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ABSTRACT
We present Elmo, a system that addresses the multicast scalability

problem in multi-tenant datacenters. Modern cloud applications

frequently exhibit one-to-many communication patterns and, at

the same time, require sub-millisecond latencies and high through-

put. IP multicast can achieve these requirements but has control-

and data-plane scalability limitations that make it challenging to

offer it as a service for hundreds of thousands of tenants, typical of
cloud environments. Tenants, therefore, must rely on unicast-based

approaches (e.g., application-layer or overlay-based) to support

multicast in their applications, imposing bandwidth and end-host

CPU overheads, with higher and unpredictable latencies.

Elmo scales network multicast by taking advantage of emerging

programmable switches and the unique characteristics of data-

center networks; specifically, the hypervisor switches, symmetric

topology, and short paths in a datacenter. Elmo encodes multicast

group information inside packets themselves, reducing the need

to store the same information in network switches. In a three-tier

data-center topology with 27,000 hosts, Elmo supports a million

multicast groups using an average packet-header size of 114 bytes,

requiring as few as 1,100 multicast group-table entries on average

in leaf switches, and having a traffic overhead as low as 5% over

ideal multicast.
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1 INTRODUCTION
To quote the Oracle Cloud team [4], we believe that the lack of mul-

ticast support among public cloud providers [21, 59, 90] is a huge

“missed opportunity.” First, IP multicast is in widespread use in en-

terprise datacenters to support virtualized workloads (e.g., VXLAN
and NVGRE) [46, 75, 113] and by financial services to support stock

tickers and trading workloads [5, 15, 23]. These enterprises can-

not easily transition from private datacenters to public clouds to-

day without native multicast support. Second, modern datacenter

applications are rife with point-to-multipoint communication pat-

terns that would naturally benefit from native multicast. Examples

include streaming telemetry [87, 89, 93, 96], replicated state ma-

chines [77, 78, 100], publish-subscribe systems [53, 58, 63, 110], data-

base replication [7], messaging middleware [1, 9], data-analytics

platforms [82], and parameter sharing in distributed machine learn-

ing [81, 86]. Third, all these workloads, when migrating to public

clouds, are forced to use host-based packet replication techniques in-

stead, such as application- or overlay-multicast [28, 35, 47, 67, 111]—

indeed, many commercial offerings exist in this space [4, 20, 115].

This leads to inefficiencies for both tenants and providers alike

(§5.2.1); performing packet replication on end-hosts instead of the

network not only inflates CPU load in datacenters, but also prevents

tenants from sustaining high throughputs and low latencies for

multicast workloads.

A major obstacle to native multicast support in today’s public

clouds is the inherent data- and control-plane scalability limita-

tions of multicast [75]. On the data-plane side, switching hardware

supports only a limited number of multicast group-table entries,

typically thousands to a few tens of thousands [38, 71, 83, 91]. These

group-table sizes are a challenge even in small enterprise datacen-

ters [17], let alone at the scale of public clouds that host hundreds of
thousands of tenants [3]. On the control-plane side, IP multicast has

historically suffered from having a “chatty” control plane [4, 10, 12],

which is a cause for concern [4] in public clouds with a shared

network where tenants introduce significant churn in the multicast

state (e.g., due to virtual machine allocation [24, 61] and migra-

tion [40, 45]). Protocols like IGMP and PIM trigger many control

messages during churn and periodically query the entire broadcast

domain, while the SDN-based solutions [83, 88] suffer from a high

number of switch updates during churn.

In this paper, we present the design and implementation of Elmo,

a system that overcomes the data- and control-plane scalability

limitations that pose a barrier to multicast deployment in pub-

lic clouds. Our key insight is that emerging programmable data

planes [29, 33, 36] and the unique characteristics of datacenters

(namely, hypervisor switches [37, 104], symmetric topology, and

short paths [22, 60, 92]), enable the use of efficient source-routed
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multicast, which significantly alleviates both the pressure on switch-
ing hardware resources and that of control-plane overheads during

churn.

For data-plane scalability, hypervisor switches in Elmo simply

encode the forwarding policy (i.e., multicast tree) of a group in a

packet header as opposed to maintaining group-table entries inside

network switches—hypervisor switches do not have the same hard

restrictions on table sizes like network switches have. By using

source-routed multicast, Elmo accommodates groups for a large

number of tenants running myriad workloads; if group sizes remain

small enough to encode the entire multicast tree in the packet, there

is practically no limit to the number of groups Elmo can support.

Our encodings for multicast groups are compact enough to fit in a

header that can be processed at line rate by programmable switches

being deployed in today’s datacenters [29, 33, 36].

For control-plane scalability, our source-routing scheme recon-

figures groups by only changing the information in the header

of each packet, an operation that only requires issuing an update

to the source hypervisor(s). Since hypervisors support roughly

10–100x more forwarding-table updates per second than network

switches [76, 97], Elmo absorbs most of the reconfiguration load at

hypervisors rather than the physical network.

Source-routed multicast, however, is technically challenging to

realize for three key reasons, which Elmo overcomes. First, the

multicast tree encoding in the packet must be compact. Second,

the protocol must use minimal state on network switches. Third,

switches must be able to process the encoding in the packet at line

rate.

Prior solutions fall short of meeting these scalability goals in

different ways. They either cannot scale to a large number of groups

without exhausting switch resources like group- and flow-table

entries (IP multicast [43], Li et al. [83]). Or, they expect unorthodox

switching capabilities that are infeasible to implement in today’s

datacenters, and yet, only work for smaller networks (BIER [117])

or with small group sizes (SGM [31]). Or, they have high traffic

and end-host overheads, and therefore, cannot support multicast

at line rate [28, 35, 47, 67, 111]. In comparison, Elmo achieves its

data- and control-plane scalability goals without suffering from

the above limitations, while also having several desirable features

for public clouds: it provides address-space isolation, a necessity

in virtualized environments [75]; it is multipath friendly; and its

use of source-routing stays internal to the provider with tenants

issuing standard IP multicast data packets. A detailed comparison

appears in §6.

We present the following contributions in this paper. First, we

develop a technique for compactly encoding multicast groups that

are subtrees of multi-rooted Clos topologies (§3), the prevailing

topology in today’s datacenters [22, 60, 92]. These topologies create

an opportunity to design a multicast group encoding that is com-

pact enough to encode inside packets and for today’s programmable

switches to process at line rate. Second, we optimize the encoding so

that it can be efficiently implemented in both hardware and software

targets (§4). Our evaluation shows that our encoding facilitates a

feasible implementation in today’s multi-tenant datacenters (§5). In

a datacenter with 27,000 hosts, Elmo scales to millions of multicast

groups with minimal group-table entries and control-plane update

Logically-centralized controller

Host

VMs &
containers

Datacenter
network

Hypervisor switch

Multicast
tree

API
Control plane

Data plane

p-rules

VXLAN VM ElmoPacket Headers:

s-rules

Figure 1: Elmo’s architecture. A multicast tree (in orange) is
encoded as p- and s-rules, which are installed in hypervisor
and network switches respectively.

overhead on switches. Elmo supports applications that use multi-

cast without modification; we demonstrate two such applications:

publish-subscribe (§5.2.1) and host telemetry (§5.2.2).

Lastly, we note that the failures of native multicast approaches

have fatigued the networking community to date. We, however,

believe that today’s datacenters and, specifically, programmable

software and hardware switches provide a fresh opportunity to

revisit multicast; and Elmo is a first attempt at that. This work does

not raise any ethical issues.

2 ELMO ARCHITECTURE
In Elmo, a logically-centralized controller manages multicast groups

for tenants by installing flow rules in hypervisor switches (to en-

capsulate packets with a compact encoding of the forwarding pol-

icy) and the network switches (to handle forwarding decisions for
groups too large to encode entirely in the packet header). Per-

forming control-plane operations at the controller and having the

hypervisor switches place forwarding rules in packet headers, sig-

nificantly reduces the burden on network switches for handling a

large number of multicast groups. Figure 1 summarizes our archi-

tecture.

Logically-centralized controller. The logically-centralized con-
troller receives join and leave requests for multicast groups via an

application programming interface (API). Cloud providers already

expose such APIs [57] for tenants to request VMs, load balancers,

firewalls, and other services. Each multicast group consists of a set

of tenant VMs. The controller knows the physical location of each

tenant VM, as well as the current network topology—including the

capabilities and capacities of the switches, along with unique iden-

tifiers for addressing these switches. Today’s datacenters already

maintain such soft state about network configuration at the con-

troller [92] (using fault-tolerant distributed directory systems [60]).

The controller relies on a high-level language (like P4 [32, 34])
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to configure the programmable switches at boot time so that the

switches can parse and process Elmo’s multicast packets. The con-

troller computes the multicast trees for each group and uses a

control interface (like P4Runtime [95]) to install match-action rules

in the switches at run time. When notified of events (e.g., network
failures and group membership changes), the controller computes

new rules and updates only the affected switches.
1
The controller

uses a clustering algorithm for computing compact encodings of

the multicast forwarding policies in packet headers (§3.2).

Hypervisor switch. A software switch [51, 99, 104], running

inside the hypervisor, intercepts multicast data packets originat-

ing from VMs. The hypervisor switch matches the destination IP

address of a multicast group in the flow table to determine what

actions to perform on the packet. The actions determine: (i) where

to forward the packet, (ii) type of encapsulation protocol to tunnel

the packet (e.g., VXLAN [85]), and (iii) what Elmo header to push

on the packet. The Elmo header consists of a list of rules (packet

rules, or p-rules for short)—each containing a set of output ports

along with zero or more switch identifiers—that intermediate net-

work switches use to forward the packet. These p-rules encode the
multicast tree of a given group inside the packet, obviating the need

for network switches to store a large number of multicast forward-

ing rules or require updates when the tree changes. Hypervisor

switches run as software on physical hosts, they do not have the

hard constraints on flow-table sizes and rule update frequency that

network switches have [51, 76, 97, 99]. Each hypervisor switch only

maintains flow rules for multicast groups that have member VMs

running on the same host, discarding packets belonging to other

groups.

Network switch. Upon receiving amulticast data packet, a phys-

ical switch (or network switch) running inside the network simply

parses the header to look for a matching p-rule (i.e., a p-rule con-
taining the switch’s own identifier) and forwards the packet to the

associated output ports, as well as popping p-rules when they are

no longer needed to save bandwidth. When a multicast tree is too

large to encode entirely in the packet header, a network switch may

have its own group-table rule (called a switch rule, or s-rule for
short). As such, if a packet header contains no matching p-rule, the
network switch checks for an s-rule matching the destination IP

address (multicast group) and forwards the packet accordingly. If

no matching s-rule exists, the network switch forwards the packet

based on a default p-rule—the last p-rule in the packet header. Elmo

encodes most rules inside the packet header (as p-rules), and in-

stalls only a small number of s-rules on network switches, consis-

tent with the small group tables available in high-speed hardware

switches [38, 71, 91]. The network switches in datacenters form a

tiered topology (e.g., Clos) with leaf and spine switches grouped

into pods, and core switches. Together they enable Elmo to encode

multicast trees efficiently.

1
Today’s datacenter controllers are capable of executing these steps in sub-second

timescales [92] and can handle concurrent and consistent updates to tens of thousands

of switches [92, 114].

p-rule: bitmap
p-rule: bitmap
p-rule: bitmap

p-rule(s) default rule

p-rule(s) default rule

(optional)

u-leaf
u-spine

d-core

d-spine

d-leaf

type

bitmap id0 id1 idN

(optional)

(b) p-rule format

type

d

(a) header format

u

next id
next p-rule

d-ports u-ports multipath
d-ports

Figure 2: Elmo’s header and p-rule format. A header consists
of a sequence of upstream (u) leaf and spine p-rules, and the
downstream (d) core, spine and leaf p-rules. The type field
specifies the format of a p-rule bitmap, and the multipath
flag in the upstream bitmap tells the switch to use multi-
pathing when forwarding packets upstream.

3 ENCODING MULTICAST TREES
Upon receiving a multicast data packet, a switch must identify what

set of output ports (if any) to forward the packet while ensuring it is

sent on every output port in the tree and as few extra ports as possi-

ble. In this section, we first describe how to represent multicast trees

efficiently, by capitalizing on the structure of datacenters (topology

and short paths) and capabilities of programmable switches (flexible

parsing and forwarding).

3.1 Compact and Simple Packet Header
Elmo encodes a multicast forwarding policy efficiently in a packet

header as a list of p-rules (Figure 2a). Each p-rule consists of a set
of output ports—encoded as bitmap—along with a list of switch

identifiers (Figure 2b). A bitmap further consists of upstream and

downstream ports along with a multipath flag, depending upon the

type field. Network switches inspect the list of p-rules to decide how
to forward the packet, popping p-rules when they are no longer

needed to save bandwidth. We introduce five key design decisions

(D1–5) that make our p-rule encoding both compact and simple for
switches to process.

Throughout this section, we use a three-tier multi-rooted Clos

topology (Figure 3a) with a multicast group stretching across three

pods (marked in orange) as a running example. The topology con-

sists of four core switches and pods, and two spine and leaf switches

per pod. Each leaf switch further connects to eight hosts. Figure 3b

shows two instances of an Elmo packet, originating from host Ha
and Hk , for our example multicast tree (Figure 3a) after applying

all the design optimizations, which we now discuss in detail.

D1: Encoding switch output ports in a bitmap. Each p-rule
uses a simple bitmap to represent the set of switch output ports

(typically, 48 ports) that should forward the packet (Figure 2b). Us-

ing a bitmap is desirable because it is the internal data structure

that network switches use to direct a packet to multiple output

ports [33]. Alternative encoding strategies use destination group

members, encoded as bit strings [117]; bloom filters, representing

link memberships [69, 101]; or simply a list of IP addresses [31] to
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Binary digits represent port membership of each switch in the multicast tree. 
These digits are encoded as bitmaps in p-rules, e.g., 10 at P0.
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u-spine d-core

u

type
d-spine d-leaf

10:[P0] 11:[L0,L6]

10:[L5]

Outer header(s) VXLAN Packet body

00|M 00|M 1001uOuter header(s) VXLAN Packet body

Common downstream spine and leaf p-rules

Sender Ha

Sender Hk

Sender-specific leaf, spine, and core p-rules

At L0: forward to Hb
and multipath to P0

P0: multipath 
to C

C: forward 
to P2, P3

P0: forward to L0
P2: forward to L5

P3: forward to L6, L7

P2: multipath 
to C

C: forward 
to P0, P3

L0: forward to Ha, Hb
L5: forward to Hk

L6: forward to Hm, Hn

L7: forward to Hp

At L5: multipath 
to P2

01:[P2]

11:[P3]
Default

01:[L7]
Default

(b)

Figure 3: (a) An example multicast tree on a three-tier multi-rooted Clos topology with downstream spine and leaf p- and s-
rules assignments for a group. (b) Elmo packets with R = 0 (i.e., no redundant transmission per downstream p-rule) and #s-rules
= 0 assignment. The packet originating from a sender is forwarded up to the logical coreC using the sender-specific upstream
p-rules, and down to the receivers using the common downstream p-rules (and s-rules). For example, L0 forwards the packet
from sender Ha to the neighboring receiver Hb while multipathing it to the logical spine P0 (S0, S1) using the upstream p-rule:
01|M. In the downstream path, the packet arriving at P2 is forwarded to L5 using the p-rule: 01:[P2]. Furthermore, each switch
pops the corresponding p-rules and updates the type field before sending it to the next layer.

identify the set of output ports. However, these representations can-

not be efficiently processed by network switches without violating

line-rate guarantees (discussed in detail in §6).

Having a separate p-rule—with a bitmap and an identifier for

each switch—for the multicast group in our example three-tier Clos

topology (Figure 3a) needs a header size of 161 bits. For identifiers,

we use two bits to identify the four core switches and three bits for

spine and leaf switches, each.

D2: Encoding on the logical topology. Instead of having sep-

arate p-rules for each switch in the multicast tree, Elmo exploits

the tiered architecture and short path lengths
2
in today’s datacen-

ter topologies to reduce the number of required p-rules to encode

in the header. In multi-rooted Clos topologies, such as our exam-

ple topology (Figure 3a), leaf-to-spine and spine-to-core links use

multipathing. All spine switches in the same pod behave as one

giant logical switch (forwarding packets to the same destination

leaf switches), and all core switches together behave as one logical

2e.g., a maximum of five hops in the Facebook Fabric topology [22].

core switch (forwarding packets to the same pods). We refer to the

logical topology as one where there is a single logical spine switch

per pod (e.g., P0), and a single logical core switch (C) connected to

pods.

We order p-rules inside a packet by layers according to the fol-

lowing topological ordering: upstream leaf, upstream spine, core,
downstream spine, and downstream leaf (Figure 2a). Doing so also ac-
counts for varying switch port densities per layer (e.g., in Figure 3a,

core switches connect to four spine switches and leaf switches con-

nect to two hosts). Organizing p-rules by layers together with other

characteristics of the logical topology allow us to further reduce

header size and traffic overhead of a multicast group in four key

ways:

a. Single p-rule per logical switch: We only require one p-rule
per logical switch, with all switches belonging to the same logical

group using not only the same bitmap to send packets to output

ports, but also requiring only one logical switch identifier in the

p-rule. For example, in Figure 3a, switches S0 and S1 in the logical

pod P0 use the same p-rule, 10:[P0].
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b. Forwarding using upstream p-rules: For switches in the up-

stream path, p-rules contain only the bitmap—including the down-

stream and upstream ports, and a multipath flag (Figure 2b: type =
u)—without a switch identifier list. The multipath flag indicates

whether a switch should use the configured underlying multi-

pathing scheme (e.g., ECMP, CONGA [19], or HULA [73]) or not.

Otherwise, the upstream ports are used for forwarding packets

upward to multiple switches in cases where no single spine or core

has connectivity to all members of a multicast group (e.g., due to
network failures, §3.3). In Figure 3b, for the Elmo packet originating

from hostHa , leaf L0 will use the upstream p-rule (01|M) to forward

the packet to the neighboring host Hb as well as multipathing it to

the logical spine P0 (S0, S1).
c. Forwarding using downstream p-rules: The only switches that

require upstream ports represented in their bitmaps are the leaf

and spine switches in the upstream path. The bitmaps of all other

switches only require their downstream ports represented using

bitmaps (Figure 2b: type = d). The shorter bitmaps for these switches,

therefore, reduce space usage even further. Note, ports for upstream

leaf and spine switches, including core, differ based on the source;

whereas, downstream ports remain identical within the same multi-

cast group. Therefore, Elmo generates a common set of downstream

p-rules for leaf and spine switches that all senders of a multicast

group share (Figure 3b).

d. Popping p-rules along the path: Amulticast packet visits a layer

only once, both in its upstream and downstream path. Grouping

p-rules by layer, therefore, allows switches to pop all headers of that
layer when forwarding a packet from one layer to another. This is

because p-rules from any given layer are irrelevant to subsequent

layers in the path. This also exploits the capability of programmable

switches to decapsulate headers at line rate, discussed in §4. Doing

so further reduces traffic overhead. For example, L0 will remove the

upstream p-rule (01|M) from the Elmo packet of sender Ha before

forwarding it to P0 (Figure 3b).
In our example (Figure 3a), encoding on the logical topology

drops the header size to 83 bits (a reduction of 48% from D1).

D3: Sharing a bitmap across switches. Even with a logical

topology, having a separate p-rule for each switch in the down-

stream path could lead to very large packet headers, imposing

bandwidth overhead on the network. In addition, network switches

have restrictions on the packet header sizes they can parse (e.g.,
512 bytes [33]), limiting the number of p-rules we can encode in

each packet. To further reduce header sizes, Elmo assigns multiple

switches within each layer (enabled by D2) to the same p-rule, if
the switches have the same—or similar—bitmaps. Mapping multiple

switches to a single bitmap, as a bitwise OR of their individual

bitmap, reduces header sizes because the output bitmap of a rule

requires more bits to represent than switch identifiers; for example,

a datacenter with 27,000 hosts has approximately 1,000 switches

(needing 10 bits to represent switch identifiers), whereas switch

port densities range from 48 to 576 (requiring that many bits) [19].

The algorithm to identify sets of switches with similar bitmaps is

described in §3.2.

We encode the set of switches as a simple list of switch identi-

fiers, as shown in Figure 2b. Alternate encodings, such as bloom

filters [30], are more complicated to implement—requiring a switch

to account for false positives, where multiple p-rules are a “match.”

To keep false-positive rates manageable, these approaches lead to

large filters [83], which is less efficient than having a list, as the

number of switches with similar bitmaps is relatively small com-

pared to the total number of switches in the datacenter network.

With p-rule sharing, such that the bitmaps of assigned switches

differ by at most two bits (i.e., R = 2, §3.2), logical switches P2 and
P3 (in Figure 3a) share a downstream p-rule at the spine layer. At
the leaf layer, L0 shares a downstream p-rule with L6 and L5 with
L7. This further brings down the header size to 62 bits (a decrease

of 25% from D2).

D4: Limiting header size using default p-rules. A default p-
rule accommodates all switches that do not share a p-rule with

other switches (D3). Default p-rules act as a mechanism to limit the

total number of p-rules in the header. For example, in Figure 3a,

with R = 0 and no s-rules, leaf switch L7 gets assigned to a default

p-rule. The default p-rules are analogous to the lowest priority rule

in the context of a flow table. They are appended after all the other

p-rules of a downstream layer in the header (Figure 2a).

The output bitmap for a default p-rule is computed as the bit-

wise OR of port memberships of all switches being mapped to

the default rule. In the limiting case, the default p-rule causes a

packet to be forwarded out of all output ports connected to the next

layer at a switch (packets only make progress to the destination

hosts); thereby, increasing traffic overhead because of the extra

transmissions.

D5: Reducing traffic overhead using s-rules. Combining all

the techniques discussed so far allows Elmo to represent any multi-

cast tree without using any state in the network switches. This is

made possible because of the default p-rules, which accommodate

any switches not captured by other p-rules. However, the use of
the default p-rule (and bitmap sharing across switches) results in

extra packet transmissions that increase traffic overhead.

To reduce the traffic overhead without increasing header size,

we exploit the fact that switches already support multicast group

tables. Each entry, an s-rule, in the group table matches a multicast

group identifier and sends a packet out on multiple ports. Before

assigning a switch to a default p-rule for a multicast group, we

first check if the switch has space for an s-rule. If so, we install an
s-rule in that switch, and assign only those switches to the default

p-rule that have no spare s-rule capacity. For example, in Figure 3a,

with s-rule capacity of one entry per switch and R = 0, leaf switch

L7 now has an s-rule entry instead of the default p-rule, as in the

previous case (D4).

3.2 Generating p- and s-Rules
Having discussed the mechanisms of our design, we now explain

how Elmo expresses a group’s multicast tree as a combination of

p- and s-rules. The algorithm is executed once per downstream

layer for each group. The input to the algorithm is a set of switch

identifiers and their output ports for a multicast tree (input bitmaps).

Constraints. Every layer needs its own p-rules. Within each

layer, we ensure that no more than Hmax p-rules are used. We

budget a separate Hmax per layer such that the total number of

p-rules is within a header-size limit. This is straightforward to
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compute because: (i) we bound the number of switches per p-rule
to Kmax—restricting arbitrary number of switches from sharing a

p-rule and inflating the header size—so the maximum size of each

p-rule is known a priori, and (ii) the number of p-rules required
in the upstream direction is known, leaving only the downstream

spine and leaf switches. Of these, downstream leaf switches use

most of the header capacity (§5).

A network switch has space for at most Fmax s-rules (typically
thousands to a few tens of thousands [38, 83, 91]), a shared resource

across all multicast groups. For p-rule sharing, we identify groups of
switches to share an output bitmap where the bitmap is the bitwise

OR of all the input bitmaps. To reduce traffic overhead, we bound

the total number of spurious transmissions resulting from a shared

p-rule to R, where R is computed as the sum of Hamming Distances

of each input bitmap to the output bitmap. Even though this does

not bound the overall redundant transmissions of a group to R, our
evaluation (§5) shows that it is still effective with negligible traffic

overhead over ideal multicast.

Clustering algorithm. The problem of determiningwhich switches

share a p-rule maps to a well-knownMIN-K-UNION problem, which

is NP-hard but has approximate variants available [112]. Given the

sets,b1,b2, . . . ,bn , the goal is to findK sets such that the cardinality

of their union is minimized. In our case, a set is a bitmap—indicating

the presence or absence of a switch port in a multicast tree—and

the goal is to find K such bitmaps whose bitwise OR yields the

minimum number of set bits.

Algorithm 1 shows our solution. For each group, we assign p-
rules until Hmax p-rules are assigned or all switches have been

assigned p-rules (Line 3). For p-rule sharing, we apply an approxi-

mate MIN-K-UNION algorithm to find a group of K input bitmaps

(Line 4) [112]. We then compute the bitwise OR of these K bitmaps

to generate the resulting output bitmap (Line 5). If the output bitmap

satisfies the traffic overhead constraint (Line 6), we assign the K
switches to a p-rule (Line 7) and remove them from the set of

unassigned switches (Line 8), and continue at Line 3. Otherwise,

we decrement K and try to find smaller groups (Line 10). When

K = 1, any unassigned switches receive a p-rule each. At any point

if we encounter the Hmax constraint, we fallback to computing

s-rules for any remaining switches (Line 13). If the switches do not

have any s-rule capacity left, they are mapped to the default p-rule
(Line 15).

3.3 Ensuring Reachability via Upstream Ports
under Network Failures

Network failures (due to faulty switches or links) require recom-

puting upstream p-rules for any affected groups. These rules are

specific to each source and, therefore, can either be computed by the

controller or, locally, at the hypervisor switches—which can scale

and adapt more quickly to failures using host-based fault detection

and localization techniques [72, 102].

When a failure happens, a packet may not reach some members

of a group via any spine or core network switches using the under-

lying multipath scheme. In this scenario, the controller deactivates

multipathing using the multipath flag (D2)—doing so does not re-
quire updating the network switches. The controller disables the

flag in the bitmap of the upstream p-rules of the affected groups, and

Algorithm 1 Clustering algorithm for each layer of a group

Constants: R, Hmax , Kmax , Fmax
Inputs: Set of all switches S , Bitmaps B = bi∀i ∈ S
Outputs: p-rules, s-rules, and default-p-rule

1: p-rules← ∅, s-rules← ∅, default-p-rule← ∅
2: unassigned← B, K ← Kmax
3: while unassigned , ∅ and |p-rules| < Hmax do
4: bitmaps← approx-min-k-union(K , unassigned)
5: output-bm← Bitwise OR of all bi ∈ bitmaps

6: if dist(bi , output-bm) ≤ R ∀ bi ∈ bitmaps then
7: p-rules← p-rules ∪ bitmaps

8: unassigned← unassigned \ bitmaps

9: else
10: K ← K − 1
11: for all bi ∈ unassigned do
12: if switch i has |s-rules| < Fmax then
13: s-rules← s-rules ∪ {bi }
14: else
15: default-p-rule← default-p-rule | bi

return p-rules, s-rules, default-p-rule

forwards packets using the upstream ports. Furthermore, to identify

the set of possible paths that cover all members of a group, we reuse

the same greedy set-cover technique as used by Portland [92] and

therefore do not expand on it in this paper; for a multicast groupG ,
upstream ports in the bitmap are set to forward packets to one or

more spines (and cores) such that the union of reachable hosts from

the spine (and core) network switches covers all the recipients ofG .
In the meantime, hypervisor switches gracefully degrade to unicast

for the affected groups to mitigate transient loss. We evaluate how

Elmo performs under failures in §5.1.3.

4 ELMO ON PROGRAMMABLE SWITCHES
We now describe how we implement Elmo to run at line rate on

both network and hypervisor switches. Our implementation as-

sumes that the datacenter is running P4 programmable switches

like PISCES [104] and Barefoot Tofino [29].
3
These switches entail

multiple challenges in efficiently parsing, matching, and acting on

p-rules.

4.1 Implementing on Network Switches
In network switches, typically, a parser first extracts packet headers

and then forwards them to the match-action pipeline for processing.

This model works well for network protocols (like MAC learning

and IP routing) that use a header field to lookup match-action rules

in large flow tables. In Elmo, on the other hand, we find amatching p-
rule from within the packet header itself. Using match-action tables

to perform this matching is prohibitively expensive (Appendix A).

Instead, we present an efficient implementation by exploiting the

match-and-set capabilities of parsers in modern programmable data

planes.

Matching p-rules using parsers. Our key insight here is that

we match p-rules inside the switch’s parser, and in doing so, no

3
Example P4 programs for network and hypervisor switches based on the datacenter

topology in Figure 3a are available on GitHub [6].
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Scalability: Elmo scales to millions of

multicast groups—supporting hundreds of

dedicated groups per tenant—with minimal

group-table usage and control-plane update

overhead on network switches (§5.1)

In a multi-rooted Clos topology having 27,000 hosts and one million multicast groups,

with group sizes based on a production trace:

(i) 95-99% of groups can be encoded using an average p-rule header of 114 bytes (min

15, max 325) without using a default p-rule (Figure 4 and 5, left).
(ii) Spine and leaf switches use only a mean (max) of 3,800 (11,000) and 1,100 (2,900)

s-rules (Figure 4 and 5, center).
(iii) Despite the additional header, traffic overhead is kept within 34% and 5% of the ideal

for 64-byte and 1,500-byte packets, respectively (Figure 4 and 5, right).
(iv) The average (max) update load on hypervisor, leaf, and spine switches is 21 (46), 5

(13), and 4 (7), respectively; core switches don’t require any updates (Table 2).

Applications run unmodified, and benefit

from reduced CPU and bandwidth utilization

for multicast workloads (§5.2)

We run ZeroMQ (a publish-subscribe system) and sFlow (a monitoring application)

on top of Elmo. Elmo enables these systems to scale to hundreds of receivers while

maintaining constant CPU and bandwidth overhead at the transmitting VM (Figure 6).

End-host resource requirements: Elmo

adds negligible overheads to hypervisor

switches (§5.3)

A PISCES-based hypervisor switch encapsulates p-rules and forwards packets at line

rate on a 20 Gbps link (Figure 7).

Table 1: Summary of results.

longer require amatch-action stage to search p-rules at each switch—
making switch memory resources available for other use, including

s-rules. The switch can scan the packet as it arrives at the parser.

The parser linearly traverses the packet header and stores the bits

in a header vector based on the configured parse graph. Parsers

in programmable switches provide support for setting metadata at

each stage of the parse graph [32, 33, 94]. Hence, enabling basic

match-and-set lookups inside the parsers.
Elmo exploits this property, extending the parser to check at

each stage—when parsing p-rules—to see if the identifier of the

given p-rule matches that of the switch. The parser parses the list

of p-rules until it reaches a rule with “next p-rule” flag set to 0

(Figure 2b), or the default p-rule. If a matching p-rule is found,

the parser stores the p-rule’s bitmap in a metadata field and skips

checking remaining p-rules, jumping to the next header (if any).

However, the size of a header vector (i.e., the maximum header

size a parser can parse) in programmable switch chips is also fixed.

For RMT [33] the size is 512 bytes. We show in §5.1, how Elmo’s

encoding scheme easily fits enough p-rules using a header-size

budget of 325 bytes (mean 114) while supporting millions of groups,

with each tenant having around three hundred dedicated groups

on average. The effective traffic overhead is low, as these p-rules
get popped with every hop.

Forwarding based on p- and s-rules. After parsing the packet,
the parser forwardsmetadata to the ingress pipeline, which includes

a bitmap, a matched flag (indicating the presence of a valid bitmap),

and a default bitmap. The ingress pipeline checks for the following

cases in its control flow: if the matched flag is set, write the bitmap

metadata to the queue manager [33], using a bitmap_port_select
primitive

4
; else, lookup the group table using the destination IP

4
The queue manager is currently capable of receiving metadata pertaining to the

multicast group identifier to use. We propose to, instead, use this mechanism to directly

receive the output port bits as metadata. Supporting this simply re-uses existing switch

ASICs and only incurs an additional area of 0.0005% (0.0015%) on a 64 (256) port switch.

For reference, CONGA [19] and Banzai [106] consume 2% and 12% additional area,

respectively.

address for an s-rule. If there is a match, write the s-rule’s group
identifier to the queue manager, which then converts it to a bitmap.

Otherwise, use the bitmap from the default p-rule.
The queue manager generates the desired copies of the packet

and forwards them to the egress pipeline. At the egress pipeline, we

execute the following post-processing checks. For leaf switches, if a

packet is going out toward the host, the egress pipeline invalidates

all p-rules indicating the de-parser to remove these rules from the

packet before forwarding it to the hosts. This offloads the burden at

the receiving hypervisor switches, saving unnecessary CPU cycles

spent to decapsulate p-rules. Otherwise, the egress pipeline invali-
dates all p-rules up to the p-rules(s) of the next-hop switch before

forwarding the packet.

4.2 Implementing on Hypervisor Switches
In hardware switches, representing each p-rule as a separate header
is required to match p-rules in the parsing stage. However, using the
same approach on a hypervisor switch (like PISCES [104]) reduces

throughput because each header copy triggers a separate DMA

write call. Instead, to operate at line rate, we treat all p-rules as one
header and encode it using a single write call (§5.3). Not doing so

decreases throughput linearly with increasing number of p-rules.

5 EVALUATION
In this section, we evaluate the data- and control-plane scalability

requirements of Elmo. Table 1 summarizes our results.

5.1 Scalability
5.1.1 Experiment setup. We now describe the setup we use

to test the scale of the number of multicast groups Elmo can support

and the associated traffic and control-plane update overhead on

switches.

Topology. The scalability evaluation relies on a simulation over

a large datacenter topology; the simulation places VMs belonging

to different tenants on end hosts within the datacenter and assigns
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Figure 4: Placement strategy with no more than 12 VMs of a
tenant per rack. (Left) Number of groups covered using non-
default p-rules. (Center) s-rules usage across switches (the
horizontal dashed line show rule usage for the scheme by Li
et al. scheme [83] with no limit on VMs of a tenant per rack).
(Right) Traffic overhead relative to ideal (horizontal dashed
lines show unicast (top) and overlay multicast (bottom)).

multicast groups of varying sizes to each tenant. We simulate us-

ing a Facebook Fabric topology—a three-tier topology—with 12

pods [22]. A pod contains 48 leaf switches each connected to 48

hosts. Thus, the topology with 12 pods supports 27,648 hosts, in to-

tal. (We saw qualitatively similar results while running experiments

for a two-tier leaf-spine topology like that used in CONGA [19].)

Tenant VMs and placement. Mimicking the experiment setup

from Li et al. [83]; the simulated datacenter has 3,000 tenants; the

number of VMs per tenant follows an exponential distribution, with

min=10, median=97, mean=178.77, and max=5,000; and each host

accommodates at most 20 VMs. A tenant’s VMs do not share the

same physical host. Elmo is sensitive to the placement of VMs in

the datacenter; which is typically managed by a placement con-

troller [108], running alongside the network controller [14, 16]. We,

therefore, perform a sensitivity analysis using a placement strat-

egy where we first select a pod uniformly at random, then pick a

random leaf within that pod and pack up to P VMs of that tenant

under that leaf. P regulates the degree of co-location in the place-

ment. We evaluate for P = 1 and P = 12 to simulate both dispersed

and clustered placement strategies. If the chosen leaf (or pod) does

not have any spare capacity to pack additional VMs, the algorithm

selects another leaf (or pod) until all VMs of a tenant are placed.

Multicast groups. We assign multicast groups to each tenant

such that there are a total of one million groups in the datacenter.

The number of groups assigned to each tenant is proportional to

the size of the tenant (i.e., number of VMs in that group). We use

two different distributions for groups’ sizes, scaled by the tenant’s

size. Each group’s member (i.e., a VM) is randomly selected from

the VMs of the tenant. The minimum group size is five. We use

the group-size distributions described in Li’s et al. paper [83]. We

model the first distribution by analyzing the multicast patterns of

an IBMWebSphere Virtual Enterprise (WVE) deployment, with 127

nodes and 1,364 groups. The average group size is 60, and nearly

80% of the groups have fewer than 61 members, and about 0.6%

have more than 700 members. The second distribution generates

tenant’s groups’ sizes that are uniformly distributed between the

minimum group size and entire tenant size (Uniform).

0 

250K

500K

750K

1M

0 6 12
Redundancy limit (R)

G
ro

up
s 

co
ve

re
d 

 w
ith

 p
−

ru
le

s

Li et al.

0 

10K

20K

30K

0 6 12
Redundancy limit (R)

s−
ru

le
s 

in
st

al
le

d 
pe

r 
sw

itc
h Unicast

Overlay

0 

1 

2 

3 

4 

0 6 12
Redundancy limit (R)

Tr
af

fic
 O

ve
rh

ea
d

(r
at

io
 w

ith
 id

ea
l m

ul
tic

as
t)

Figure 5: Placement strategy with nomore than one VM of a
tenant per rack. (Left) Number of groups covered using non-
default p-rules. (Center) s-rules usage across switches (the
horizontal dashed line show rule usage for the scheme by Li
et al. [83] with no more than one VM of a tenant per rack).
(Right) Traffic overhead relative to ideal (horizontal dashed
lines show unicast (top) and overlay multicast (bottom)).

5.1.2 Data-Plane Scalability.

Elmo scales to millions of multicast groups with minimal
group-table usage. We first describe results for the various place-

ment strategies under the IBM’s WVE group size distribution. We

cap the p-rule header size at 325 bytes (mean 114) per packet that

allows up to 30 p-rules for the downstream leaf layer and two for

the spine layer while consuming an average header space of 22.3%

(min 3.0%, max 63.5%) for a chip that can parse a 512-byte packet

header (e.g., RMT [33])—leaving 400 bytes (mean) for other proto-

cols, which in enterprises [55] and datacenters [54] consume about

90 bytes [56]. We vary the number of redundant transmissions (R)
permitted due to p-rule sharing. We evaluate: (i) the number of

groups covered using only the non-default p-rules, (ii) the number

of s-rules installed, and (iii) the total traffic overhead incurred by

introducing redundancy via p-rule sharing and default p-rules.
Figure 4 shows groups covered with non-default p-rules, s-rules

installed per switch, and traffic overhead for a placement strategy

that packs up to 12 VMs of a tenant per rack (P = 12). p-rules
suffice to cover a high fraction of groups; 89% of groups are covered

even when using R = 0, and 99.8% with R = 12. With VMs packed

closer together, the allocated p-rule header sizes suffice to encode

most multicast trees in the system. Figure 4 (left) also shows how

increasing the permitted number of extra transmissions with p-rule
sharing allows more groups to be represented using only p-rules.

Figure 4 (center) shows the trade-off between p-rule and s-rule
usage. With R = 0, p-rule sharing tolerates no redundant traffic. In

this case, p-rules comprise only of switches having precisely same

bitmaps; as a result, the controller must allocate more s-rules, with
95% of leaf switches having fewer than 4,059 rules (mean 1,059).

Still, these are on average 9.4 (max 2.5) times fewer rules when

compared to the scheme by Li et al. [83] with no limit on the VMs

of a tenant packed per rack (P = All). (Aside from these many

group-table entries, Li’s et al. scheme [83] also requiresO(#Groups)
flow-table entries for group aggregation.) Increasing R to 6 and 12

drastically decreases s-rule usage as more groups are handled using

only p-rules. With R = 12, switches have on average 2.7 rules, with

a maximum of 107.
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Figure 4 (right) shows the resulting traffic overhead assuming

1,500-byte packets. With R = 0 and sufficient s-rule capacity, the
resulting traffic overhead is identical to ideal multicast. Increasing

R increases the overall traffic overhead to 5% of the ideal. Overhead

is modest because even though a data packet may have as much

as 325 bytes of p-rules at the source, p-rules are removed from the

header with every hop (§3.1), reducing the total traffic overhead.

For 64-byte packets, the traffic overhead for WVE increases only to

29% and 34% of the ideal when R = 0 and R = 12, still significantly

improving over overlay multicast
5
(92%) and unicast (406%).

Fundamentally, these results highlight the degree towhich source

routing takes state away from the switches, thereby improving

over (1) Li et al. [83], which relies on large amounts of state in

the switches, and (2) unicast-based schemes, which inflate traffic

overhead by sending duplicate packets.

p-rule sharing is effective even when groups are dispersed
across leaves. Thus far, we discussed results for when up to 12 VMs

of the same tenant were placed in the same rack. To understand

how our results vary for different VM placement strategies, we

explore an extreme case where the placement strategy spreads VMs

across leaves, placing no more than a single VM of a tenant per

rack. Figure 5 (left) shows this effect. Dispersing groups across

leaves requires larger headers to encode the whole multicast tree

using only p-rules. Even in this case, p-rules with R = 0 can handle

as many as 750K groups, since 77.8% of groups have less than 36

switches, and there are 30 p-rules for the leaf layer—just enough
header capacity to be covered only with p-rules. The average (max)

s-rule usage is still 3.3 (1.7) times less than Li’s et al. SDN-based

multicast approach [83] under this placement strategy. Increasing R
to 12 ensures that 95.9% of groups are covered using p-rules. We see

the expected drop in s-rule usage as well, in Figure 5 (center), with
95% of switches having fewer than 2,435 s-rules. The traffic overhead

increases to within 25% of the ideal when R = 12, in Figure 5 (right),
but still improving significantly over overlay multicast (92%) and

unicast (406%).

p-rule sharing is robust to different group size distribu-
tions. We also study how the results are affected by different dis-

tributions of group sizes, using the Uniform group size distribution.

We expect that larger group sizes will be more difficult to encode

using only p-rules. We found that with the P = 12 placement strat-

egy, the total number of groups covered using only p-rules drops
to 814K at R = 0 and to 922K at R = 12. When spreading VMs

across racks with P = 1, only 250K groups are covered by p-rules
using R = 0, and 750K when R = 12. The total traffic overhead for

1,500-byte packets in that scenario increases to 11%.

Reducing s-rule capacity increases default p-rule usage if
p-rule sizes are insufficient. Limiting the s-rule capacity of switches
allows us to study the effects of limited switch memory on the ef-

ficiency of the encoding scheme. Doing so increases the number

of switches that are mapped to the default p-rule. When limiting

the s-rules per switch to 10,000 rules, and using the extreme P = 1

placement strategy, the uniform group size distribution experiences

5
In overlay multicast, the source host’s hypervisor switch replicates packets to one

host under each participating leaf switch, which then replicates packets to other hosts

under that leaf switch.

Switch Elmo Li et al. [83]

hypervisor 21 (46) NE (NE)

leaf 5 (13) 42 (42)

spine 4 (7) 78 (81)

core 0 (0) 133 (203)

Table 2: The average (max) number of hypervisor, leaf, spine,
and core switch updates per second with P = 1 placement
strategy. Results are shown for WVE distribution. (NE: not
evaluated by Li et al. [83])

higher traffic overheads, approaching that of overlay multicast at

R = 0 (87% vs 92%), but still being only 40% over ideal multicast at

R = 12. Using the WVE distribution, however, brings down traffic

overhead to 19% and 25% for R = 6 and R = 12, respectively. With

the tighter placement of P = 12, however, we found the traffic

overhead to consistently stay under 5% regardless of the group-size

distribution.

Reduced p-rule header sizes and s-rule capacities inflate
traffic overheads. Finally, to study the effects of the size of the

p-rule header, we reduced the size so that the header could support

at most 10 p-rules for the leaf layer (i.e., 125 bytes per header). In
conjunction, we also reduced the s-rule capacity of each switch to

10,000 and used the P = 1 placement strategy to test a scenario with

maximum dispersement of VMs. This challenging scenario even

brought the traffic overhead to exceed that of overlay multicast at

R = 12 (123%). However, in contrast to overlay multicast, Elmo still

forwards packets at line rate without any overhead on the end-host

CPU.

Elmo can encode multicast policies for non-Clos topologies
(e.g., Xpander [109] or Jellyfish [105]); however, the resulting trade-

offs in the header-space utilization and traffic overhead would de-

pend on the specific characteristics of these topologies. In a sym-

metric topology like Xpander with 48-port switches and degree

d = 24, Elmo can still support a million multicast groups with a max

header-size budget of 325 bytes for a network with 27,000 hosts.

On the other hand, asymmetry in random topologies like Jellyfish

can make it difficult for Elmo to find opportunities for sharing a

bitmap across switches, leading to poor utilization of the header

space.

5.1.3 Control-Plane Scalability.

Elmo is robust to membership churn and network failures.
We use the same Facebook Fabric setup to evaluate the effects of

group membership churn and network failures on the control-plane

update overhead on switches.

a. Group membership dynamics. In Elmo, we distinguish be-

tween three types of members: senders, receivers, or both. For this

evaluation, we randomly assign one of these three types to each

member. All VMs of a tenant who are not a member of a group

have equal probability to join; similarly, all existing members of the

group have an equal probability of leaving. Join and leave events

are generated randomly, and the number of events per group is

proportional to the group size, which follows the WVE distribution.
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If a member is a sender, the controller only updates the source

hypervisor switch. By design, Elmo only uses s-rules if the p-rule
header capacity is insufficient to encode the entire multicast tree of

a group.Membership changes trigger updates to sender and receiver

hypervisor switches of the group depending on whether upstream

or downstream p-rules need to be updated. When a change affects

s-rules, it triggers updates to the leaf and spine switches.

For one million join/leave events with one million multicast

groups and P = 1 placement strategy, the update load on these

switches remains well within the studied thresholds [64]. As shown

in Table 2, with membership changes of 1,000 events per second, the

average (max) update load on hypervisor, leaf, and spine switches

is 21 (46), 5 (13), and 4 (7) updates per second, respectively; core

switches don’t require any updates. Whereas, with Li’s et al. ap-

proach [83], the average update load exceeds 40 updates per second

on leaf, spine, and core switches—reaching up to 133 updates per

second for core switches (they don’t evaluate numbers for hypervi-

sor switches). Hypervisor and network switches can support up to

40,000 and 1,000 updates per second [76, 97] respectively, implying

that Elmo leaves enough spare control-traffic capacity for other

protocols in datacenters to function.

b. Network failures. Elmo gracefully handles spine and core

switch failures forwarding multicast packets via alternate paths

using upstream ports represented in the groups’ p-rule bitmap

(when a leaf switch fails, all hosts connected to it lose connectivity

to the network until the switch is online again). During this period,

hypervisor switches momentarily shift to unicast (within 3 ms [18])

for some groups to minimize transient loss while the network is

reconfiguring (§3.3). In our simulations, up to 12.3% of groups are

impacted when a single spine switch fails and up to 25.8% when a

core switch fails. Hypervisor switches incur average (max) updates

of 176.9 (1712) and 674.9 (1852) per failure event, respectively. We

measure that today’s hypervisor switches are capable of handling

batched updates of 80,000 requests per second (on a modest server)

and, hence, reconfigure within 25 ms of these failures.

Elmo’s controller computes p- and s-rules for a groupwithin
a millisecond. Our controller consistently executes Algorithm 1

for computing p- and s-rules in less than a millisecond. Across our

simulations, our Python implementation computes the required

rules for each group in 0.20 ms ± 0.45 ms (SD), on average, for all

group sizes with a header size limit of 325 bytes. Existing studies

report up to 100 ms for a controller to learn an event, issue updates

to the network, and for the network state to converge [92]. Elmo’s

control logic, therefore, contributes little to the overall convergence

time for updates and is fast enough to support the needs of large

datacenters today, even before extensive optimization.

5.2 Evaluating End-to-end Applications
We ran two popular datacenter applications on top of Elmo: Ze-

roMQ [63] and sFlow [96]. We ran both applications unmodified
on top of Elmo and benefited from reduced CPU and bandwidth

utilization for multicast workloads.

Testbed setup. The topology for this experiment comprises nine

PowerEdge R620 servers having two eight cores Intel(R) Xeon(R)

CPUs running at 2.00 GHz and with 32 GB of memory, and three

● ●
● ● ● ● ● ● ●●

●

●

● ● ● ● ● ●0K
50K

100K
150K
200K

1 2 4 8 16 32 6412
8
25

6

Number of subscribers

T
hr

ou
gh

pu
t (

rp
s)

● ●Elmo Unicast

0
25
50
75

100

1 2 4 8 16 32 6412
8
25

6

Number of subscribers

C
P

U
 U

til
iz

at
io

n 
(%

) Elmo Unicast

Figure 6: Requests-per-second and CPU utilization of a pub-
sub application using ZeroMQ for both unicast and Elmo
with a message size of 100 bytes.
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Figure 7: PISCES throughput in millions of packets per sec-
ond (left) and Gbps (right) when adding different number of
p-rules, expressed as a single P4 header.

dual-port Intel 82599ES 10 Gigabit Ethernet NICs. Three of these

machines emulate a spine and two leaf switches; these machines

run an extended version of the PISCES [104] switch with support

for the bitmap_port_select primitive for routing traffic between

interfaces. The remaining machines act as hosts running a vanilla

PISCES hypervisor switch, with three hosts per leaf switch.

5.2.1 Publish-subscribe using ZeroMQ. We implement a

publish-subscribe (pub-sub) system using ZeroMQ (over UDP). Ze-

roMQ enables tenants to build pub-sub systems on top of a cloud

environment (like AWS [2], GCP [8], or Azure [11]), by establishing

unicast connections between publishers and subscribers.

Throughput (rps). Figure 6 (left) shows the throughput com-

parison in requests per second. With unicast, the throughput at

subscribers decreases with an increasing number of subscribers

because the publisher becomes the bottleneck; the publisher ser-

vices a single subscriber at 185K rps on average and drops to about

0.3K rps for 256 subscribers. With Elmo, the throughput remains

the same regardless of the number of subscribers and averages

185K rps throughout.

CPU utilization. The CPU usage of the publisher VM (and the

underlying host) also increases with increasing number of sub-

scribers, Figure 6 (right). The publisher VM consumes 32% of the

VM’s CPU with 64 subscribers and saturates the CPU with 256

subscribers onwards. With Elmo, the CPU usage remains constant

regardless of the number of subscribers (i.e., 4.9%).

5.2.2 Host telemetry using sFlow. As our second applica-

tion, we compare the performance of host telemetry using sFlow
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with both unicast and Elmo. sFlow exports physical and virtual

server performance metrics from sFlow agents to collector nodes

(e.g., CPU, memory, and network stats for docker, KVMs, and hosts)

set up by different tenants (and teams) to collect metrics for their

needs. We compare the egress bandwidth utilization at the host of

the sFlow agent with increasing number of collectors, using both

unicast and Elmo. The bandwidth utilization increases linearly with

unicast, with the addition of each new collector. With 64 collectors,

the egress bandwidth utilization at the agent’s host is 370.4 Kbps.

With Elmo, the utilization remains constant at about 5.8 Kbps (equal

to the bandwidth requirements for a single collector).

5.3 End-host Microbenchmarks
We conduct microbenchmarks to measure the incurred overheads

on the hypervisor switches when encapsulating p-rule headers

onto packets (decapsulation at every layer is performed by net-

work switches). We found Elmo imposes negligible overheads at

hypervisor switches.

Setup. Our testbed has a hostH1 directly connected to two hosts

H2 and H3. H1 has 20 Gbps connectivity with both H2 and H3, via

two 10 Gbps interfaces per host. H2 is a traffic source and H3 is a

traffic sink; H1 is running PISCES with the extensions for Elmo to

perform necessary forwarding. H2 and H3 use MoonGen [50] for

generating and receiving traffic, respectively.

Results. Figure 7 shows throughput at a hypervisor switch

when encapsulating different number of p-rule headers, in both

packets per second (pps) and Gigabits per second (Gbps). Increas-

ing the number of p-rules reduces the pps rate, as the packet size
increases, while the throughput in bps remains unchanged. The

throughputmatches the capacity of the links at 20 Gbps, demonstrat-

ing that Elmo imposes negligible overhead on hypervisor switches.

6 RELATEDWORK
Table 3 highlights various areas where related multicast approaches

fall short compared to Elmo in the context of today’s cloud envi-

ronments.

Wide-area multicast. Multicast has been studied in detail in

the context of wide-area networks [27, 42, 43, 48, 103], where the

lack of applications and deployment complexities led to limited

adoption [49]. Furthermore, the decentralized protocols, such as

IGMP and PIM, faced several control-plane challenges with regards

to stability in the face of membership churn [49]. Over the years,

much work has gone into IP multicast to address issues related to

scalability [39, 69], reliability [25, 26, 52, 79], security [70], and con-

gestion control [62, 116]. Elmo, however, is designed for datacenters

which differ in significant ways from the wide-area context.

Data-center multicast. In datacenters, a single administrative

domain has control over the entire topology and is no longer re-

quired to run the decentralized protocols like IGMP and PIM. How-

ever, SDN-based multicast is still bottlenecked by limited switch

group-table capacities [38, 71, 91]. Approaches to scaling multicast

groups in this context have tried using rule aggregation to share

multicast entries in switches with multiple groups [44, 66, 83, 84].

Yet, these solutions operate poorly in cloud environments because
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#Groups 5K 150K 500K 1M+ 1M+ 1M+ 1M+

Group-table
usage high high mod none low none low

Flow-table
usage∗ none mod high none none none none

Group-size
limits none none none none 2.6K <100 none

Network-
size limits:
#hosts

none none none none 2.6K none none

Unorthodox
switch

capabilities
no no no no yes yes no

Line-rate
processing yes yes yes no yes no yes

Address-
space

isolation
no no no yes yes yes yes

Multipath
forwarding no lim lim yes yes yes yes

Control
overhead high low mod none low low low

Traffic
overhead none none low high low none low

End-host
replication no no no yes no no no

Table 3: Comparison between Elmo and relatedmulticast ap-
proaches evaluated against a group-table size of 5,000 rules
and a header-size budget of 325 bytes. (∗ uses unicast flow-
table entries for multicast.)

a change in one group can cascade to other groups, they do not

provide address-space isolation (i.e., tenants cannot choose group
addresses independently from each other), and they cannot uti-

lize the full bisection bandwidth of the network [83, 92]. Elmo,

on the other hand, operates on a group-by-group basis, maintains

address-space isolation, and makes full use of the entire bisection

bandwidth.

Application/overlay multicast. The lack of IP multicast sup-

port, including among the major cloud providers [21, 59, 90], re-

quires tenants to use inefficient software-based multicast solutions

such as overlay multicast or application-layer mechanisms [28, 41,

47, 63, 110]. These mechanisms are built on top of unicast, which

as we demonstrated in §5, incurs a significant reduction in appli-

cation throughput and inflates CPU utilization. SmartNICs (like

Netronome’s Agilio [13]) can help offload packet-replication burden

from end-hosts’ CPUs. However, these NICs are limited in their

capabilities (such as flow-table sizes and the number of packets they

can clone). The replicated packets contend for the same egress port,
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further restricting these NICs from sustaining line rate and pre-

dictable latencies. With native multicast, as in Elmo, end hosts send

a single copy of the packet to the network and use intermediate

switches to replicate and forward copies to multiple destinations at

line rate.

Source-routed multicast. Elmo is not the first system to en-

code forwarding state inside packets. Previous work [69, 80, 101]

have tried to encode link identifiers inside packets using bloom

filters. BIER [117] encodes group members as bit strings, whereas

SGM [31] encodes them as a list of IP addresses. Switches then

look up these encodings to identify output ports. However, all

these approaches require unorthodox processing at switches (e.g.,
loops [117], multiple lookups on a single table [31], division opera-

tors [68], run-length encoding [65], and more), and are infeasible

to implement and process multicast traffic at line rate. BIER, for ex-

ample, requires flow tables to return all entries (wildcard) matching

the bit strings—a prohibitively expensive data structure compared

to traditional TCAM-based match-action tables in emerging pro-

grammable data planes. SGM looks up all the IP addresses in the

routing table to find their respective next hops, requiring an arbi-

trary number of routing table lookups, thus, breaking the line-rate

invariant. Moreover, these approaches either support small group

sizes or run on small networks only. Contrary to these approaches,

Elmo is designed to operate at line rate usingmodern programmable

data planes (like Barefoot Tofino [29] and Cavium XPliant [36]) and

supports hundreds of groups per tenant in a cloud datacenter.

7 CONCLUSION
We presented Elmo, a system to scale native multicast to support

the needs of modern multi-tenant datacenters. By compactly en-

coding multicast forwarding rules inside packets themselves, and

having programmable switches process these rules at line, Elmo

reduces the need to install corresponding group-table entries in net-

work switches. In simulations based on a production trace, we show

that even when all tenants collectively create millions of multicast

groups in a datacenter with 27,000 hosts, Elmo processes 95–99%

of groups without any group table entries in the network, while

keeping traffic overheads between 5–34% of the ideal for 64-byte

and 1,500-byte packets. Furthermore, Elmo is inexpensive to imple-

ment in programmable switches today and supports applications

that use multicast without modification. Our design also opens up

opportunities around deployment, reliability, security, and moni-

toring of native multicast in public clouds, as well as techniques

that are of broader applicability than multicast.

Path to deployment. Elmo runs over a tunneling protocol (i.e.,
VXLAN) that allow cloud providers to deploy Elmo incrementally

in their datacenters by configuring existing switches to refer to

their group tables when encountering an Elmo packet (we tested

this use case with a legacy switch). While Elmo retains its scala-

bility benefits within clusters that have migrated to Elmo-capable

switches, the group-table sizes on legacy switches will continue to

be a scalability bottleneck. For multi-datacenter multicast groups,

the source hypervisor switch in Elmo can send a unicast packet to

a hypervisor in the target datacenter, which will then multicast it

using the group’s p- and s-rules for that datacenter.

Reliability and security. Elmo supports the same best-effort

delivery semantics of native multicast. For reliability, multicast

protocols like PGM [107] and SRM [52] may be layered on top of

Elmo to support applications that require reliable delivery. Further-

more, as Elmo runs inside multi-tenant datacenters, where each

packet is first received by a hypervisor switch, cloud providers can

enforce multicast security policies on these switches [98], drop-

ping malicious packets (e.g., DDoS [70]) before they even reach the

network.

Monitoring. Debugging multicast traffic has been an issue, with

difficulties troubleshooting copies of a multicast packet and the

lack of tools (like traceroute and ping). However, recent advances

in network telemetry (e.g., INT [74]) can simplify monitoring and

debugging of multicast systems like Elmo, by collecting telemetry

data within a multicast packet itself, which analytics servers can

then use for debugging (e.g., finding anomalies in routing configu-

rations).

Applications beyond multicast. We believe our approach of

using the programmable parser to offset limitations of the match-

action pipeline is of general interest to the community, beyond

source-routing use cases. Furthermore, source tagging of packets

could be helpful to drive other aspects of packet handling (e.g.,
packet scheduling and monitoring)—beyond routing—inside the

network.
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A P-RULE LOOKUPS USING MATCH-ACTION
STAGES IS EXPENSIVE – STRAWMAN

Lookups in network switches are typically done using match-action

tables, after the parser. We could do the same for p-rules, but using
match-action tables to lookup p-rules would result in inefficient

use of switch resources. Unlike s-rules, p-rules are headers. Hence,
to match on p-rules, we need a table that matches on all p-rule
headers. In each flow rule, we only match the switch identifier

with one p-rule, while wildcarding the rest. This is a constraint of
match-action tables in switches that we cannot avoid. To match N
p-rules, we need same number of flow-table entries.

The fundamental problem here is that instead of increasing the

depth, p-rules increase the width of a table. Modern programmable

switches can store millions of flow-table entries (depth). However,

they are severely limited by the number of headers they can match

on in a stage (width). For example, in case of RMT [33], a match-

action stage consists of 106 1,000 x 112b SRAM blocks and 16 2,000

x 40b TCAM blocks. These blocks can combine together to build

wider or deeper SRAMs and TCAMs to make larger tables. For

example, to implement a table that matches on ten p-rules, each
11-bit wide, we need three TCAM blocks (as we need wildcards) to

cover 110b for the match. This results in a table of 2,000 entries x

120b wide. And out of these 2,000 entries, we only use ten entries to

match the respective p-rules. Thus, we end up using three TCAMs

for ten p-rules while consuming only 0.5% of entries in the table,

wasting 99.5% of the entries (which cannot be used by any other

stage).

An alternative to using TCAMs for p-rule lookups is to eschew

wildcard lookups and use SRAM blocks. In this case, a switch needs

N stages to lookup N p-rules in a packet, where each stage only has

a single rule. This too is prohibitively expensive. First, the number

of stages in a switch is limited (RMT has 16 stages for the ingress
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pipeline). Second, as with TCAMs, 99.9% of the SRAM entries go

to waste, as each SRAM block is now used only for a single p-rule
each (out of 1,000 available entries per block).
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