sender core.

Sender-side processing pipeline can achieve up to 89Gbps

per core. Fig. 7(a) shows that, with increase in number of flows from

1 to 8, throughput-per-sender-core increases significantly enabling

total throughput as high as ∼89Gbps; in particular, throughput-per-

sender-core is 2.1× when compared to throughput-per-receiver-

core in the incast scenario (§3.3). This demonstrates that, in today’s

Linux network stack, sender-side processing pipeline is much more

CPU-efficient when compared to receiver-side processing pipeline.

We briefly discuss some insights below.

The first insight is related to the efficiency of TSO. As shown

in Fig. 7(a), TSO in the outcast scenario contributes more to

throughput-per-core improvements, when compared to GRO in

the incast scenario (§3.3). This is due to two reasons. First, TSO is a

hardware offload mechanism supported by the NIC; thus, unlike

GRO which is software-based, there are no CPU overheads associ-

ated with TSO processing. Second, unlike GRO, the effectiveness

of TSO does not degrade noticeably with increasing number of

flows since data from applications is always put into 64KB size

skbs independent of the number of flows. Note that Jumbo frames

do not help over TSO that much compared to the previous cases as

segmentation is now performed in the NIC.

Second, aRFS continues to provide significant benefits, contribut-

ing as much as ∼46% of the total throughput-per-sender-core. This

is because, as discussed earlier, L3 cache at the sender is always

warm: while cache miss rate increases slightly with larger number

of flows, the absolute number remains low (∼11% even with 24

flows); furthermore, outcast scenario ensures that not too many

flows compete for the same L3 cache at the receiver (due to receiver

cores distributed across multiple NUMA nodes). Fig. 7(b) shows

that data copy continues to be the dominant CPU consumer, even

when sender is the bottleneck.

3.5 Maximizing Contention with All-to-All

We now evaluate Linux network stack performance for all-to-all

traffic patterns, where each of x sender cores transmit a flow to each

of the x receiver cores, for x varying from 1 to 24. In this scenario,

we were unable to explicitly map IRQs to specific cores because,

for the largest number of flows (576), the number of flow steering

entries requires is larger than what can be installed on our NIC.

Nevertheless, even without explicit mapping, we observed reason-

ably deterministic results for this scenario since the randomness

across a large number of flows averages out.

Fig. 8(a) shows that throughput-per-core reduces by ∼67% going

from 1 × 1 to 24 × 24 flows, due to reduced effectiveness of all

optimizations. The benefits of aRFS drop by ∼64%, almost the same

as observed in the one-to-one scenario (§3.2). This is unsurprising,

given the lack of cache locality for cores in non-NIC-local NUMA

nodes, and given that cache miss rate is already abysmal (as dis-

cussed in §3.2). Increasing the number of flows per core on top of

this does not make things worse in terms of cache miss rate.

Per-flow batching opportunities reduce due to large number

of flows. Similar to the one-to-one case, the network link becomes

the bottleneck in this scenario, resulting in fair-sharing of band-

width among flows. Since there are a large number of flows (e.g.,

24×24 with 24 cores), each flow achieves very small throughput (or

alternatively, the number of packets received for any flow in a given

time window is very small). This results in reduced effectiveness of

optimizations like GRO (that operate on a per-flow basis) since they

do not have enough packets in each flow to aggregate. As a result,

upper layers receive a larger number of smaller skbs, increasing
packet processing overheads.

Fig. 8(c) shows the distribution of skb sizes (post-GRO) for vary-
ing number of flows. We see that as the number of flows increase,

the average skb size reduces, leading to our argument above about

the reduced effectiveness of GRO. We note that the above phenom-

enon is not unique to the all-to-all scenario: the number of flows

sharing a bottleneck resource also increase in the incast and one-

to-one scenarios. Indeed, this effect would also be present in those

scenarios, however the total number of flows in those cases is not

large enough to make these effects noticeable (max of 24 flows in

incast and one-to-one versus 24 × 24 flows in all-to-all).

72

 0

 10

 20

 30

 40

 50

1x1 8x8 16x16 24x24
 0

 20

 40

 60

 80

 100

T
h
ro

u
gh

p
u
t

Pe
r

C
o

re
(G

b
p

s)

T
o

ta
l T

h
ro

u
gh

p
u
t(

G
b

p
s)

Flows

No Opt.
TSO/GRO

Jumbo
aRFS

Total Thpt

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

1x1 ow
8x8 ows

16x16 ows
24x24 ows

(b) Receiver CPU breakdown

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

5 10 15 20 25 30 35 40 45 50 55 60 65

Fr
ac

ti
o

n
 o

f
Sa

m
p

le
s

SKB size(KB)

4x4 ows
8x8 ows

16x16 ows
24x24 ows

(c) skb size distribution

Figure 8: Linux network stack performance for all-to-all traffic pattern. (a) Each column shows throughput-per-core achieved for different number of

flows. With 8 × 8 flows, the network is fully saturated. Throughput-per-core decreases as the number of flows increases. (b) With all optimizations enabled,

as the number of flows increase, the fraction of CPU cycles spent in data copy decreases. On the receiver-side, network saturation leads to lower memory

management overhead (due to better page recycling) and higher scheduling overhead (due to frequent idling and greater number of threads per core.). TCP/IP

processing overhead increases due to smaller skb sizes. The overall receiver-side CPU utilizations for x= 1 × 1, 8 × 8, 16 × 16 and 24 × 24 are 1, 4.07, 5.56 and

6.98 cores, respectively. See [7] for sender-side CPU breakdown. (c) The fraction of 64KB skbs after GRO decreases as the number of flows increases because

the larger number of flows prevent effective aggregation of received packets. See §3.5 for description.

(a) Throughput-per-core (Gbps) (b) CPU Utilization (c) Sender CPU breakdown (d) Receiver CPU breakdown

Figure 9: Linux network stack performance for the case of a single flow, with varying packet drop rates. (a) Each column shows throughput-per-

core achieved for a specific packet drop rate. Throughput-per-core decreases as the packet drop rate increases. (b) As the packet drop rate increases, the gap

between sender and receiver CPU utilisation decreases because the sender spends more cycles for retransmissions. (c, d)With all optimizations enabled, as

the packet drop rate increases, the overhead of TCP/IP processing and netdevice subsystem increases. See §3.6 for description.

3.6 Impact of In-network Congestion

In-network congestion may lead to packet drops at switches, which

in turn impacts both the sender and receiver side packet processing.

In this subsection, we study the impact of such packet drops on

CPU efficiency. To this end, we add a network switch between the

two servers, and program the switch to drop packets randomly. We

increase the loss rate from 0 to 0.015 in the single flow scenario

from §3.1, and observe the effect on throughput and CPU utilization

at both sender and receiver.

Impact on throughput-per-core is minimal. As shown in

Fig. 9(a) the throughput-per-core decreases by∼24% as the drop rate

is increased from 0 to 0.015. Fig. 9(b) shows that the receiver-side

CPU utilization decreases with increasing loss rate. As a result, the

total throughput becomes lower than throughput-per-core, and the

gap between the two increases. Interestingly, the throughput-per-

core slightly increases when the loss rate goes from 0 to 0.00015.

We observe that the corresponding receiver-side cache miss rate

is reduced from 48% to 37%. This is because packet loss essentially

reduces TCP sending rate, thus resulting in better cache hit rates at

the receiver-side.

Figs. 9(c) and 9(d) show CPU profiling breakdowns for different

loss rates. With increasing loss rate, at both sender and receiver,

we see that the fraction of CPU cycles spent in TCP, netdevice

subsystem, and other (etc.) processing increases, hence leading to

fewer available cycles for data copy.

The minimal impact is due to increased ACK processing.

Upon detailed CPU profiling, we found increased ACK process-

ing and packet retransmissions to be the main causes for increased

overheads. In particular:

• At the receiver, the fraction of CPU cycles spent in generating

and sending ACKs increases by 4.87× (1.52% → 7.4%) as the

loss rate goes from 0 to 0.015. This is because, when a packet is

dropped, the receiver gets out-of-order TCP segments, and ends

up sending duplicate ACKs to the sender. This contributes to an

increase in both TCP and netdevice subsystem overheads.

• At the sender, the fraction of CPU cycles spent in processing

ACKs increases by 1.45× (5.79%→ 8.41%) as the loss rate goes

from 0 to 0.015. This is because the sender has to process ad-

ditional duplicate ACKs. Further, the fraction of CPU spent in

packet retransmission operations increases by 1.34%. Both of

these contribute to an increase in TCP and netdevice subsys-

tem overheads, while the former contributes to increased IRQ

handling (which is classified under “etc.” in our taxonomy).

Sender observes higher impact of packet drops. Fig. 9(b)

shows the CPU utilization at the sender and the receiver. As drop

rates increase, the gap between sender and receiver utilization de-

creases, indicating that the increase in CPU overheads is higher

at the sender side. This is due to the fact that, upon a packet drop,

the sender is responsible for doing the bulk of the heavy lifting in

terms of congestion control and retransmission of the lost packet.

73

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

4KB
16KB
32KB
64KB

(b) Server CPU breakdown (c) NIC-remote NUMA effect (4KB)

Figure 10: Linux network stack performance for short flow, 16:1 incast traffic pattern, with varying RPC sizes. (a) Each column shows throughput-

per-core achieved for a specific RPC size. Throughput-per-core increases with increasing RPC size. For small RPCs, optimizations like GRO do not provide

much benefit due to fewer aggregation opportunities. (b) With all optimizations enabled, data copy quickly becomes the bottleneck. The server-side CPU was

completely utilized for all scenarios. See [7] for client-side CPU breakdown. (c) Unlike long flows, no significant throughput-per-core drop is observed even

when application runs on NIC-remote NUMA node core at the server. See §3.7 for description.

3.7 Impact of Flow Sizes

We now study the impact of flow sizes on the Linux network stack

performance. We start with the case of short flows: a ping-pong

style RPC workload, with message sizes for both request/response

being equal, and varying from 4KB to 64KB. Since a single short flow

is unable to bottleneck CPU at either the sender or the receiver,

we consider the incast scenario—16 applications on the sender

send ping-pong RPCs to a single application on the receiver (the

latter becoming the bottleneck). Following the common deployment

scenario, each application uses a long-running TCP connection.

We also evaluate the impact of workloads that comprise of a mix

of both long and short flows. For this scenario, we use a single core

at both the sender and the receiver. We run a single long flow, and

mix it with a variable number of short flows. We set the RPC size

of short flows to 4KB.

DCA does not help much when workloads comprise of

extremely short flows. Fig. 10(a) shows that, as expected,

throughput-per-core increases with increase in flow sizes. We make

several observations. First, as shown in Fig. 10(b), data copy is no

longer the prominent consumer of CPU cycles for extremely small

flows (e.g., 4KB)—TCP/IP processing overhead is higher due to low

GRO effectiveness (small flow sizes make it hard to batch skbs),
and scheduling overhead is higher due to ping-pong nature of the

workload causing applications to repeatedly block while waiting

for data. Second, data copy not being the dominant consumer of

CPU cycles for extremely short flows results in DCA not contribut-

ing to the overall performance as much as it did in the long-flow

case: as shown in Fig. 10(c), while NIC-local NUMA nodes achieve

significantly lower cache miss rates when compared to NIC-remote

NUMA nodes, the difference in throughput-per-core is only mar-

ginal. Third, while DCA benefits reduce for extremely short flows,

other cache locality benefits of aRFS still apply: for example, skb
accesses during packet processing benefit from cache hits. However,

these benefits are independent of the NUMA node on which the

applications runs. The above three observations suggest interesting

opportunities for orchestrating host resources between long and

short flows: while executing on NIC-local NUMA nodes helps long

flows significantly, short flows can be scheduled on NIC-remote

NUMA nodes without any significant impact on performance; in

addition, carefully scheduling the core across short flows sharing

the core can lead to further improvements in throughput-per-core.

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

0 short ow
1 short ow

4 short ows
16 short ows

(b) Server CPU breakdown

Figure 11: Linux network stack performance for workloads that

mix long and short flows on a single core. (a) Each column shows

throughput-per-core achieved for different number of short flows colocated

with a long flow. Throughput-per-core decreases with increasing number of

short flows. (b) Even with 16 flows colocated with a long flows, data copy

overheads dominate, but TCP/IP processing and scheduling overheads start

to consume significant CPU cycles. The server-side CPU was completely

utilized for all scenarios.; refer to [7] for client-side CPU breakdown. See

§3.7 for description.

We note that all the observations above become relatively obso-

lete even with slight increase in flow sizes—with just 16KB RPCs,

data copy becomes the dominant factor and with 64KB RPCs, the

CPU breakdown becomes very similar to the case of long flows.

Mixing long and short flows considered harmful. Fig. 11(a)

shows that, as expected, the overall throughput-per-core drops by

∼43% as the number of short flows colocated with the long flow is

increased from 0 to 16. More importantly, while throughput-per-

core for a single long flow and 16 short flows is ∼42Gbps (§3.1) and

∼6.15Gbps in isolation (no mixing), it drops to ∼20Gbps and ∼2.6

Gbps, respectively when the two are mixed (48% and 42% reduction

for long and short flows). This suggests that CPU-efficient network

stacks should avoid mixing long and short flows on the same core.

74

(a) Throughput-per-core (Gbps) (b) Sender CPU breakdown (c) Receiver CPU breakdown

Figure 12: Impact of DCA and IOMMU on Linux network stack performance. (a) Each column shows throughput-per-core achieved for different

DCA and IOMMU configurations: Default has DCA enabled and IOMMU disabled. Either of disabling DCA or enabling IOMMU leads to decrease in

throughput-per-core. (b, c) Disabling DCA does not cause a significant shift in CPU breakdown. Enabling IOMMU causes a significant increase in memory

management overheads at both the sender and the recever. See §3.8 and §3.9 for description.

(a) Throughput-per-core (Gbps) (b) Sender-side CPU breakdown (c) Receiver CPU breakdown (IOMMU enabled)

Figure 13: Impact of congestion control protocols on Linux network stack performance. (a) Each column shows throughput-per-core achieved for

different congestion control protocols. There is no significant change in throughput-per-core across protocols. (b, c) BBR causes a higher scheduling overhead

on the sender-side. On the receiver-side, the CPU utilization breakdowns are largely similar. For all cases, receiver-side core is fully utilized for all protocols.

See §3.10 for description.

3.8 Impact of DCA

All our experiments so far were runwith DCA enabled (as is the case

by default on Intel Xeon processors). To understand the benefits of

DCA, we now rerun the single flow scenario from §3.1, but with

DCA disabled. Fig. 12(a) shows the throughput-per-core without

DCA relative to the scenario with DCA enabled (Default), as each

of the optimizations are incrementally enabled. Unsurprisingly,

with all optimizations enabled, we observe a 19% degradation in

throughput-per-core when DCA is disabled. In particular, we see a

∼50% reduction in the effectiveness of aRFS; this is expected since

disabling DCA reduces the data copy benefits of NIC DMAing the

data directly into the L3 cache. The other benefits of aRFS (§3.1)

still apply. Without DCA, the receiver-side remains the bottleneck,

and we do not observe any significant shift in the CPU breakdowns

at sender and receiver (Figs. 12(b) and 12(c)).

3.9 Impact of IOMMU

IOMMU (IO Memory Management Unit) is used in virtualized en-

vironments to efficiently virtualize fast IO devices. Even for non-

virtualized environments, they are useful for memory protection.

With IOMMU, devices specify virtual addresses in DMA requests

which the IOMMU subsequently translates into physical addresses

while implementing memory protection checks. By default, the

IOMMU is disabled in our setup. In this subsection, we study the

impact of IOMMU on Linux network stack performance for the

single flow scenario (§3.1).

The key take-away from this subsection is that IOMMU, due to

increased memory management overheads, results in significant

degradation in network stack performance. As seen in Fig. 12(a),

enabling IOMMU reduces throughput-per-core by 26% (compared

to Default). Figs. 12(b) and 12(c) show the core reason for this

degradation: memory alloc/dealloc becoming more prominent in

CPU consumption at both sender and receiver (now consuming

30% of CPU cycles at the receiver). This is because of two additional

per-page operations required by IOMMU: (1) when the NIC driver

allocates new pages for DMA, it has to also insert these pages into

the device’s pagetable (domain) on the IOMMU; (2) once DMA is

done, the driver has to unmap those pages. These two additional

per-page operations result in increased overheads.

3.10 Impact of Congestion control protocols

Our experiments so far use TCP CUBIC, the default congestion

control algorithm in Linux. We now study the impact of congestion

control algorithms on network stack performance using two other

popular algorithms implemented in Linux, BBR [8] and DCTCP [1],

again for the single flow scenario (§3.1). Fig. 13(a) shows that choice

of congestion control algorithm has minimal impact on throughput-

per-core. This is because, as discussed earlier, receiver-side is the

core throughput bottleneck in high-speed networks; all these al-

gorithms being “sender-driven”, have minimal difference in the

receiver-side logic. Indeed, the receiver-side CPU breakdowns are

largely the same for all protocols (Fig. 13(c)). BBR has relatively

higher scheduling overheads on the sender-side (Fig. 13(b)); this

is because BBR uses pacing for rate control (with qdisc) [42], and

repeated thread wakeups when packets are released by the pacer

result in increased scheduling overhead.

75

4 FUTURE DIRECTIONS

We have already discussed several immediate avenues of future

research in individual subsections—e.g., optimizations to today’s

Linux network stack (e.g., independent scaling of each process-

ing layer in the stack, rethinking TCP auto-tuning mechanisms

for receive buffer sizing, window/rate mechanisms incorporating

host bottlenecks, etc.), extensions to DCA (e.g., revisiting L3 cache

management, support for NIC-remote NUMA nodes, etc.) and, in

general, the idea of considering host bottlenecks when designing

network stacks for high-speed networks. In this section, we outline

a few more forward-looking avenues of future research.

Zero-copy mechanisms. The Linux kernel has recently intro-

duced new mechanisms to achieve zero-copy transmission and

reception on top of the TCP/IP stack:

• For zero-copy on the sender-side, the kernel now has

MSG_ZEROCOPY feature [11] (since kernel 4.14), which pins

application buffers upon a send system call, allowing the NIC to

directly fetch this data through DMA reads.

• For zero-copy on the receiver-side, the kernel now supports a

special mmap overload for TCP sockets [12] (since kernel 4.18).

This implementation enables applications to obtain a virtual

address that is mapped by the kernel to the physical address

where the NIC DMAs the data.

Some specialized applications [13, 26] have demonstrated achieving

∼100Gbps of throughput-per-core using the sender-side zero-copy

mechanism. However, as we showed in §3, receiver is likely to be

the throughput bottleneck for many applications in today’s Linux

network stack. Hence, it is more crucial to eliminate data copy over-

heads on the receiver-side. Unfortunately, the above receiver-side

zero-copy mechanism requires changes in the memory manage-

ment semantics, and thus requires non-trivial application-layer

modifications. Linux eXpress Data Path (XDP) [23] offers zero copy

operations for applications that use AF_XDP socket [29] (intro-

duced in kernel 4.18), but requires reimplementation of the entire

network and transport protocols in the userspace. It would be in-

teresting to explore zero-copy mechanisms that do not require

application modifications and/or reimplementation of network pro-

tocols; if feasible, such mechanisms will allow today’s Linux net-

work stack to achieve 100Gbps throughput-per-core with minimal

or no modifications.

CPU-efficient transport protocol design. The problem of trans-

port design has traditionally focused on designing congestion and

flow control algorithms to achieve a multi-objective optimization

goal (e.g., a combination of objectives like low latency, high through-

put, etc.). This state of affairs is because, for the Internet and for

early incarnations of datacenter networks, performance bottlenecks

were primarily in the core of the network. Our study suggests that

this is no longer the case: adoption of high-bandwidth links shifts

performance bottlenecks to the host. Thus, future protocol designs

should explicitly orchestrate host resources (just like they orches-

trate network resources today), e.g., by taking not just traditional

metrics like latency and throughput into account, but also available

cores, cache sizes and DCA capabilities. Recent receiver-driven

protocols [18, 35] have the potential to enable such fine-grained

orchestration of both the sender and the receiver resources.

Rearchitecting the host stack. We discuss two directions in rel-

atively clean-slate design for future network stacks. First, today’s

network stacks use a fairly static packet processing pipeline for

each connection—the entire pipeline (buffers, protocol processing,

host resource provisioning, etc.) is determined at the time of socket

creation, and remains unchanged during the socket lifetime, inde-

pendent of other connections and their host resource requirements.

This is one of the core reasons for the many bottlenecks identified

in our study: when the core performing data copy becomes the

bottleneck for long flows, there is no way to dynamically scale

the number of cores performing data copy; even if short flows and

long flows have different bottlenecks, the stack uses a completely

application-agnostic processing pipeline; and, there is no way to

dynamically allocate host resources to account for changes in con-

tention upon new flow arrivals. As performance bottlenecks shift

to hosts, we should rearchitect the host network stack to achieve a

design that is both more dynamic (allows transparent and indepen-

dent scaling of host resources to individual connections), and more

application-aware (exploits characteristics of applications colocated

on a server to achieve improved host resource orchestration).

The second direction relates to co-designing CPU schedulers

with the underlying network stack. Specifically, CPU schedulers in

operating systems have traditionally been designed independent of

the network stack. This was beneficial for independent evolution

of the two layers. However, with increasingly many distributed

applications and with performance bottlenecks shifting to hosts,

we need to revisit such a separation. For instance, our study shows

that network-aware CPU scheduling (e.g., scheduling applications

that generate long flows on NIC-local NUMA node, scheduling

long-flow and short-flow applications on separate CPU cores, etc.)

has the potential to lead to efficient host stacks.

5 CONCLUSION

We have demonstrated that recent adoption of high-bandwidth

links in datacenter networks, coupled with relatively stagnant tech-

nology trends for other host resources (e.g., core speeds and count,

cache sizes, etc.), mark a fundamental shift in host network stack

bottlenecks. Using measurements and insights for Linux network

stack performance for 100Gbps links, our study highlights several

avenues for future research in designing CPU-efficient host network

stacks. These are exciting times for networked systems research—

with emergence of Terabit Ethernet, the bottlenecks outlined in

this study are going to become even more prominent, and it is only

by bringing together operating systems, computer networking and

computer architecture communities that we will be able to design

host network stacks that overcome these bottlenecks. We hope our

work will enable a deeper understanding of today’s host network

stacks, and will guide the design of not just future Linux kernel

network stack, but also future network and host hardware.

ACKNOWLEDGMENTS

We thank our shepherd, Neil Spring, SIGCOMM reviewers, Shrijeet

Mukherjee, Christos Kozyrakis and Amin Vahdat for their insightful

feedback. This work was supported by NSF grants CNS-1704742

and CNS-2047283, a Google faculty research scholar award and a

Sloan fellowship. This work does not raise any ethical concerns.

76

REFERENCES
[1] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In ACM SIGCOMM.

[2] Amazon. 2021. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/
instance-types/f1/. (2021).

[3] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. In USENIX NSDI.

[4] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating System for
High Throughput and Low Latency. In USENIX OSDI.

[5] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic
characteristics of data centers in the wild. In IMC.

[6] Zhan Bokai, Yu Chengye, and Chen Zhonghe. 2005. TCP/IP Offload Engine (TOE)
for an SOC System. https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/dc/_3_3-2005_taiwan_3rd_chengkungu-web.pdf. (2005).

[7] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang, and
Rachit Agarwal. 2021. Understanding Host Network Stack Overheads. https:
//github.com/Terabit-Ethernet/terabit-network-stack-profiling. (2021).

[8] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. ACM Queue
14, September-October (2016), 20 – 53.

[9] AdrianMCaulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
et al. 2016. A cloud-scale acceleration architecture. In IEEE/ACM MICRO.

[10] Jonathan Corbet. 2009. JLS2009: Generic receive offload. https://lwn.net/Articles/
358910/. (2009).

[11] Jonathan Corbet. 2017. Zero-copy networking. https://lwn.net/Articles/726917/.
(2017).

[12] Jonathan Corbet. 2018. Zero-copy TCP receive. https://lwn.net/Articles/752188/.
(2018).

[13] Patrick Dehkord. 2019. NVMe over TCP Storage with SPDK. https://ci.spdk.
io/download/events/2019-summit/(Solareflare)+NVMe+over+TCP+Storage+
with+SPDK.pdf. (2019).

[14] Jon Dugan, John Estabrook, Jim Ferbuson, Andrew Gallatin, Mark Gates, Kevin
Gibbs, Stephen Hemminger, Nathan Jones, Gerrit Renker Feng Qin, Ajay Tiru-
mala, and Alex Warshavsky. 2021. iPerf - The ultimate speed test tool for TCP,
UDP and SCTP. https://iperf.fr/. (2021).

[15] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. 2020.
Reexamining Direct Cache Access to Optimize I/O Intensive Applications for
Multi-hundred-gigabit Networks. In USENIX ATC.

[16] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: SmartNICs in the public cloud.
In USENIX NSDI.

[17] The Linux Foundation. 2016. Linux Foundation DocuWiki: napi. https://wiki.
linuxfoundation.org/networking/napi. (2016).

[18] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. 2015. phost: Distributed near-optimal datacenter transport
over commodity network fabric. In ACM CoNEXT.

[19] Sebastien Godard. 2021. Performance monitoring tools for Linux. https://github.
com/sysstat/sysstat. (2021).

[20] Brendan Gregg. 2020. Linux perf Examples. http://www.brendangregg.com/perf.
html. (2020).

[21] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012.
MegaPipe: A New Programming Interface for Scalable Network I/O. In USENIX
OSDI.

[22] HewlettPackard. 2021. Netperf. https://github.com/HewlettPackard/netperf.
(2021).

[23] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress
Data Path: Fast Programmable Packet Processing in the Operating System Kernel.
In ACM CoNEXT.

[24] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. 2020. TCP ≈ RDMA:
CPU-efficient Remote Storage Access with i10. In USENIX NSDI.

[25] Intel. 2012. Intel® Data Direct I/O Technology. https : / / www .
intel .com/content/dam/www/public/us/en/documents/technology-briefs/
data-direct-i-o-technology-brief.pdf. (2012).

[26] Intel. 2020. SPDK NVMe-oF TCP Performance Report. https://ci.spdk.io/
download/performance-reports/SPDK_tcp_perf_report_2010.pdf. (2020).

[27] EunYoung Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In USENIX NSDI.

[28] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. 2009. The nature of data center traffic: measurements & analysis. In
IMC.

[29] Magnus Karlsson and Björn Töpel. 2018. The Path to DPDK Speeds for AF XDP.
In Linux Plumbers Conference.

[30] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind Krish-
namurthy, and Thomas Anderson. 2019. TAS: TCP Acceleration as an OS Service.
In ACM Eurosys.

[31] Yuliang Li, Rui Miao, Hongqiang Liu, Yan Zhuang, Fei Feng, Lingbo Tang, Zheng
Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019. HPCC:
High Precision Congestion Control. In ACM SIGCOMM.

[32] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu, and
Yuanchun Shi. 2016. Scalable Kernel TCP Design and Implementation for Short-
Lived Connections. In ACM ASPLOS.

[33] Ilias Marinos, Robert NM Watson, and Mark Handley. 2014. Network stack
specialization for performance. ACM SIGCOMMComputer Communication Review
44, 4 (2014), 175–186.

[34] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network Support
for RDMA. In ACM SIGCOMM.

[35] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-driven Low-latency Transport Protocol Using Network Priori-
ties. In ACM SIGCOMM.

[36] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
Low Tail Latency for Microsecond-scale Networked Tasks. In ACM SOSP.

[37] Quoc-Thai V Le, Jonathan Stern, and StephenM Brenner. 2017. Fast memcpy with
SPDK and Intel I/OAT DMA Engine. https://software.intel.com/content/www/
us/en/develop/articles/fast-memcpy-using-spdk-and-ioat-dma-engine.html.
(2017).

[38] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Scheduling
with Exception-Less System Calls. In USENIX OSDI.

[39] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Katerina Argyraki,
Sylvia Ratnasamy, and Scott Shenker. 2018. ResQ: Enabling SLOs in Network
Function Virtualization. In USENIX NSDI.

[40] Vijay Vasudevan, David G. Andersen, and Michael Kaminsky. 2011. The Case for
VOS: The Vector Operating System. In USENIX HotOS.

[41] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. 2016.
StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs.
In USENIX ATC.

[42] Neal Cardwell Yuchung Cheng. [n. d.]. Making Linux TCP Fast. "https:
//netdevconf.info/1.2/papers/bbr-netdev-1.2.new.new.pdf". ([n. d.]).

[43] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

77

