ECE 598HH: Advanced Wireless Networks and Sensing Systems

Lecture 13: Machine Learning For Wireless Sensing
Part 1
Haitham Hassanieh

Previous Lectures

WiVi: Sensing humans through walls with WiFi

WiTrack: Accurately Localizing humans through walls

RF-Capture: Capturing human figure through walls

Vital Ratio: Extracting vital signs (Breathing rate and heart rate)

This Lecture

EQ-Radio: Detecting emotions from wireless signals

RF-Sleep: Detecting sleep stages from wireless signals

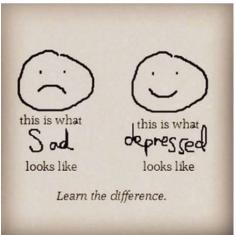
Can you tell people's emotions even if they don't show up on their faces?

Smart Homes that adapt to our mood

Does my advisor like my work?



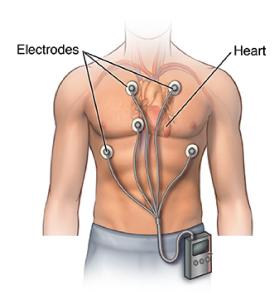
Combating Depression



Is the date going well!

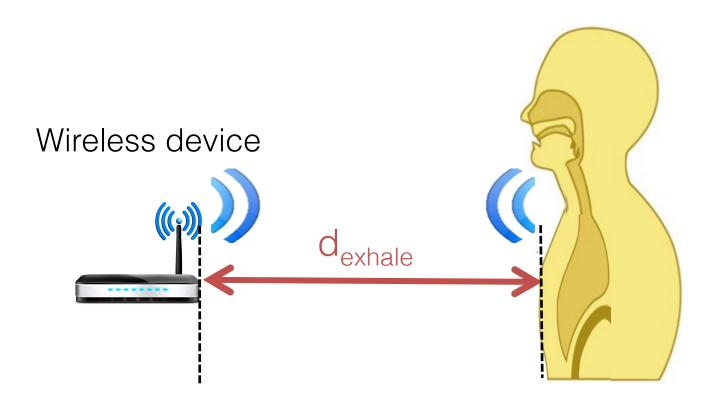
Existing approaches measure vital signs

Use ECG to get very accurate heartbeats

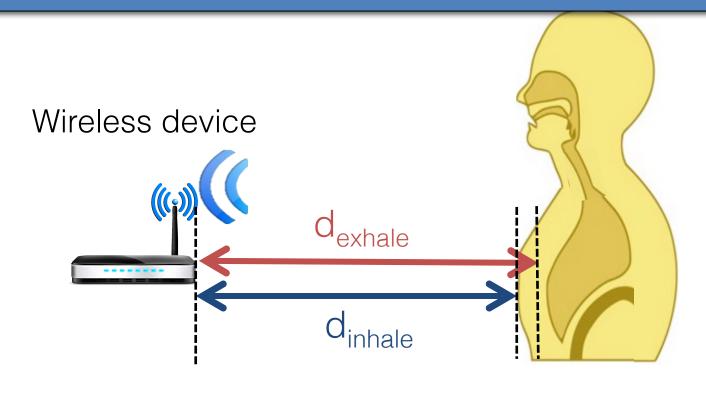


Use wireless reflections off the human body

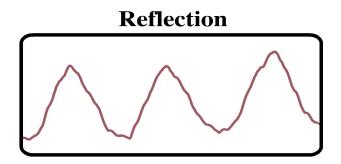
Use wireless reflections off the human body

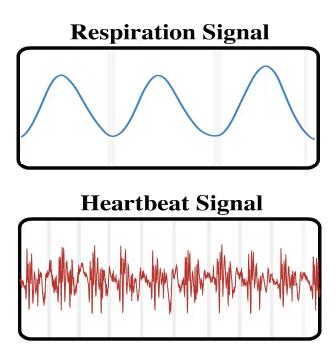


Solution: Use the phase of the wireless reflection



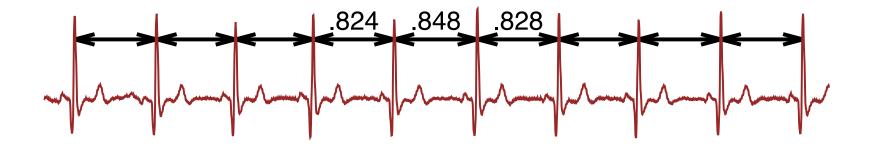
Emotion recognition using wireless signals





Key challenge: Inter-Beat Interval (IBI)

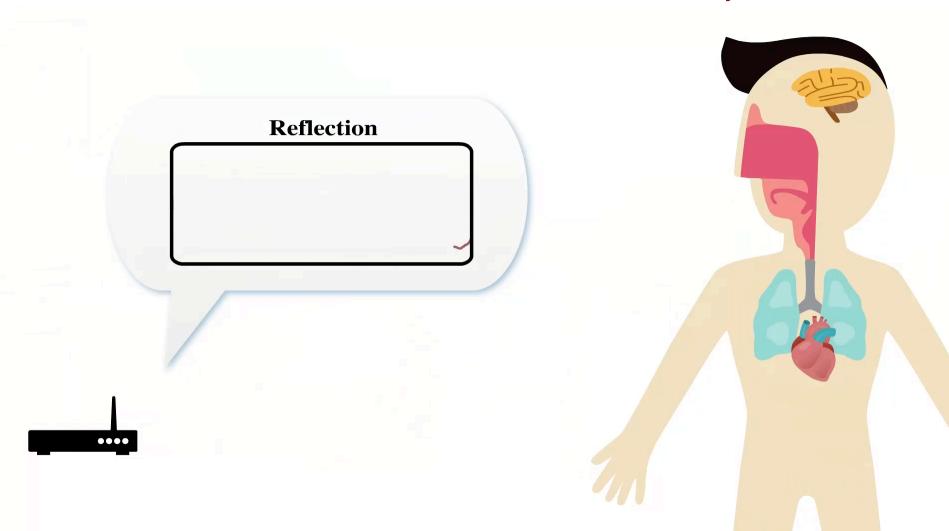
 Emotion recognition needs accurate measurements of the length of every single heartbeat



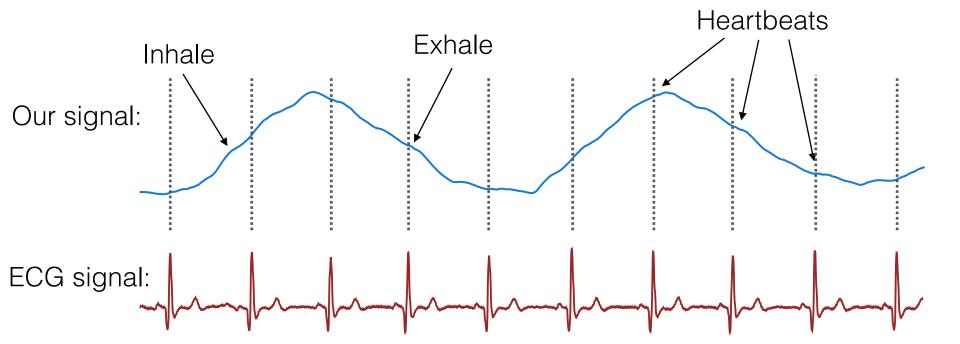
We need to extract IBI with accuracy over 99%

Input signal

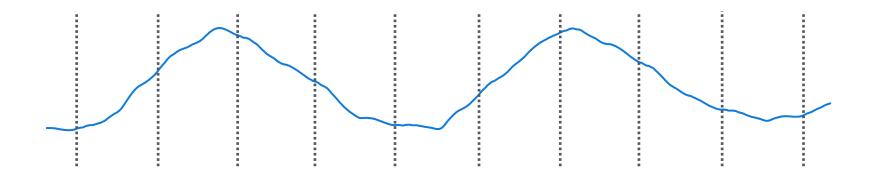
Wireless reflection of the human body



Input signal



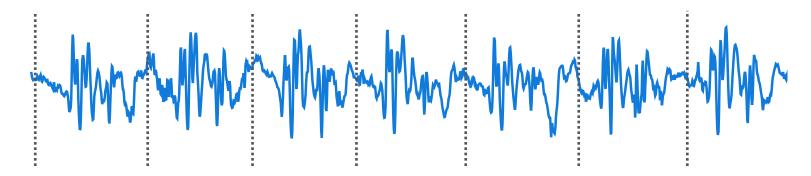
Step 1: Remove breathing signal



- Breathing masks heartbeats
- We use acceleration filter
 - Heartbeat involves rapid contraction of muscle
 - Breathing is slow and steady

Heartbeat signal

Output of acceleration filter



ECG signal

Heartbeat signal

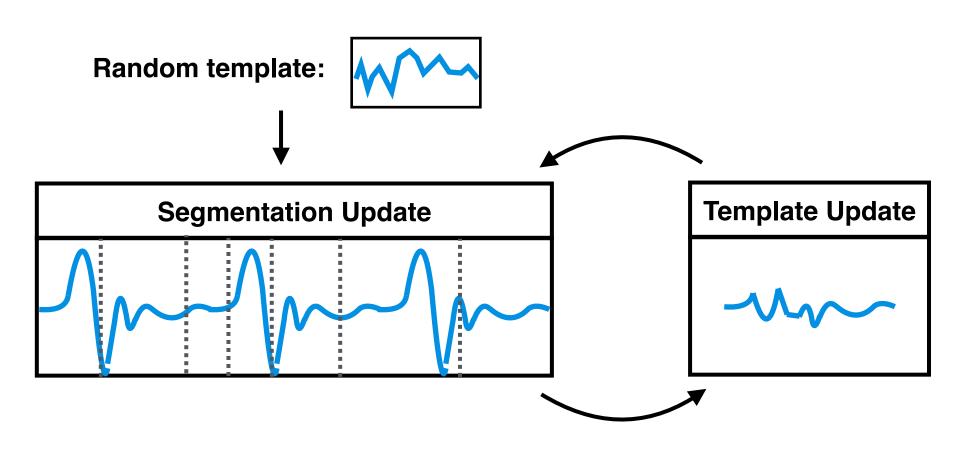
Other typical examples:



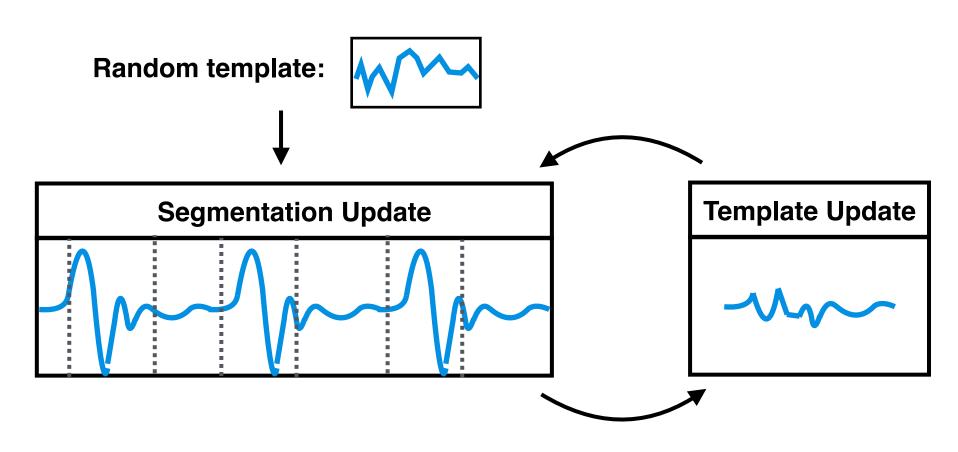
How to segment the signal into individual heartbeats?

- **Intuition**: heartbeat repeats with certain shape (template)
- If we can somehow discover the template, then we can segment into individual heartbeats

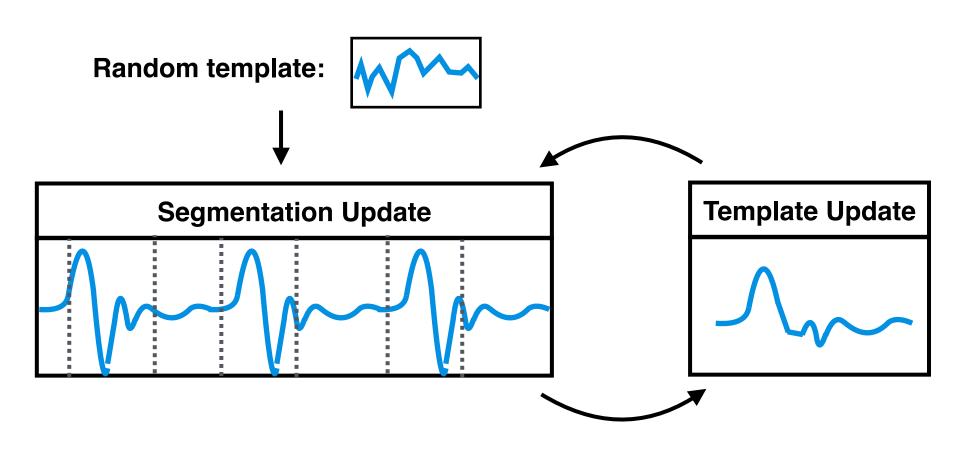
• Intuition: heartbeat repeats with certain shape (template)



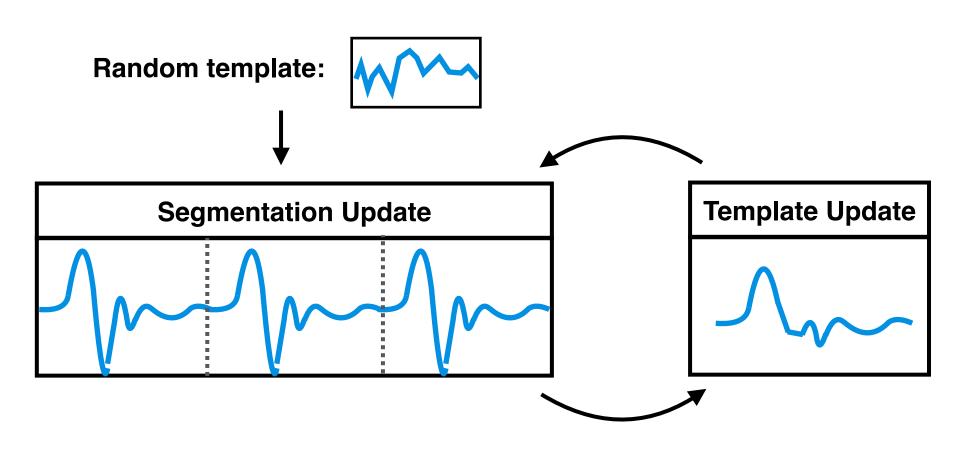
Intuition: heartbeat repeats with certain shape (template)



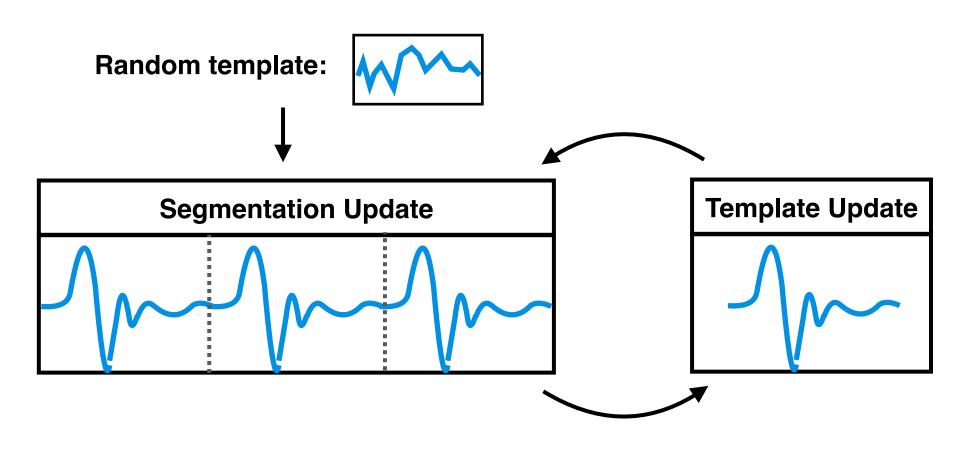
Intuition: heartbeat repeats with certain shape (template)



• Intuition: heartbeat repeats with certain shape (template)

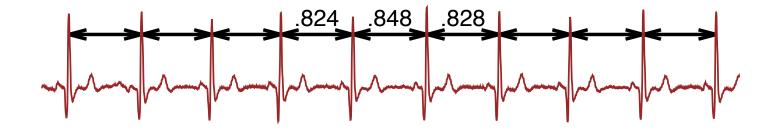


• Intuition: heartbeat repeats with certain shape (template)



Caveat: Shrinking & Expanding

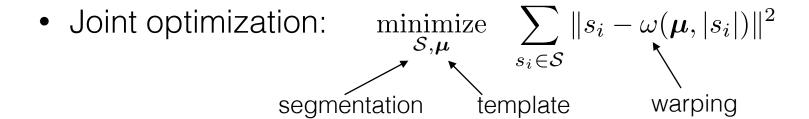
IBI are not always the same



- Template subject to shrink and expanding
 - Linear warping

Algorithm

Need to recover both segmentation and template



Segmentation Update

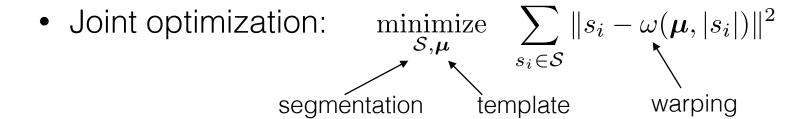
$$\mathcal{S}^{l+1} = \arg\min_{\mathcal{S}} \sum_{s_i \in \mathcal{S}} \|s_i - \omega(\boldsymbol{\mu}^l, |s_i|)\|^2$$
 (dynamic programming)

Template Update

$$m{\mu}^{l+1} = rg \min_{m{\mu}} \sum_{s_i \in \mathcal{S}^{l+1}} \|s_i - \omega(m{\mu}, |s_i|)\|^2$$
 (weighted least squares)

Algorithm

Need to recover both segmentation and template



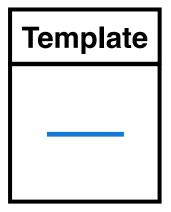
Segmentation Update

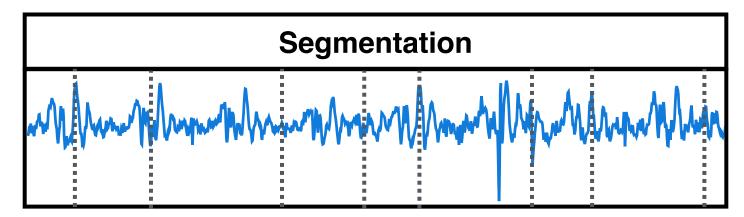
$$\mathcal{S}^{l+1} = \arg\min_{\mathcal{S}} \sum_{s_i \in \mathcal{S}} \|s_i - \omega(\boldsymbol{\mu}^l, |s_i|)\|^2$$
 (dynamic programming)

Template Update

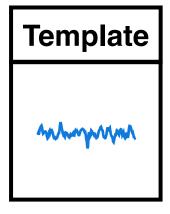
$$m{\mu}^{l+1} = rg \min_{m{\mu}} \sum_{s_i \in \mathcal{S}^{l+1}} \|s_i - \omega(m{\mu}, |s_i|)\|^2$$
 (weighted least squares)

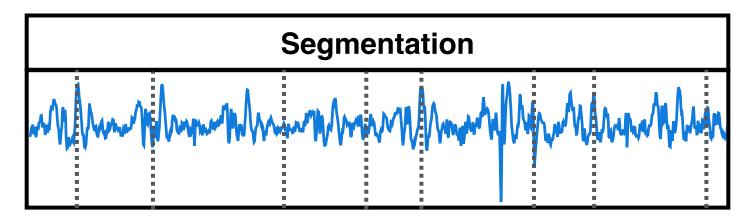
Iteration 1:



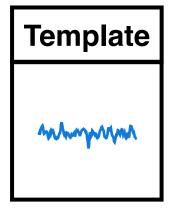


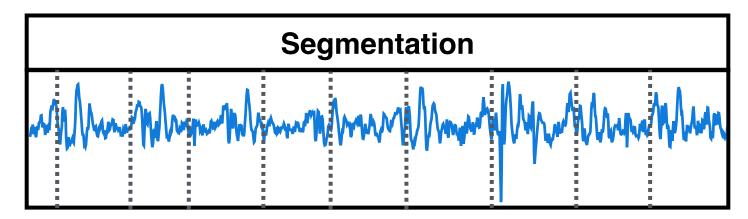
Iteration 2:



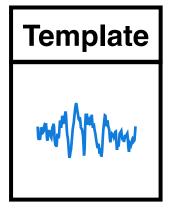


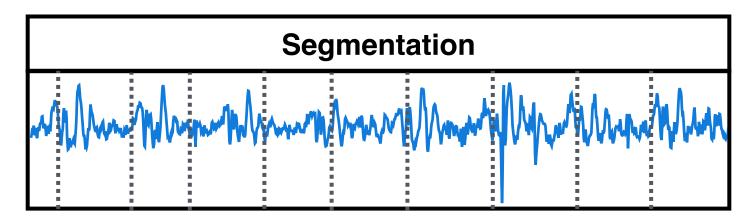
Iteration 2:



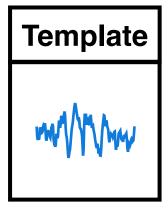


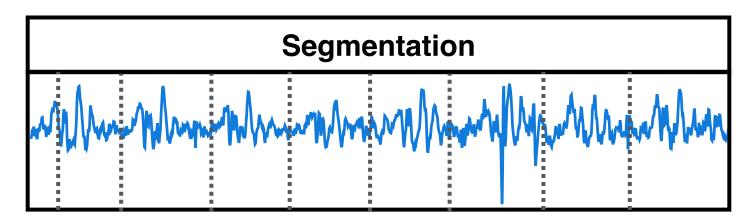
Iteration 3:



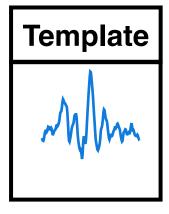


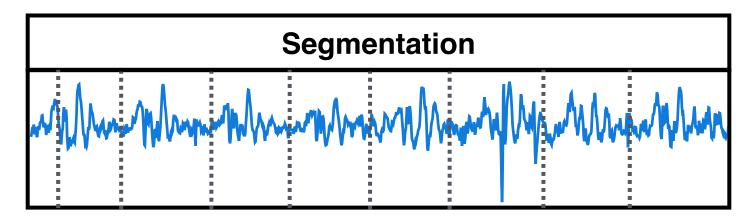
Iteration 3:



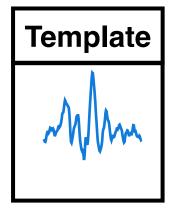


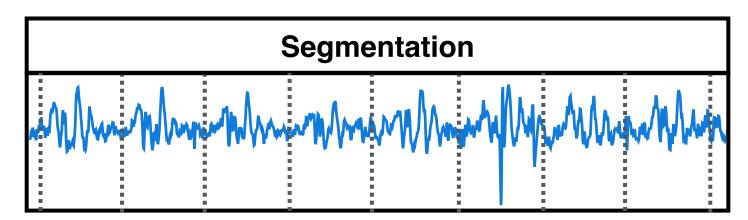
Iteration 7:





Iteration 7:





From vital signs to emotions

Physiological Features for Emotion Recognition

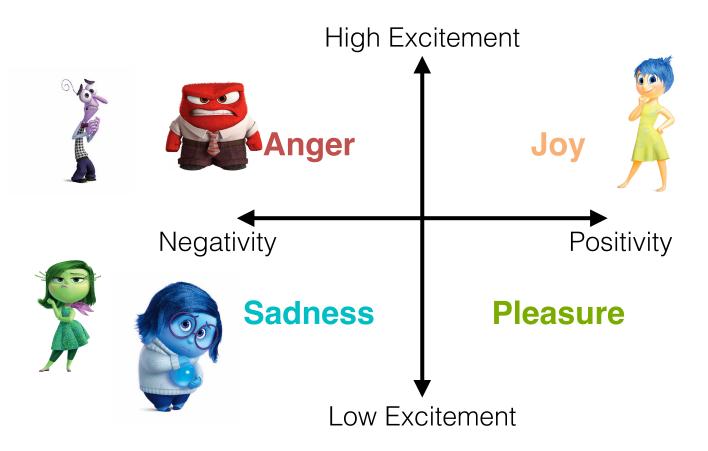
- 37 Features similar to ECG-based methods
 - Variability of IBI
 - Irregularity of breathing

Emotion Classification

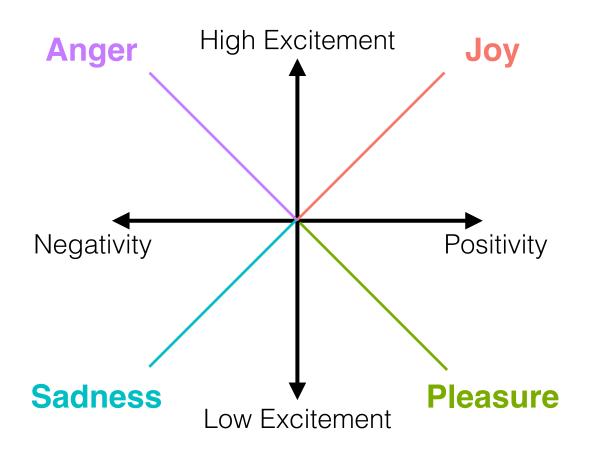
- Recognize emotion using physiological features
- Used L1-SVM classifier
 - select features and train classifier at the same time

Emotion Model

- Standard 2D emotion model
- Classify into anger, sadness, pleasure and joy

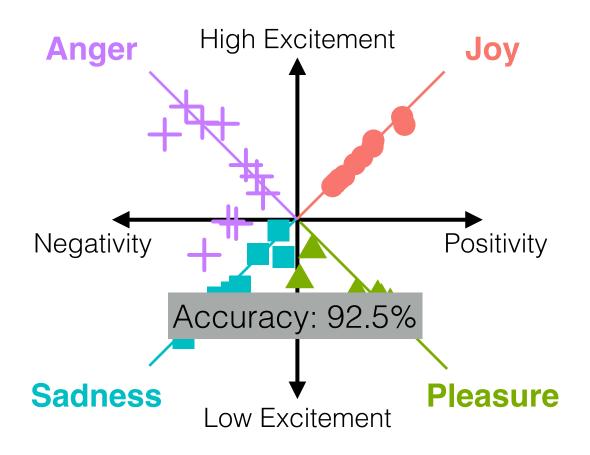


Does it detect emotion accurately?



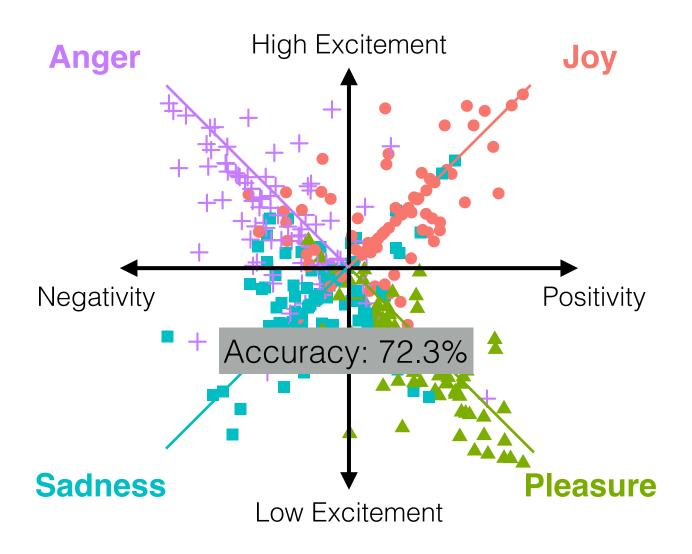
Person-dependent Classification

Train and test on the same person

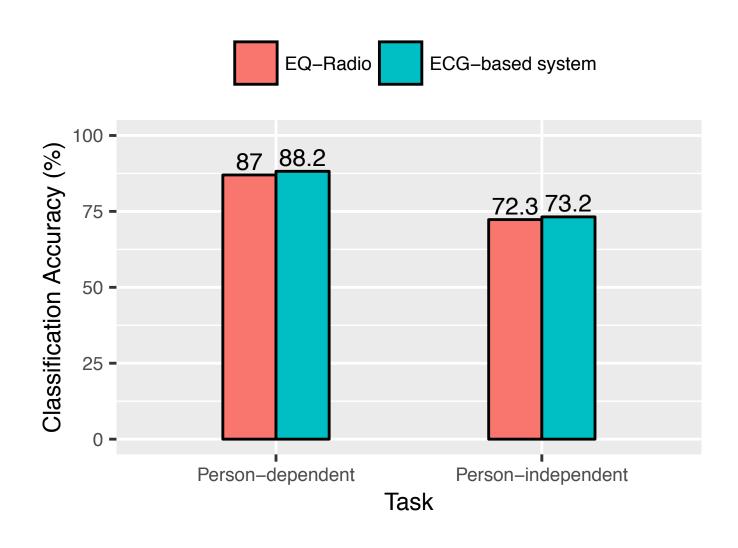


Person-independent Classification

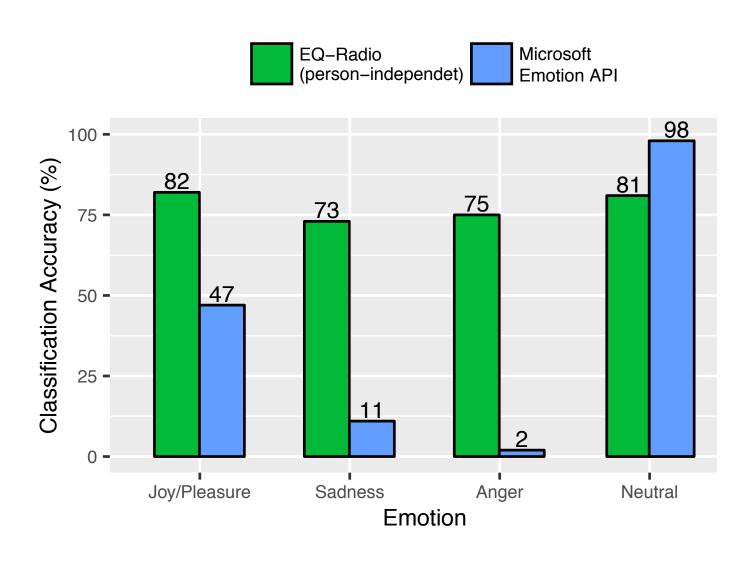
Train and test on the different person



Comparison with ECG-based system

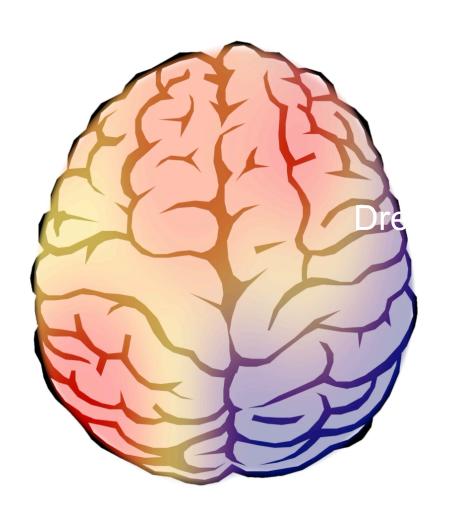


Comparison with Image-based system



Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture

Background

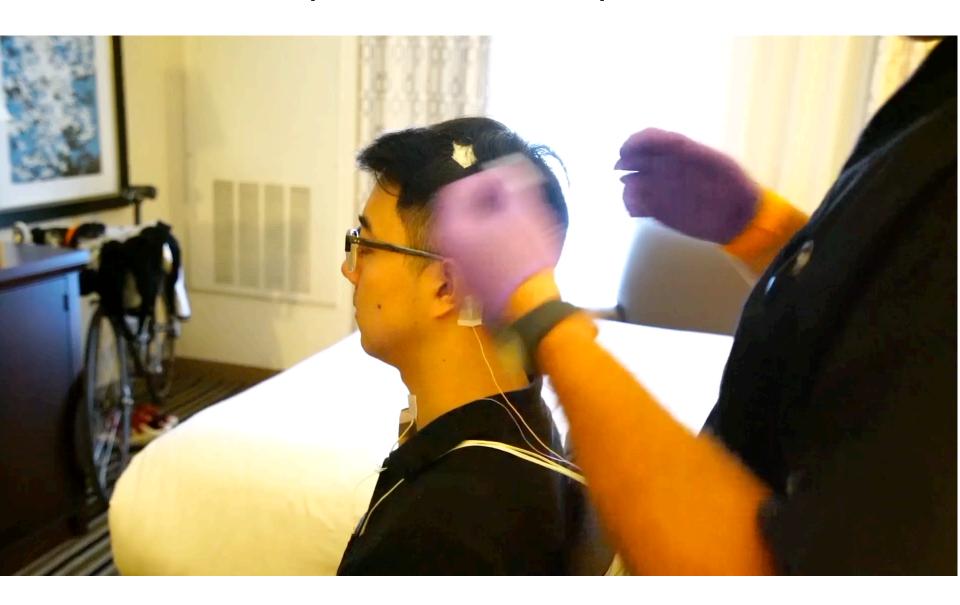


Awake REM Light Deep

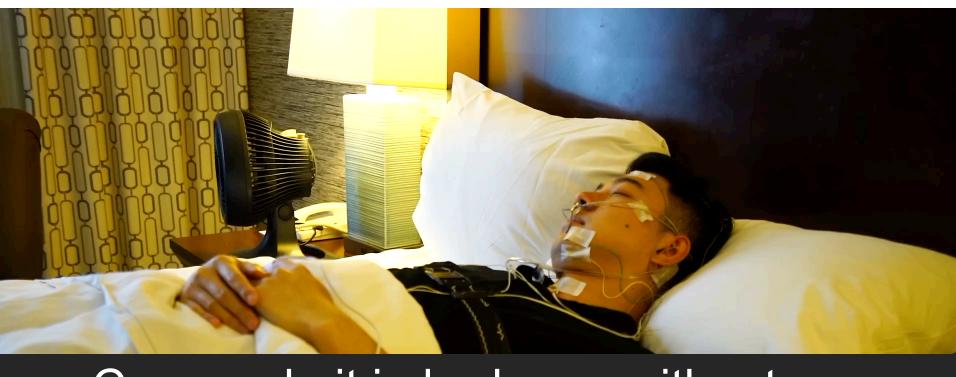
Understanding Diseases with Sleep Stages

But, monitoring sleep stages is difficult ... done in hospital with many electrodes on the body

Experience in Sleep Lab

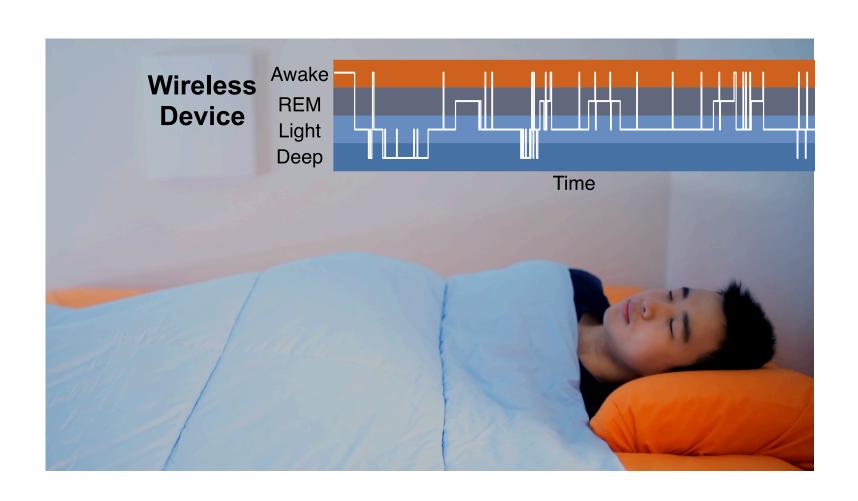


Experience in Sleep Lab



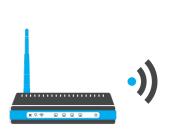
Can we do it in bedroom without any electrodes?

Wireless Sensing Sleep Stages



RF signals reflect off the body and change with physiological signals

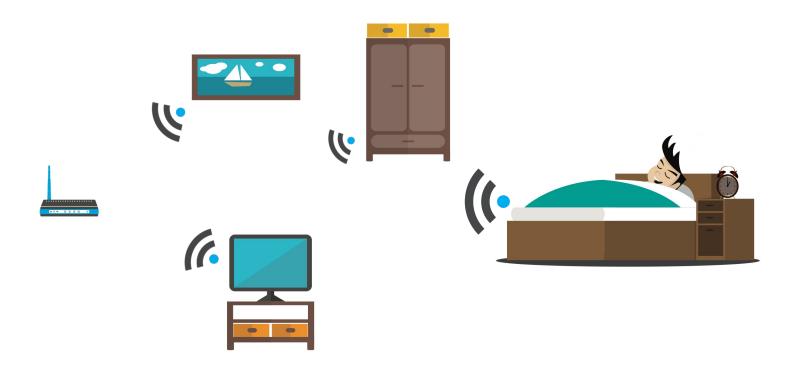
Breathing Rate, Heart Rate, Inter Beat Interval



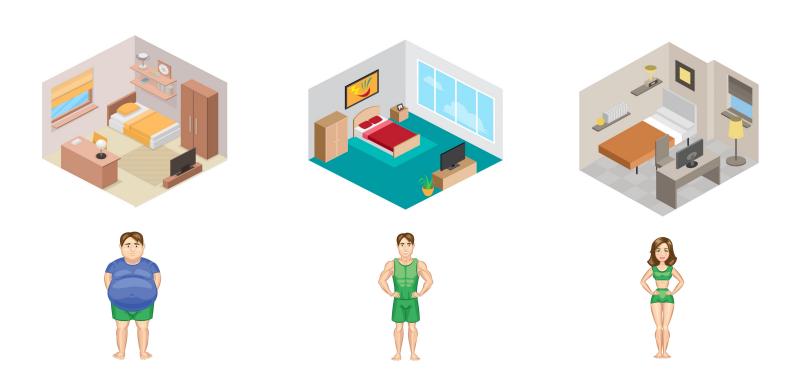
Objective: High accuracy on par with sleep lab, but in one's bedroom and without electrodes on the body

Key Challenge

RF reflections are highly dependent on the measurement conditions and the individuals.



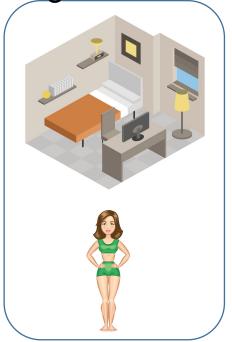
Need to remove such extraneous information!



Multi-Source Domain Adaptation

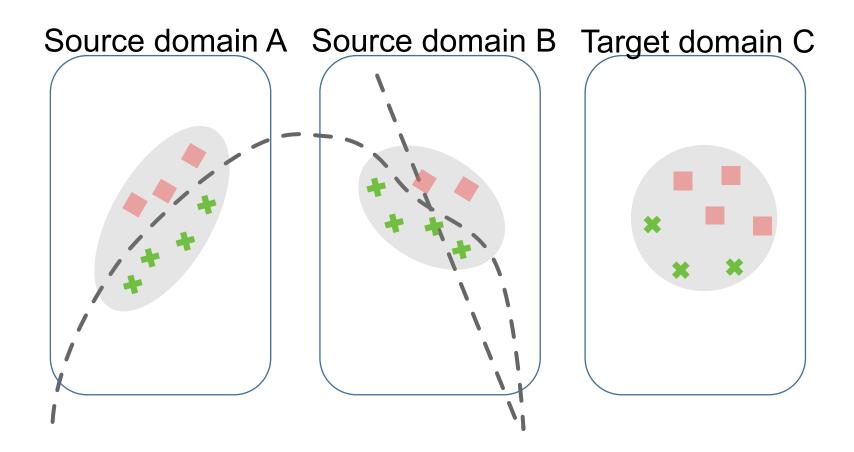
domain = measurement condition + individual

Source domain A Source domain B Target domain C

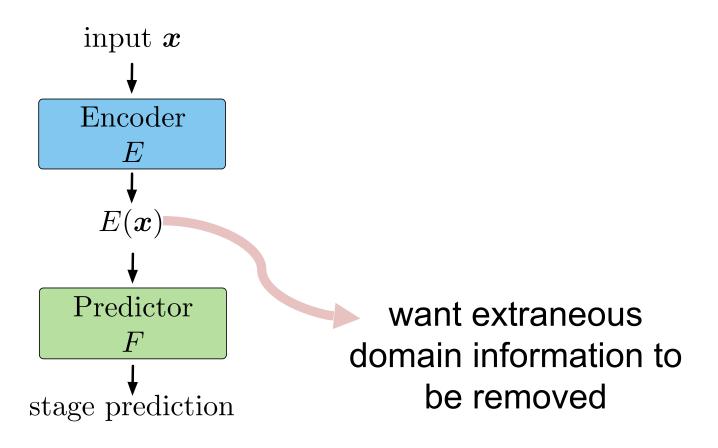


Multi-Source Domain Adaptation

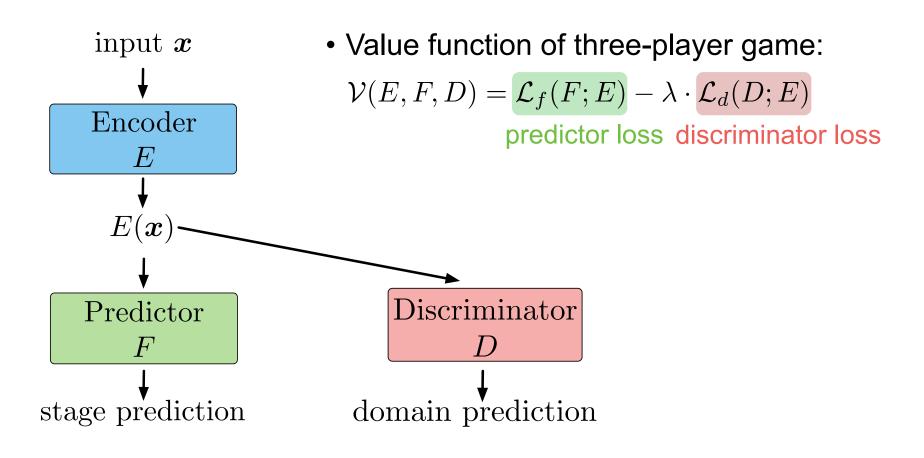
domain = measurement condition + individual



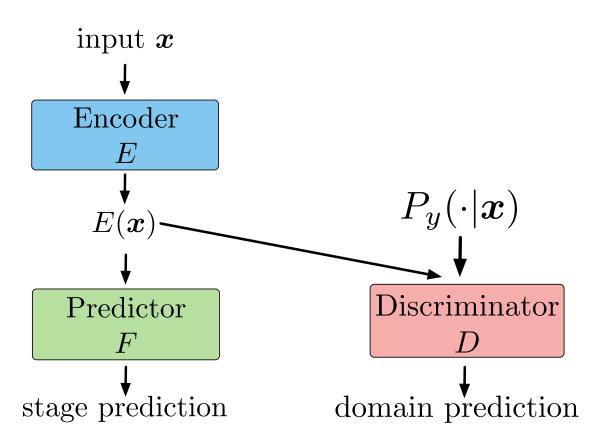
Initial Solution: Adversarial Domain Adaptation



Problem: Discriminator removes both extraneous and useful information

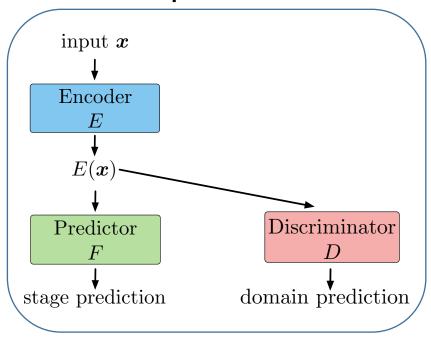


Conditional Adversary

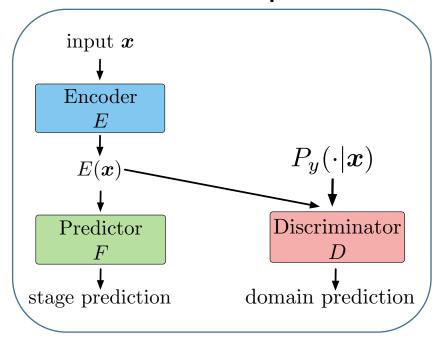


Role of Adversary

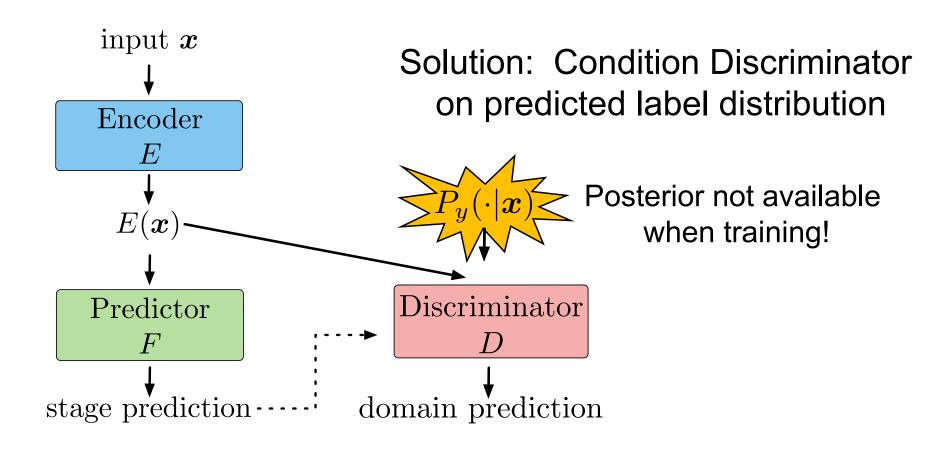
Independence



Conditional-Independence



Does it work?



Theorem (informal): Given enough capacity, the encoder at equilibrium discards all extraneous information specific to domains, while retaining the relevant information for the predictive task.

Evaluation

- 25 different bedrooms and 100 nights
- Ground-truth: FDA-approved EEG-based sleep profiler provides sleep stage labels
- ~90k 30-second pairs of RF measurements and corresponding sleep stages

Accuracy

Accuracy of sleep lab

Inter-rater agreement: 83%

RFSleep accuracy 79.8%

(Tested on new subjects not in training, i.e., new domains)

Previous solutions: 64%

Labelling sleep stages is subjective

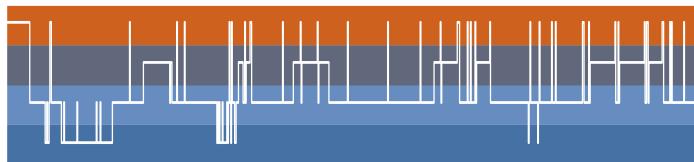
~83%

Representative Example

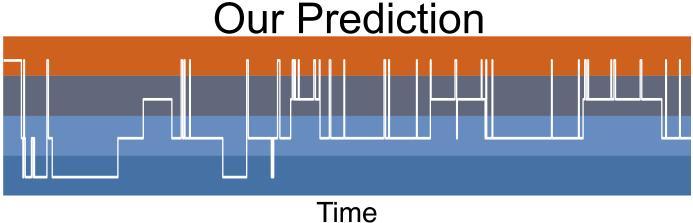
Accuracy = 80%

Ground-truth using EEG

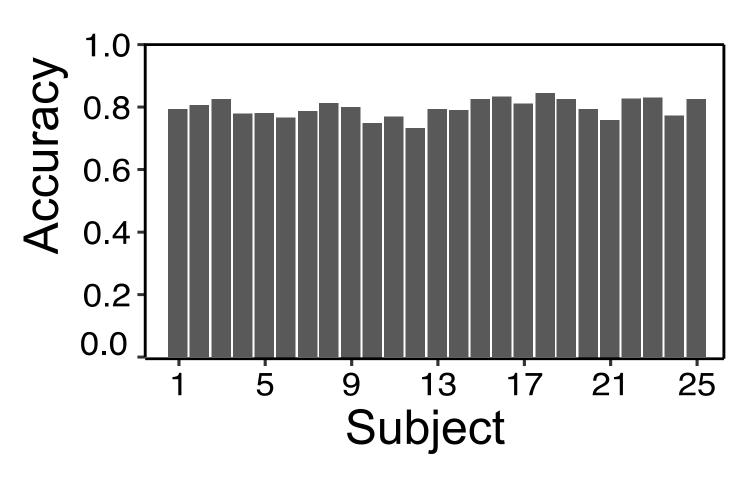
Awake REM Light Deep



Awake REM Light Deep



Accuracy for Different Subjects (Domains)



Previous Lectures

WiVi: Sensing humans through walls with WiFi

WiTrack: Accurately Localizing humans through walls

Vital Ratio: Extracting vital signs (Breathing rate and heart rate)

*RF-Capture: Capturing human figure through walls

This Lecture

EQ-Radio: Detecting emotions from wireless signals

RF-Sleep: Detecting sleep stages from wireless signals

Next Lecture

RF-Pose (3D): Reconstructing human pose and skeleton

➤ RF-Action: Action and behavior recognition