Coding Techniques for Emerging DNA-Based Storage Systems

Olgica Milenkovic

A joint work with R. Gabrys, E. Garcia Ruiz, H. M. Kiah, J. Ma, G. J. Puleo, H. Tabatabaei, Y. Yuan, E. Yaakobi and H. Zhao

LIDS Student Conference, MIT

January 2016

イロト 不得 トイヨト イヨト

3

Sac

Motivation

The Future of Storage

▶ Cost of high-performance parallel storage: \$0.3 per GB per month.

Figure: From Church, Harvard U.

(日)、(型)、(E)、(E)、(E)、(O)(()

The Future of Storage

- ▶ Cost of high-performance parallel storage: \$0.3 per GB per month.
- ▶ Cost of cloud storage: Google Cloud \$5.47 per 50 GB per month.

Figure: From Church, Harvard U.

(日)、(型)、(E)、(E)、(E)、(O)(()

The Future of Storage

- ▶ Cost of high-performance parallel storage: \$0.3 per GB per month.
- ▶ Cost of cloud storage: Google Cloud \$5.47 per 50 GB per month.
- Cost of storage often minor compared to cost of access, processing, and data movement.

Figure: From Church, Harvard U.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

▶ Large Hadron Collider: 600 million collisions/s, 0.5 PB per week.

Figure: In search of the God particle, Wikipedia.

- ▶ Large Hadron Collider: 600 million collisions/s, 0.5 PB per week.
- ▶ DNA sequencing data: 30 50 TB per week.

Figure: In search of the God particle, Wikipedia.

- ▶ Large Hadron Collider: 600 million collisions/s, 0.5 PB per week.
- ▶ DNA sequencing data: 30 50 TB per week.
- ▶ Sloan Digital Sky Survey: 1 2 TB per week.

Figure: In search of the God particle, Wikipedia.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

- ▶ Large Hadron Collider: 600 million collisions/s, 0.5 PB per week.
- ▶ DNA sequencing data: 30 50 TB per week.
- ▶ Sloan Digital Sky Survey: 1 2 TB per week.
- Social science (Twitter, Facebook, LinkedIn), NASA weather surveys, consumer and stock market data, Internet sources...

Figure: In search of the God particle, Wikipedia.

DNA is extremely durable: Can still "read" mammoth, Neanderthal, 700,000 old horse DNA!

- DNA is extremely durable: Can still "read" mammoth, Neanderthal, 700,000 old horse DNA!
- DNA write (synthesis) and read (sequencing) costs decrease daily.

- DNA is extremely durable: Can still "read" mammoth, Neanderthal, 700,000 old horse DNA!
- DNA write (synthesis) and read (sequencing) costs decrease daily.
- DNA information content of Human cell: 6.4 GB. Mass of a cell: ~ 3 picograms. No. of cells: 15 – 40 × 10¹².

- DNA is extremely durable: Can still "read" mammoth, Neanderthal, 700,000 old horse DNA!
- DNA write (synthesis) and read (sequencing) costs decrease daily.
- DNA information content of Human cell: 6.4 GB. Mass of a cell: ~ 3 picograms. No. of cells: $15 40 \times 10^{12}$.
- How much information can one store in a gram of DNA?

Implementations

Sac

"Double Helix Serves Double Duty", NY Times, Jan 2013

 Richard Feynman first to propose the use of macromolecules for storage ("There is plenty of room at the bottom").

Implementations

"Double Helix Serves Double Duty", NY Times, Jan 2013

- Richard Feynman first to propose the use of macromolecules for storage ("There is plenty of room at the bottom").
- · Church et al. (Science, 2012) and Goldman et al. (Nature, 2013) stored 739 KB of data in synthetic DNA, mailed it and recreated the original digital files.

"Double Helix Serves Double Duty", NY Times, Jan 2013

- Richard Feynman first to propose the use of macromolecules for storage ("There is plenty of room at the bottom").
- Church et al. (Science, 2012) and Goldman et al. (Nature, 2013) stored 739 KB of data in synthetic DNA, mailed it and recreated the original digital files.
- Goal: a digital archival storage system that will safely store the equivalent of one million CDs in a gram of DNA for 10,000 years.

nac

"Data Storage on DNA Can Keep it Safe for Centuries," NY Times, Dec 2015

Renewed interest in DNA storage (UIUC, MS Research, IARPA Special Program on DNA-Based Storage). Goal: Build a fully operational, cost-efficient, real-time, random access DNA-based memory.

"Data Storage on DNA Can Keep it Safe for Centuries," NY Times, Dec 2015

- Renewed interest in DNA storage (UIUC, MS Research, IARPA Special Program on DNA-Based Storage). Goal: Build a fully operational, cost-efficient, real-time, random access DNA-based memory.
- Yazdi et.al., 2015 First random access, rewritable DNA-based storage system. Encoded Wikipedia entries for six US universities (including MIT).

Our Experiments

Random access achieved via specialized address design.

OE-PCR based method

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 … のへで

Our Experiments

- Random access achieved via specialized address design.
- Context identification and rewriting performed via gBlock or OE-PCR methods.

gBlock based method

OE-PCR based method

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The Write and Read Channels

Biochemistry of synthesis: Adding bases through deprotection & coupling cycles.

 DNA microarray based synthesis (left): Cost effective, large scale. Short strands, higher error rates.

- DNA microarray based synthesis (left): Cost effective, large scale. Short strands, higher error rates.
- Long strand synthesis (right): Synthesize via shorter blocks, assembled. Chemical error-correction.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - のへで

- DNA microarray based synthesis (left): Cost effective, large scale. Short strands, higher error rates.
- Long strand synthesis (right): Synthesize via shorter blocks, assembled. Chemical error-correction.
- Types of synthesis errors: predominantly substitutions, much less frequent deletions/insertions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ つへで

The Write and Read Channels

The Read Channel: Illumina and MinIon

 Illumina (MiSeq, left): Best overall performance of modern sequencing technologies in terms of yield and accuracy; large volumes of DNA reads, relatively small error rates (substitutions and context dependent deletions). Drawback short read length.

イロト 不得 トイヨト イヨト

nac

The Read Channel: Illumina and MinIon

- Illumina (MiSeq, left): Best overall performance of modern sequencing technologies in terms of yield and accuracy; large volumes of DNA reads, relatively small error rates (substitutions and context dependent deletions). Drawback short read length.
- Oxford Nanopore Minlon (Right): Longer read length, miniaturized architecture. Large coverage errors, excessive number of block deletions.

- 日本 - 1 日本 - 日本 - 日本 - 日本

・ロト ・四ト ・ヨト ・ヨト ・ヨ

500

The Read Channel: Shotgun Sequencing

Cloning /// Shearing /// Reading of unordered pool /// Computer aided alignment of overlapping fragments /// Consensus

Media Aging

 Breakage - Bursty Deletions - Transpositions/Reversals: No built-in mechanism for correcting damages.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Media Aging

- Breakage Bursty Deletions Transpositions/Reversals: No built-in mechanism for correcting damages.
- Coupled with synthesis and sequencing errors...

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

• A formal mathematical theory of error-correction for DNA storage?

- A formal mathematical theory of error-correction for DNA storage?
 - Microarray Synthesis and Shotgun Sequencing: DNA Profile Codes.

- A formal mathematical theory of error-correction for DNA storage?
 - Microarray Synthesis and Shotgun Sequencing: DNA Profile Codes.
 - Microarray Synthesis and Nanopore Sequencing: Asymmetric Lee Distance Codes.

- A formal mathematical theory of error-correction for DNA storage?
 - Microarray Synthesis and Shotgun Sequencing: DNA Profile Codes.
 - Microarray Synthesis and Nanopore Sequencing: Asymmetric Lee Distance Codes.

• DNA Media Aging: Codes in the Damerau Distance.

- A formal mathematical theory of error-correction for DNA storage?
 - Microarray Synthesis and Shotgun Sequencing: DNA Profile Codes.
 - Microarray Synthesis and Nanopore Sequencing: Asymmetric Lee Distance Codes.
 - DNA Media Aging: Codes in the Damerau Distance.
- Mathematical approaches for enabling random access and rewriting?
- A formal mathematical theory of error-correction for DNA storage?
 - Microarray Synthesis and Shotgun Sequencing: DNA Profile Codes.
 - Microarray Synthesis and Nanopore Sequencing: Asymmetric Lee Distance Codes.
 - DNA Media Aging: Codes in the Damerau Distance.
- Mathematical approaches for enabling random access and rewriting?

Address Design: (Weakly) Mutually Uncorrelated Codes.

- A formal mathematical theory of error-correction for DNA storage?
 - Microarray Synthesis and Shotgun Sequencing: DNA Profile Codes.
 - Microarray Synthesis and Nanopore Sequencing: Asymmetric Lee Distance Codes.
 - DNA Media Aging: Codes in the Damerau Distance.
- Mathematical approaches for enabling random access and rewriting?

- Address Design: (Weakly) Mutually Uncorrelated Codes.
- Controlled Assembly: Uncorrelated Array Codes.

A formal mathematical theory of error-correction for DNA storage?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

- A formal mathematical theory of error-correction for DNA storage?
 - Microarray Synthesis and Nanopore Sequencing: Asymmetric Lee Distance (ALD) Codes.

・ロト ・ 四ト ・ ヨト ・ ヨト

э

nac

Wednesday, November 26, 2014

- A formal mathematical theory of error-correction for DNA storage?
 - Microarray Synthesis and Nanopore Sequencing: Asymmetric Lee Distance (ALD) Codes.

 For a positive integer λ, the ALD d_λ((a; b), (c; d)) between pairs of binary sequences (a; b), (c; d) is defined as:

$$d_{\lambda}((\boldsymbol{a};\boldsymbol{b}),(\boldsymbol{c};\boldsymbol{d})) = \sum_{i=1}^{n} (1+\lambda) \left(\mathbb{1}(a_{i},b_{i}) + \mathbb{1}(c_{i},d_{i}) \right) +$$
$$\overset{\text{Wedrystar}}{\mathbb{I}} \left(\overset{\text{Nove}}{d_{i}}, \overset{\text{B}_{i} \in \mathcal{Z}_{i}^{20}}{B_{i}}, \overset{\text{O}_{i}}{d_{i}} \right) - 2(1+\lambda) \mathbb{1}(a_{i},b_{i},c_{i},d_{i}).$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

A formal mathematical theory of error-correction for DNA storage?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

• DNA Media Aging: Codes in the Damerau Distance.

- A formal mathematical theory of error-correction for DNA storage?
 - DNA Media Aging: Codes in the Damerau Distance.
 - The Damerau-Levenshtein (DL) distance is a string metric, which for two strings over a finite alphabet equals the minimum number of insertions, deletions, substitutions and adjacent transpositions needed to transform one string into the other.

- A formal mathematical theory of error-correction for DNA storage?
 - DNA Media Aging: Codes in the Damerau Distance.
 - The Damerau-Levenshtein (DL) distance is a string metric, which for two strings over a finite alphabet equals the minimum number of insertions, deletions, substitutions and adjacent transpositions needed to transform one string into the other.
 - The block DL distance: Extension in which edit units are blocks of limited length.

- A formal mathematical theory of error-correction for DNA storage?
 - DNA Media Aging: Codes in the Damerau Distance.
 - The Damerau-Levenshtein (DL) distance is a string metric, which for two strings over a finite alphabet equals the minimum number of insertions, deletions, substitutions and adjacent transpositions needed to transform one string into the other.
 - The block DL distance: Extension in which edit units are blocks of limited length.
 - ► Varshamov-Tenengolt's extensions for the DL distance: Uses the derivative of *a*, *a*' = (a₁, a₂ + a₁, a₃ + a₂, ..., a_n + a_{n-1}).

- A formal mathematical theory of error-correction for DNA storage?
 - DNA Media Aging: Codes in the Damerau Distance.
 - The Damerau-Levenshtein (DL) distance is a string metric, which for two strings over a finite alphabet equals the minimum number of insertions, deletions, substitutions and adjacent transpositions needed to transform one string into the other.
 - The block DL distance: Extension in which edit units are blocks of limited length.
 - ► Varshamov-Tenengolt's extensions for the DL distance: Uses the derivative of *a*, *a*' = (a₁, a₂ + a₁, a₃ + a₂, ..., a_n + a_{n-1}).
 - Component codes: $C_H(n,3)$ a single error-correcting code; $C_D(n)$ a single deletion-correcting code.

$$\mathcal{C}_{T \vee D}(n) = \{ \boldsymbol{a} \in \mathbb{F}_2^n : \boldsymbol{a} \in \mathcal{C}_D(n), \boldsymbol{a}' \in \mathcal{C}_H(n,3) \}.$$

The code $C_{T \vee D}(n)$ can correct one single deletion or adjacent transposition.

- Mathematical approaches for enabling random access and rewriting?
 - Address Design: (Weakly) Mutually Uncorrelated Codes.

- A formal mathematical theory of error-correction for DNA storage?
 - Microarray Synthesis and Shotgun Sequencing: DNA Profile Codes.
 - Microarray Synthesis and Nanopore Sequencing: Asymmetric Lee Distance Codes.
 - DNA Media Aging: Codes in the Damerau Distance.
- Mathematical approaches for enabling random access and rewriting?

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

- Address Design: (Weakly) Mutually Uncorrelated Codes.
- Controlled Assembly: Uncorrelated Array Codes.

The DNA Storage Channel

Synthesis channel captures the "write" process.

The sequence synthesis process introduces errors (current technologies $\leq 0.1\%$).

・ロ・・中・・山・・日・・日・

DNA sequencing represents the "read" process. Consists of fragmenting sequence to be read, and "reconstructing" fragments (ℓ -grams).

 $\hat{\mathbf{x}}$

nac

Note that strings at the output of the fragmentation block are *not* ordered.

A 日 > A 同 > A 国 > A 国 >

nac

 Sequencing introduces errors in some l-grams and some l-grams may not be covered.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

- Sequencing introduces errors in some l-grams and some l-grams may not be covered.
- \blacktriangleright Modern Illumina platforms have substitution error rates $\leq 0.5\%.$ Coverage errors context-dependent.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

DNA Storage Channel: Profile Vectors

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めへぐ

DNA Storage Channel: Profile Vectors

The profile vector of a sequence reflects the count of its ℓ -grams;

Example										
Profile of vecto	or x =	10011	001 eq	uals						
	000	001	010	011	100	101	110	111		
	(0,	2,	0,	1,	2,	0,	1,	0).		

Input and Output Profile Vectors

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Profile Vectors: Formal Definition

Fix alphabet size q and fragment (read) length $\ell < n$. The profile vector of some sequence \mathbf{x} , denoted by $\mathbf{p}(\mathbf{x}; q, \ell)$, has length q^{ℓ} and its entry indexed by \mathbf{z} equals the number of occurrences of \mathbf{z} in \mathbf{x} as an ℓ -gram.

Input and Output Profile Vectors

Profile Vectors: Formal Definition

Fix alphabet size q and fragment (read) length $\ell < n$. The profile vector of some sequence \mathbf{x} , denoted by $\mathbf{p}(\mathbf{x}; q, \ell)$, has length q^{ℓ} and its entry indexed by \mathbf{z} equals the number of occurrences of \mathbf{z} in \mathbf{x} as an ℓ -gram.

Example									
Profile of \mathbf{x} =	100110	<mark>01</mark> and	d sequ	encing	chanr	nel out	put:		
	000	001	010	011	100	101	110	111	
	(0,	2,	0,	1,	2,	0,	1,	0),	
	(0,	1,	0,	2,	0,	1,	1,	0).	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Code Design Criteria

Code Design Criteria

Condition 1

Codewords should have profile vectors that are sufficiently "distinct," i.e., one should be able to correct combination of synthesis substitution (burst), coverage, and ℓ -gram errors.

Condition 1

Codewords should have profile vectors that are sufficiently "distinct," i.e., one should be able to correct combination of synthesis substitution (burst), coverage, and ℓ -gram errors.

Definition 1

The ℓ -gram distance between x and y equals the asymmetric distance (ℓ_1 distance) between $\mathbf{p}(\mathbf{x}; q, \ell)$ and $\mathbf{p}(\mathbf{y}; q, \ell)$.

Code Design Criteria

Definition 1

The ℓ -gram distance between x and y equals the asymmetric distance (ℓ_1 distance) between $\mathbf{p}(\mathbf{x}; q, \ell)$ and $\mathbf{p}(\mathbf{y}; q, \ell)$.

Definition 1

The ℓ -gram distance between x and y equals the asymmetric distance (ℓ_1 distance) between $\mathbf{p}(\mathbf{x}; q, \ell)$ and $\mathbf{p}(\mathbf{y}; q, \ell)$.

Asymmetric Distance

Let $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_{\geq 0}^N$. Define $\Delta(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^N \max(u_i - v_i, 0)$. Asymmetric distance: $d_{asym}(\mathbf{u}, \mathbf{v}) = \max(\Delta(\mathbf{u}, \mathbf{v}), \Delta(\mathbf{v}, \mathbf{u}))$.

		000	001	010	011	100	101	110	111
p(x; 2, 3)	=	(0,	2,	0,	1,	2,	0,	1,	0)
p(y; 2, 3)	=	(0,	0,	3,	0,	0,	3,	0,	0)
$\mathbf{p}(\hat{\mathbf{x}}; 2, 3)$	=	(0,	1,	0,	2,	0,	1,	1,	0).

Asymmetric Distance

Let $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_{\geq 0}^N$. Define $\Delta(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^N \max(u_i - v_i, 0)$. Asymmetric distance: $d_{asym}(\mathbf{u}, \mathbf{v}) = \max(\Delta(\mathbf{u}, \mathbf{v}), \Delta(\mathbf{v}, \mathbf{u}))$.

		000	001	010	011	100	101	110	111
p(x; 2, 3)	=	(0,	2,	0,	1,	2,	0,	1,	0)
p(y; 2, 3)	=	(0,	0,	3,	0,	0,	3,	0,	0)
$\mathbf{p}(\hat{\mathbf{x}}; 2, 3)$	=	(0,	1,	0,	2,	0,	1,	1,	0).

Asymmetric Distance

Let $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_{\geq 0}^N$. Define $\Delta(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^N \max(u_i - v_i, 0)$. Asymmetric distance: $d_{asym}(\mathbf{u}, \mathbf{v}) = \max(\Delta(\mathbf{u}, \mathbf{v}), \Delta(\mathbf{v}, \mathbf{u}))$.

Minimum Asymmetric Distance

A DNA storage code with minimum asymmetric distance d can correct s_1 substitution errors due to synthesis, s_2 substitution errors due to sequencing and t coverage errors provided that $d > 2s_1 + 2s_2 + t$.

(日)、(型)、(E)、(E)、(E)、(O)(()

Code Design Criteria

Code Design Criteria

Code Design Criteria

Avoid "bad" grams that cause sequencing errors and media instability:

- Weight profiles of ℓ -grams. GC content roughly 50%.
- ▶ Forbidden ℓ-grams. Certain substrings, such as GCG and CGC, are likely to cause coverage errors.

Codewords whose ℓ -grams avoid error-causing substrings.

Avoid "bad" grams that cause sequencing errors and media instability:

- Weight profiles of ℓ -grams. GC content roughly 50%.
- ▶ Forbidden ℓ-grams. Certain substrings, such as GCG and CGC, are likely to cause coverage errors.

For example, may require that $\ell\text{-}\mathsf{grams}$ lie in

 $S = \{001, 010, 011, 100, 101, 110\}.$

Fundamental Questions

Distinct *l*-gram Profile Vectors

Let Q(n; S) be the largest set of q-ary words of length n whose ℓ -grams belong to S, and which have distinct ℓ -gram profile vectors. Determine the size of Q(n; S).

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Fundamental Questions

ℓ-gram Reconstruction Code (GRC)

 $C \subseteq Q(n; S)$ is an (n, d; S)- ℓ -GRC if the ℓ -gram distance between any pair of distinct words is at least d. Construct good (n, d; S)- ℓ -GRC. "Good" means large codebook size, avoidance of bad ℓ -grams.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ
Profile Vectors and $\ell\text{-}\mathsf{Gram}$ Codes

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

De Bruijn Graphs

Example for q = 2, $\ell = 3$.

De Bruijn Graphs

Nodes are q-ary strings of length $\ell - 1$. $(\mathbf{v}, \mathbf{v}')$ is an arc if $v_2 \quad v_3$

 $v_{\ell-1}$

э

9ac

Restricted De Bruijn Graphs (Ruskey et al., 2012)

Let $S(\ell; w_1, w_2)$ denote the binary strings of length ℓ with weight between w_1 and w_2 .

Restricted De Bruijn Graphs D(S)

Nodes V are ℓ – 1-prefixes and -suffixes of strings in S. $(\mathbf{v}, \mathbf{v}')$ is an arc if

Profile Vectors and Flows

Representation of profile vectors of words in $\mathcal{Q}(n; S)$ using the digraph D(S).

(日) (四) (王) (王) (王)

nac

Profile Vectors and Flows

Representation of profile vectors of words in $\mathcal{Q}(n;S)$ using the digraph D(S).

Closed Words

Closed words are words that start and end with the same $(\ell - 1)$ -gram. $\overline{\mathcal{Q}}(n; S)$: largest set of q-ary closed words of length n whose ℓ -grams belong to S and which have distinct ℓ -gram profiles.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めへぐ

Profile Vectors and Flows

Representation of profile vectors of words in Q(n;S) using the digraph D(S).

Closed Words

Closed words are words that start and end with the same $(\ell - 1)$ -gram. $\overline{\mathcal{Q}}(n; S)$: largest set of q-ary closed words of length n whose ℓ -grams belong to S and which have distinct ℓ -gram profiles.

Flows

Paths in D(S) such that sum of incoming arc weights is equal to sum of outgoing arc weights at each vertex. Profile vectors of words in $\overline{Q}(n;S)$ are flow vectors in D(S).

Necessary Conditions

Let ${\bf u}$ be a profile vector (of a closed word). Then ${\bf u}$ satisfies the following conditions.

Let
$$\mathbf{A} = \begin{pmatrix} \mathbf{1} \\ \mathbf{B} \end{pmatrix}$$
 and $\mathbf{b} = (1, 0, \dots, 0)^T$. Rewrite equations as

 $Au = (n - \ell + 1)b$ and $u \ge 0$.

nac

Sufficient Conditions

Flows are not always profile vectors

Let $\mathbf{u} \geq \mathbf{0}$ be such that

$$\mathbf{A}\mathbf{u} = (n - \ell + 1)\mathbf{b}.$$

This does not imply that \mathbf{u} is a profile vector!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sufficient Conditions

If all flows are positive, then the flow vector is indeed a profile vector.

 $Au = (n - \ell + 1)b$ and u > 0.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Consider the following two sets of lattice points:

$$\mathcal{F}(n;S) = \{ \mathbf{u} \in \mathbb{Z}^{|S|} : \mathbf{A}\mathbf{u} = (n-\ell+1)\mathbf{b}, \ \mathbf{u} \ge \mathbf{0} \},$$
$$\mathcal{E}(n;S) = \{ \mathbf{u} \in \mathbb{Z}^{|S|} : \mathbf{A}\mathbf{u} = (n-\ell+1)\mathbf{b}, \ \mathbf{u} > \mathbf{0} \}.$$

Clearly, one has

 $|\mathcal{E}(n;S)| \le |\overline{\mathcal{Q}}(n;S)| \le |\mathcal{F}(n;S)|.$

Consider the following two sets of lattice points:

$$\mathcal{F}(n;S) = \{ \mathbf{u} \in \mathbb{Z}^{|S|} : \mathbf{A}\mathbf{u} = (n-\ell+1)\mathbf{b}, \ \mathbf{u} \ge \mathbf{0} \},$$
$$\mathcal{E}(n;S) = \{ \mathbf{u} \in \mathbb{Z}^{|S|} : \mathbf{A}\mathbf{u} = (n-\ell+1)\mathbf{b}, \ \mathbf{u} > \mathbf{0} \}.$$

Clearly, one has

$$|\mathcal{E}(n;S)| \le |\overline{\mathcal{Q}}(n;S)| \le |\mathcal{F}(n;S)|.$$

Observations

- $\mathcal{F}(n;S)$ is a polytope. It can be shown to be of dimension |S| |V(S)|.
- $\mathcal{E}(n;S)$ is the interior of $\mathcal{F}(n;S)$ if D(S) is strongly connected.
- May use Ehrhart theory for polytopes to determine $|\mathcal{E}(n;S)|, |\mathcal{F}(n;S)|$.

Consider the following two sets of lattice points:

$$\mathcal{F}(n;S) \triangleq \{ \mathbf{u} \in \mathbb{Z}^{|S|} : \mathbf{A}\mathbf{u} = (n-\ell+1)\mathbf{b}, \ \mathbf{u} \ge \mathbf{0} \},$$
$$\mathcal{E}(n;S) \triangleq \{ \mathbf{u} \in \mathbb{Z}^{|S|} : \mathbf{A}\mathbf{u} = (n-\ell+1)\mathbf{b}, \ \mathbf{u} > \mathbf{0} \}.$$

 $|\mathcal{E}(n;S)| \le |\overline{\mathcal{Q}}(n;S)| \le |\mathcal{F}(n;S)|.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consider the following two sets of lattice points:

$$\mathcal{F}(n;S) \triangleq \{ \mathbf{u} \in \mathbb{Z}^{|S|} : \mathbf{A}\mathbf{u} = (n-\ell+1)\mathbf{b}, \ \mathbf{u} \ge \mathbf{0} \},$$
$$\mathcal{E}(n;S) \triangleq \{ \mathbf{u} \in \mathbb{Z}^{|S|} : \mathbf{A}\mathbf{u} = (n-\ell+1)\mathbf{b}, \ \mathbf{u} > \mathbf{0} \}.$$

$$|\mathcal{E}(n;S)| \le |\overline{\mathcal{Q}}(n;S)| \le |\mathcal{F}(n;S)|.$$

Observations

Define the polytope

$$\mathcal{P}_S = \{ \mathbf{u} \in \mathbb{R}^{|S|} : \mathbf{A}\mathbf{u} = \mathbf{b}, \ \mathbf{u} \ge \mathbf{0} \}.$$

- *F*(n; S) is the set of lattice points in (n − ℓ + 1)*P*_S.
- *E*(n; S) is the set of lattice points in the interior of (n − ℓ + 1)*P*_S.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Lattice Point Enumeration in Dilated Polytopes

For a polytope $\mathcal{P} \subset \mathbb{R}^N$ and $t \in \mathbb{R}$, the dilation $t\mathcal{P}$ is given by $t\mathcal{P} = \{tx : x \in \mathcal{P}\}.$ The lattice point enumerator for \mathcal{P} is $\mathcal{L}_{\mathcal{P}} : \mathbb{R} \to \mathbb{Z}$ defined by $\mathcal{L}_{\mathcal{P}}(t) = |t\mathcal{P} \cap \mathbb{Z}^N|.$

Lattice Point Enumeration in Dilated Polytopes

For a polytope $\mathcal{P} \subset \mathbb{R}^N$ and $t \in \mathbb{R}$, the dilation $t\mathcal{P}$ is given by $t\mathcal{P} = \{tx : x \in \mathcal{P}\}.$ The lattice point enumerator for \mathcal{P} is $\mathcal{L}_{\mathcal{P}} : \mathbb{R} \to \mathbb{Z}$ defined by $\mathcal{L}_{\mathcal{P}}(t) = |t\mathcal{P} \cap \mathbb{Z}^N|.$

Theorem (Ehrhart)

If \mathcal{P} is a rational D-dimensional polytope, then $\mathcal{L}_{\mathcal{P}}(t)$ is a "quasipolynomial" (polynomial with periodic functions as coefficients) in t of degree D.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Lattice Point Enumeration in Dilated Polytopes

For a polytope $\mathcal{P} \subset \mathbb{R}^N$ and $t \in \mathbb{R}$, the dilation $t\mathcal{P}$ is given by $t\mathcal{P} = \{tx : x \in \mathcal{P}\}.$ The lattice point enumerator for \mathcal{P} is $\mathcal{L}_{\mathcal{P}} : \mathbb{R} \to \mathbb{Z}$ defined by $\mathcal{L}_{\mathcal{P}}(t) = |t\mathcal{P} \cap \mathbb{Z}^N|.$

Lattice Point Enumeration in Dilated Polytopes

For a polytope $\mathcal{P} \subset \mathbb{R}^N$ and $t \in \mathbb{R}$, the dilation $t\mathcal{P}$ is given by $t\mathcal{P} = \{tx : x \in \mathcal{P}\}.$ The lattice point enumerator for \mathcal{P} is $\mathcal{L}_{\mathcal{P}} : \mathbb{R} \to \mathbb{Z}$ defined by $\mathcal{L}_{\mathcal{P}}(t) = |t\mathcal{P} \cap \mathbb{Z}^N|.$

Theorem (Ehrhart-Macdonald's Reciprocity)

The number of lattice points in the interior of $t\mathcal{P}$ is given by $(-1)^D \mathcal{L}_{\mathcal{P}}(-t)$, and is thus a "quasipolynomial" of degree D.

Main Enumeration Results

Theorem

Suppose D(S) is strongly connected. Then $|\mathcal{E}(n;S)|$ and $|\mathcal{F}(n;S)|$ are both quasipolynomials in n of the same degree |S| - |V(S)|. In particular, $|\overline{\mathcal{Q}}(n;S)| = \Theta' \left(n^{|S| - |V(S)|}\right)$.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨー の々ぐ

Main Enumeration Results

Theorem

Suppose D(S) is strongly connected. Then $|\mathcal{E}(n;S)|$ and $|\mathcal{F}(n;S)|$ are both quasipolynomials in n of the same degree |S| - |V(S)|. In particular, $|\overline{\mathcal{Q}}(n;S)| = \Theta' \left(n^{|S| - |V(S)|}\right)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めへぐ

The Write and Read Cha

The DNA Storage Channel

Corollaries of Main Enumeration Result

Here,
$$|\overline{\mathcal{Q}}(n;S)| = \frac{n^3}{288} + O(n^2)$$
 (Curtesy of Latte).

Theorem (Jacquet, Knessl, Szpankowski, 2012; Ukkonnen, Pevzner 1990's)

Fix q, ℓ and let S be the set of all q-ary strings of length ℓ . Then

ŀ

$$\mathcal{E}(n; S| \sim |\mathcal{F}(n; S)| \sim |\overline{\mathcal{Q}}(n; S)| \sim c(S) n^{q^{\ell} - q^{\ell-1}}$$
 where $c(S)$ is a constant.

 $f \sim g$ means that $\lim_{n \to \infty} f(n)/g(n) = 1$.

Corollary

Suppose D(S) is strongly connected and contains loops. Then

 $|\mathcal{E}(n;S| \sim |\mathcal{F}(n;S)| \sim |\overline{\mathcal{Q}}(n;S)| \sim c(S)n^{|S|-|V|}$ where c(S) is a constant.

Sac

Varshamov Codes

Fix d and let p be a prime such that p > d and p > N. Choose N distinct nonzero elements $\alpha_1, \alpha_2, \ldots, \alpha_N$ in $\mathbb{Z}/p\mathbb{Z}$ and consider the matrix

$$\mathbf{H} = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_N \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_N^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^d & \alpha_2^d & \cdots & \alpha_N^d \end{pmatrix}.$$

Pick any vector $\boldsymbol{\beta} \in (\mathbb{Z}/p\mathbb{Z})^N$ and define the code

$$\mathcal{C}(\mathbf{H},\boldsymbol{\beta}) = \{\mathbf{u} \in \mathbb{Z}^N : \mathbf{H}\mathbf{u} \equiv \boldsymbol{\beta} \bmod p\}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Varshamov Codes

Fix d and let p be a prime such that p > d and p > N. Choose N distinct nonzero elements $\alpha_1, \alpha_2, \ldots, \alpha_N$ in $\mathbb{Z}/p\mathbb{Z}$ and consider the matrix

$$\mathbf{H} = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_N \\ \alpha_1^2 & \alpha_2^2 & \cdots & \alpha_N^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^d & \alpha_2^d & \cdots & \alpha_N^d \end{pmatrix}.$$

Pick any vector $\boldsymbol{\beta} \in (\mathbb{Z}/p\mathbb{Z})^N$ and define the code

$$\mathcal{C}(\mathbf{H},\boldsymbol{\beta}) = \{\mathbf{u} \in \mathbb{Z}^N : \mathbf{H}\mathbf{u} \equiv \boldsymbol{\beta} \bmod p\}.$$

Theorem (Varshamov, 1973)

 $C(\mathbf{H}, \boldsymbol{\beta})$ is a code with minimum asymmetric distance d + 1.

Construction I

Let $\mathbf{p}\mathcal{Q}(n;S)$ be the set of distinct profile vectors of words in S and N = |S|. Then $\mathcal{C}(\mathbf{H}, \boldsymbol{\beta}) \cap \mathbf{p}\mathcal{Q}(n;S)$ is an (n, d+1; S)- ℓ -gram reconstruction code.

THANK YOU!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めへぐ

Construction I

Let $\mathbf{p}\mathcal{Q}(n;S)$ be the set of distinct profile vectors of words in S and N = |S|. Then $\mathcal{C}(\mathbf{H}, \boldsymbol{\beta}) \cap \mathbf{p}\mathcal{Q}(n;S)$ is an (n, d+1; S)- ℓ -gram reconstruction code.

Example

Let q = 2, ℓ = 3, S = $\{001, 010, 011, 100, 101, 110\}$ and so, N = 6. Let d = 3 and pick p = 7, so that

$$\mathbf{H} = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 2 & 2 & 4 & 1 \end{array}\right) \text{ and } \boldsymbol{\beta} = \left(\begin{array}{r} 0 \\ 0 \end{array}\right).$$

Then $C(\mathbf{H}, \boldsymbol{\beta})$ contains the following words. (4, 0, 0, 1, 0, 1) (0, 1, 1, 4, 0, 0) $(2, 2, 0, 2, 0, 0) \leftrightarrow 00100100$ (0, 1, 0, 0, 4, 1) (1, 4, 0, 0, 1, 0) (0, 0, 4, 1, 1, 0) $(1, 1, 1, 1, 1, 1) \leftrightarrow 00101100$ $(0, 0, 2, 0, 2, 2) \leftrightarrow 01101101$ (1, 0, 1, 0, 0, 4)Above, three profile vectors in pQ(8; S).

Construction I

Let $\mathbf{p}\mathcal{Q}(n;S)$ be the set of distinct profile vectors of words in S and N = |S|. Then $\mathcal{C}(\mathbf{H}, \boldsymbol{\beta}) \cap \mathbf{p}\mathcal{Q}(n;S)$ is an (n, d+1; S)- ℓ -gram reconstruction code.

Construction I

Let $\mathbf{p}\mathcal{Q}(n;S)$ be the set of distinct profile vectors of words in S and N = |S|. Then $\mathcal{C}(\mathbf{H}, \boldsymbol{\beta}) \cap \mathbf{p}\mathcal{Q}(n;S)$ is an (n, d+1; S)- ℓ -gram reconstruction code.

Pigeonhole principle: there exists a β such that $|\mathcal{C}(\mathbf{H}, \beta) \cap \mathbf{p}\mathcal{Q}(n; S)|$ is at least $|\mathbf{p}\mathcal{Q}(n; S)|/p^d$. However, the optimal choice of β is not known.

Construction I

Let $\mathbf{p}\mathcal{Q}(n;S)$ be the set of distinct profile vectors of words in S and N = |S|. Then $\mathcal{C}(\mathbf{H}, \boldsymbol{\beta}) \cap \mathbf{p}\mathcal{Q}(n;S)$ is an (n, d+1; S)- ℓ -gram reconstruction code.

Pigeonhole principle: there exists a β such that $|\mathcal{C}(\mathbf{H},\beta) \cap \mathbf{p}\mathcal{Q}(n;S)|$ is at least $|\mathbf{p}\mathcal{Q}(n;S)|/p^d$. However, the optimal choice of β is not known.

We fix a certain choice of **H** and β and provide lower bounds on the size of $C(\mathbf{H}, \beta) \cap \mathbf{p}Q(n; S)$ as a function of n.

Ehrhart Theory Continued

Define the $(|V| + 1 + d) \times (|S| + d)$ -matrix

$$\mathbf{A}_{\mathrm{GRC}} = \left(\begin{array}{c|c} \mathbf{A} & \mathbf{0} \\ \hline \mathbf{H} & -p\mathbf{I}_d \end{array} \right).$$

Proposition

If D(S) is strongly connected and $C(\mathbf{H}, \mathbf{0}) \cap \text{Null}_{>0}\mathbf{B}$ is nonempty, then $|C(\mathbf{H}, \mathbf{0}) \cap \mathbf{p}Q(n; S)|$ is at least the number of lattice points in the interior of the polytope

$$\left\{ \mathbf{u} \in \mathbb{R}^{|S|+d} : \mathbf{A}_{\mathrm{GRC}}\mathbf{u} = (n-\ell+1)\mathbf{b}
ight\}.$$

▶ Null_{>0}B denotes the set of vectors in the null space of B with strictly positive entries.

Ehrhart Theory Continued

Define the $(|V| + 1 + d) \times (|S| + d)$ -matrix

$$\mathbf{A}_{\mathrm{GRC}} = \left(\begin{array}{c|c} \mathbf{A} & \mathbf{0} \\ \hline \mathbf{H} & -p\mathbf{I}_d \end{array} \right).$$

Proposition

If D(S) is strongly connected and $C(\mathbf{H}, \mathbf{0}) \cap \operatorname{Null}_{>0}\mathbf{B}$ is nonempty, then $|C(\mathbf{H}, \mathbf{0}) \cap \mathbf{p}Q(n; S)|$ is at least the number of lattice points in the interior of the polytope

$$\left\{ \mathbf{u} \in \mathbb{R}^{|S|+d} : \mathbf{A}_{\mathrm{GRC}} \mathbf{u} = (n-\ell+1)\mathbf{b}
ight\}.$$

▶ Null_{>0}B denotes the set of vectors in the null space of B with strictly positive entries.

Theorem

If D(S) is strongly connected and $C(\mathbf{H}, \mathbf{0}) \cap \text{Null}_{>0}\mathbf{B}$ is nonempty, then

$$|\mathcal{C}(\mathbf{H},\mathbf{0}) \cap \mathbf{p}\mathcal{Q}(n;S)| = \Omega'\left(n^{|S|-|V(S)|}\right)$$

• $f(n) = \Omega'(g(n))$ means that for a fixed value of ℓ , there exists an integer λ and a positive constant c so that $f(n) \ge cg(n)$ for sufficiently large n with $\lambda | (n - \ell + 1)$.

Encoding and Decoding?

• Encoding: Systematic encoder that takes profile of input x and converts it into redundant profile.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Encoding and Decoding?

- Encoding: Systematic encoder that takes profile of input x and converts it into redundant profile.
- Decoding: Receive profile. Correct errors in profile. Assemble profile (say, by using Hierholzer's algorithm).

Literature Overview

- 1 H. M. Kiah, G. J. Puleo, and O. Milenkovic. Codes for DNA Sequence Profiles, IEEE Trans. Info. Theory (2016)
- S. M. H. Tabatabaei Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic. A Rewritable, Random-Access DNA-Based Storage System, Nature SR (2015)
- R. Gabrys, H. M. Kiah, and O. Milenkovic. Asymmetric Lee Distance Codes for DNA-Based Storage, CoRR abs/1506.00740 (2015)
- 4. S. M. Hossein Tabatabaei Yazdi, H. M. Kiah, E. R. Garcia, J. Ma, H. Zhao, and O. Milenkovic. DNA-Based Storage: Trends and Methods, IEEE Trans. on Molecular Communication (2016)
- 5. R. Gabrys, E. Yaakobi, and O. Milenkovic. Codes in the Damerau Distance for DNA-Based Storage, preprint.
- S. M. H. Tabatabaei Yazdi, H. M. Kiah and O. Milenkovic, Weakly Mutually Uncorrelated Codes, preprint.

THANK YOU!