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The Future of Storage

� Cost of high-performance parallel storage: $0.3 per GB per month.

� Cost of cloud storage: Google Cloud $5.47 per 50 GB per month.

� Cost of storage often minor compared to cost of access, processing, and
data movement.

Figure: From Church, Harvard U.
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The Era of Massive Data

� Large Hadron Collider: 600 million collisions/s, 0.5 PB per week.

� DNA sequencing data: 30 − 50 TB per week.

� Sloan Digital Sky Survey: 1 − 2 TB per week.

� Social science (Twitter, Facebook, LinkedIn), NASA weather surveys,
consumer and stock market data, Internet sources...

Figure: In search of the God particle, Wikipedia.
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DNA as Storage Media

� DNA is extremely durable: Can still “read” mammoth, Neanderthal,
700,000 old horse DNA!

� DNA write (synthesis) and read (sequencing) costs decrease daily.

� DNA information content of Human cell: 6.4 GB. Mass of a cell: ∼ 3
picograms. No. of cells: 15 − 40 × 1012.

� How much information can one store in a gram of DNA?
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Implementations
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“Double Helix Serves Double Duty”, NY Times, Jan 2013

� Richard Feynman first to propose the use of macromolecules for storage
(“There is plenty of room at the bottom”).

� Church et al. (Science, 2012) and Goldman et al. (Nature, 2013) stored
739 KB of data in synthetic DNA, mailed it and recreated the original
digital files.

� Goal: a digital archival storage system that will safely store the equivalent
of one million CDs in a gram of DNA for 10,000 years.

100 

D - DNA fragments 

1 100 2 12 1 1 

25 

Encoded data 

Reverse complemented encoded data 

File identification 

Intra-file location information 

Parity-check 

Reversed or non-reversed flag 

A - Binary/text 

B - Base-3-encoded 

C - DNA-encoded 

 

B e   n a m   k h o d a v a n d … … 

…10001001111001010110110… 

20112 20200 02110 10002 02212 01112 02110 10221 02212 11021 02212 10101 02212 10002 … … 

TCACT ATATA TGTGA CGATA TAGTA TGTGC GCACG TCTAC GCTGC ACGCA TAGTA CGTCA TAGTA CGATA … … 

Alternate fragments have file information 
reverse complemented 
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“Data Storage on DNA Can Keep it Safe for Centuries,”
NY Times, Dec 2015

� Renewed interest in DNA storage (UIUC, MS Research, IARPA Special
Program on DNA-Based Storage).
Goal: Build a fully operational, cost-e�cient, real-time, random access
DNA-based memory.

� Yazdi et.al., 2015 - First random access, rewritable DNA-based storage
system. Encoded Wikipedia entries for six US universities (including MIT).
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Our Experiments

� Random access achieved via specialized address design.

� Context identification and rewriting performed via gBlock or OE-PCR
methods.

Rewritable DNA-DNA Mutation

Synthesis

gBlock based method

+

OE-PCR based method

+

+

+
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The Write and Read Channels
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The Write Channel: DNA Synthesis

Biochemistry of synthesis: Adding bases through deprotection & coupling
cycles.
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The Write Channel: DNA Synthesis

� DNA microarray based synthesis (left): Cost e↵ective, large scale. Short
strands, higher error rates.

� Long strand synthesis (right): Synthesize via shorter blocks, assembled.
Chemical error-correction.

� Types of synthesis errors: predominantly substitutions, much less frequent
deletions/insertions.



Motivation Implementations The Write and Read Channels The DNA Storage Channel Profile Vectors and `-Gram Codes THANK YOU!

The Write Channel: DNA Synthesis

� DNA microarray based synthesis (left): Cost e↵ective, large scale. Short
strands, higher error rates.

� Long strand synthesis (right): Synthesize via shorter blocks, assembled.
Chemical error-correction.

� Types of synthesis errors: predominantly substitutions, much less frequent
deletions/insertions.



Motivation Implementations The Write and Read Channels The DNA Storage Channel Profile Vectors and `-Gram Codes THANK YOU!

The Write Channel: DNA Synthesis

� DNA microarray based synthesis (left): Cost e↵ective, large scale. Short
strands, higher error rates.

� Long strand synthesis (right): Synthesize via shorter blocks, assembled.
Chemical error-correction.

� Types of synthesis errors: predominantly substitutions, much less frequent
deletions/insertions.



Motivation Implementations The Write and Read Channels The DNA Storage Channel Profile Vectors and `-Gram Codes THANK YOU!

The Read Channel: Illumina and MinIon

� Illumina (MiSeq, left): Best overall performance of modern sequencing
technologies in terms of yield and accuracy; large volumes of DNA reads,
relatively small error rates (substitutions and context dependent deletions).
Drawback short read length.

� Oxford Nanopore - MinIon (Right): Longer read length, miniaturized
architecture. Large coverage errors, excessive number of block deletions.
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The Read Channel: Shotgun Sequencing

Cloning /// Shearing /// Reading of unordered pool /// Computer aided
alignment of overlapping fragments /// Consensus
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Media Aging

� Breakage - Bursty Deletions - Transpositions/Reversals: No built-in
mechanism for correcting damages.

� Coupled with synthesis and sequencing errors...
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� A formal mathematical theory of error-correction for DNA storage?

� Microarray Synthesis and Shotgun Sequencing: DNA Profile
Codes.

� Microarray Synthesis and Nanopore Sequencing: Asymmetric
Lee Distance Codes.

� DNA Media Aging: Codes in the Damerau Distance.

� Mathematical approaches for enabling random access and rewriting?

� Address Design: (Weakly) Mutually Uncorrelated Codes.
� Controlled Assembly: Uncorrelated Array Codes.
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� A formal mathematical theory of error-correction for DNA storage?

� Microarray Synthesis and Nanopore Sequencing: Asymmetric
Lee Distance (ALD) Codes.

� For a positive integer �, the ALD d�((a;b), (c;d)) between
pairs of binary sequences (a;b), (c;d) is defined as:

d�((a;b), (c;d)) = n�
i=1
(1 + �) ( (ai, bi) + (ci, di))+

� (ai, b̄i, c̄i, di) − 2(1 + �) (ai, bi, ci, di).
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� A formal mathematical theory of error-correction for DNA storage?
� DNA Media Aging: Codes in the Damerau Distance.

� The Damerau–Levenshtein (DL) distance is a string metric,
which for two strings over a finite alphabet equals the minimum
number of insertions, deletions, substitutions and adjacent
transpositions needed to transform one string into the other.

� The block DL distance: Extension in which edit units are blocks
of limited length.

� Varshamov-Tenengolt’s extensions for the DL distance: Uses the
derivative of a, a′ = (a1, a2 + a1, a3 + a2, . . . , an + an−1).

� Component codes: CH(n,3) a single error-correcting code;CD(n) a single deletion-correcting code.

CT∨D(n) = {a ∈ Fn
2 ∶ a ∈ CD(n),a′ ∈ CH(n,3)}.

The code CT∨D(n) can correct one single deletion or adjacent
transposition.
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� Mathematical approaches for enabling random access and rewriting?
� Address Design: (Weakly) Mutually Uncorrelated Codes.
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The DNA Storage Channel
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DNA Storage Channel: Basics

Synthesis
channel

Fragmentation
into `-grams

Sequencing
of `-grams

Sequencing channel
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⋮
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-
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ˆxn−`+1
⋮
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ˆx

Output

Synthesis channel captures the “write” process.
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DNA Storage Channel: Basics
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The sequence synthesis process introduces errors (current technologies ≤ 0.1%).
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DNA Storage Channel: Basics
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DNA sequencing represents the “read” process. Consists of fragmenting
sequence to be read, and “reconstructing” fragments (`-grams).
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DNA Storage Channel: Basics
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Note that strings at the output of the fragmentation block are *not* ordered.
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DNA Storage Channel: Basics
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� Sequencing introduces errors in some `-grams and some `-grams may not
be covered.

� Modern Illumina platforms have substitution error rates ≤ 0.5%. Coverage
errors context-dependent.
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DNA Storage Channel: Profile Vectors
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Profile vectors

The profile vector of a sequence reflects the count of its `-grams;

Example

Profile of vector x = 10011001 equals

000 001 010 011 100 101 110 111(0, 2, 0, 1, 2, 0, 1, 0).
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DNA Storage Channel: Profile Vectors
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Profile vectors

The profile vector of a sequence reflects the count of its `-grams;

Example

Profile of vector x = 10011001 equals

000 001 010 011 100 101 110 111(0, 2, 0, 1, 2, 0, 1, 0).
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Input and Output Profile Vectors

DNA Storage
Channel

-
Codeword

x = 10011001 -
Output profile vector

p(ˆx; 2,3) = (0,1,0,2,0,1,1,0)
p(x; 2,3) = (0,2,0,1,2,0,1,0)

Profile Vectors: Formal Definition

Fix alphabet size q and fragment (read) length ` < n. The profile vector of
some sequence x, denoted by p(x; q, `), has length q` and its entry indexed by
z equals the number of occurrences of z in x as an `-gram.

Example

Profile of x = 10011001 and sequencing channel output:

000 001 010 011 100 101 110 111(0, 2, 0, 1, 2, 0, 1, 0),(0, 1, 0, 2, 0, 1, 1, 0).
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Code Design Criteria

Encoder
DNA Storage
Channel

-
Message

� Yes

No

�
-

Codeword

� x = 10011001
y = 10101010 �

-
Output profile vector

p(ˆx; 2,3) = (0,1,0,2,0,1,1,0)

000 001 010 011 100 101 110 111

p(x; 2,3) = (0, 2, 0, 1, 2, 0, 1, 0)
p(y; 2,3) = (0, 0, 3, 0, 0, 3, 0, 0)
p(ˆx; 2,3) = (0, 1, 0, 2, 0, 1, 1, 0).

Condition 1

Codewords should have profile vectors that are su�ciently “distinct,” i.e., one
should be able to correct combination of synthesis substitution (burst),
coverage, and `-gram errors.

Definition 1

The `-gram distance between x and y equals the asymmetric distance (`1
distance) between p(x; q, `) and p(y; q, `).



Motivation Implementations The Write and Read Channels The DNA Storage Channel Profile Vectors and `-Gram Codes THANK YOU!

Code Design Criteria

Encoder
DNA Storage
Channel

-
Message

� Yes

No

�
-

Codeword

� x = 10011001
y = 10101010 �

-
Output profile vector

p(ˆx; 2,3) = (0,1,0,2,0,1,1,0)

000 001 010 011 100 101 110 111

p(x; 2,3) = (0, 2, 0, 1, 2, 0, 1, 0)
p(y; 2,3) = (0, 0, 3, 0, 0, 3, 0, 0)
p(ˆx; 2,3) = (0, 1, 0, 2, 0, 1, 1, 0).

Condition 1

Codewords should have profile vectors that are su�ciently “distinct,” i.e., one
should be able to correct combination of synthesis substitution (burst),
coverage, and `-gram errors.

Definition 1

The `-gram distance between x and y equals the asymmetric distance (`1
distance) between p(x; q, `) and p(y; q, `).



Motivation Implementations The Write and Read Channels The DNA Storage Channel Profile Vectors and `-Gram Codes THANK YOU!

Code Design Criteria

Encoder
DNA Storage
Channel

-
Message

� Yes

No

�
-

Codeword

� x = 10011001
y = 10101010 �

-
Output profile vector

p(ˆx; 2,3) = (0,1,0,2,0,1,1,0)

000 001 010 011 100 101 110 111

p(x; 2,3) = (0, 2, 0, 1, 2, 0, 1, 0)
p(y; 2,3) = (0, 0, 3, 0, 0, 3, 0, 0)
p(ˆx; 2,3) = (0, 1, 0, 2, 0, 1, 1, 0).

Condition 1

Codewords should have profile vectors that are su�ciently “distinct,” i.e., one
should be able to correct combination of synthesis substitution (burst),
coverage, and `-gram errors.

Definition 1

The `-gram distance between x and y equals the asymmetric distance (`1
distance) between p(x; q, `) and p(y; q, `).



Motivation Implementations The Write and Read Channels The DNA Storage Channel Profile Vectors and `-Gram Codes THANK YOU!

Code Design Criteria

Encoder
DNA Storage
Channel

-
Message

� Yes

No

�
-

Codeword

� x = 10011001
y = 10101010 �

-
Output profile vector

p(ˆx; 2,3) = (0,1,0,2,0,1,1,0)

000 001 010 011 100 101 110 111

p(x; 2,3) = (0, 2, 0, 1, 2, 0, 1, 0)
p(y; 2,3) = (0, 0, 3, 0, 0, 3, 0, 0)
p(ˆx; 2,3) = (0, 1, 0, 2, 0, 1, 1, 0).

Definition 1

The `-gram distance between x and y equals the asymmetric distance (`1
distance) between p(x; q, `) and p(y; q, `).

Asymmetric Distance

Let u,v ∈ ZN≥0. Define �(u,v) = ∑N
i=1max(ui − vi,0).

Asymmetric distance: dasym(u,v) =max (�(u,v),�(v,u)).
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Code Design Criteria

000 001 010 011 100 101 110 111

p(x; 2,3) = (0, 2, 0, 1, 2, 0, 1, 0)
p(y; 2,3) = (0, 0, 3, 0, 0, 3, 0, 0)
p(ˆx; 2,3) = (0, 1, 0, 2, 0, 1, 1, 0).

Asymmetric Distance

Let u,v ∈ ZN≥0. Define �(u,v) = ∑N
i=1max(ui − vi,0).

Asymmetric distance: dasym(u,v) =max (�(u,v),�(v,u)).

Minimum Asymmetric Distance

A DNA storage code with minimum asymmetric distance d can correct s1
substitution errors due to synthesis, s2 substitution errors due to sequencing
and t coverage errors provided that d > 2s1 + 2s2 + t.
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Code Design Criteria

Encoder
DNA Storage
Channel

-
Message

� Yes

No

�
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Codeword

� x = 10011001
y = 10101010 �

-
Output profile vector

p(ˆx; 2,3) = (0,1,0,2,0,1,1,0)

000 001 010 011 100 101 110 111

p(x; 2,3) = (0, 2, 0, 1, 2, 0, 1, 0)
p(y; 2,3) = (0, 0, 3, 0, 0, 3, 0, 0)

Condition 2

Codewords whose `-grams avoid error-causing substrings.

Avoid “bad” grams that cause sequencing errors and media instability:
� Weight profiles of `-grams. GC content roughly 50%.
� Forbidden `-grams. Certain substrings, such as GCG and CGC, are
likely to cause coverage errors.

For example, may require that `-grams lie in
S = {001,010,011,100,101,110}.
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Fundamental Questions

Distinct `-gram Profile Vectors

Let Q(n;S) be the largest set of q-ary words of length n whose `-grams belong
to S, and which have distinct `-gram profile vectors.
Determine the size of Q(n;S).
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Fundamental Questions

`-gram Reconstruction Code (GRC)

C ⊆ Q(n;S) is an (n, d;S)-`-GRC if the `-gram distance between any pair of
distinct words is at least d.
Construct good (n, d;S)-`-GRC. “Good” means large codebook size, avoidance
of bad `-grams.
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Profile Vectors and `-Gram Codes



Motivation Implementations The Write and Read Channels The DNA Storage Channel Profile Vectors and `-Gram Codes THANK YOU!

De Bruijn Graphs

Example for q = 2, ` = 3.
00

001

✏✏

000

))
10

100oo

101
xx

01

011
//

010

88

11

110

OO

111

ii

De Bruijn Graphs

Nodes are q-ary strings of length ` − 1.(v,v′) is an arc if
v2 v3 v`−1= = . . . =
v′1 v′2 v ′̀−2

.
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Restricted De Bruijn Graphs (Ruskey et al., 2012)

Let S(`;w1,w2) denote the binary strings of length ` with weight between w1 and w2.

S = S(3; 1,2) S = S(4; 2,3)
00

001
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100oo
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xx

01

011
//

010

88

11

110

OO
001

0011 //
011

0110
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0111

##
010

0101,,
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ll
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;;

111

1110{{
100

1001

OO

110

1101

cc

1100
oo

Restricted De Bruijn Graphs D(S)
Nodes V are ` − 1-prefixes and -su�xes of strings in S.(v,v′) is an arc if

v2 v3 v`−1= = . . . =

v′1 v′2 v ′̀−2
and v1v2�v`−1v′l−1 ∈ S.
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Profile Vectors and Flows

10011001 011001101011
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Representation of profile vectors of words in Q(n;S) using the digraph D(S).

Closed Words

Closed words are words that start and end with the same (` − 1)-gram.Q(n;S): largest set of q-ary closed words of length n whose `-grams belong to
S and which have distinct `-gram profiles.

Flows

Paths in D(S) such that sum of incoming arc weights is equal to sum of
outgoing arc weights at each vertex. Profile vectors of words in Q(n;S) are
flow vectors in D(S).
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S and which have distinct `-gram profiles.
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Closed Words

Closed words are words that start and end with the same (` − 1)-gram.Q(n;S): largest set of q-ary closed words of length n whose `-grams belong to
S and which have distinct `-gram profiles.
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Paths in D(S) such that sum of incoming arc weights is equal to sum of
outgoing arc weights at each vertex. Profile vectors of words in Q(n;S) are
flow vectors in D(S).
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Necessary Conditions

Let u be a profile vector (of a closed word). Then u satisfies the following
conditions.

Flow conservations equations:

Bu = 0,
where B be the incidence matrix of D(S).
Sum of flows:

1u = n − ` + 1.
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1 // 011
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1
oo

Let A = � 1
B
� and b = (1,0, . . . ,0)T . Rewrite equations as

Au = (n − ` + 1)b and u ≥ 0.
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Su�cient Conditions

Flows are not always profile vectors

Let u ≥ 0 be such that
Au = (n − ` + 1)b.

This does not imply that u is a profile vector!
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Su�cient Conditions

If all flows are positive, then the flow vector is indeed a profile vector.
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Profile vector of 0110101110011.

Au = (n − ` + 1)b and u > 0.
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Profile Vectors and Lattice Points

Consider the following two sets of lattice points:

F(n;S) = {u ∈ Z�S� ∶Au = (n − ` + 1)b, u ≥ 0},
E(n;S) = {u ∈ Z�S� ∶Au = (n − ` + 1)b, u > 0}.

Clearly, one has

�E(n;S)� ≤ �Q(n;S)� ≤ �F(n;S)�.

Observations

� F(n;S) is a polytope. It can be shown to be of dimension �S� − �V (S)�.
� E(n;S) is the interior of F(n;S) if D(S) is strongly connected.

� May use Ehrhart theory for polytopes to determine �E(n;S)�, �F(n;S)�.
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� May use Ehrhart theory for polytopes to determine �E(n;S)�, �F(n;S)�.
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Profile Vectors and Lattice Points

Consider the following two sets of lattice points:

F(n;S) � {u ∈ Z�S� ∶Au = (n − ` + 1)b, u ≥ 0},
E(n;S) � {u ∈ Z�S� ∶Au = (n − ` + 1)b, u > 0}.

�E(n;S)� ≤ �Q(n;S)� ≤ �F(n;S)�.

Observations

� Define the polytope

PS = {u ∈ R�S� ∶Au = b, u ≥ 0}.
� F(n;S) is the set of lattice points in(n − ` + 1)PS .

� E(n;S) is the set of lattice points in the
interior of (n − ` + 1)PS .

(n − ` + 1)PS
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Lattice Point Enumeration in Dilated Polytopes
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For a polytope P ⊂ RN and t ∈ R, the dilation tP is given by

tP = {tx ∶ x ∈ P}.
The lattice point enumerator for P is LP ∶ R→ Z defined by

LP(t) = �tP ∩ ZN �.

Theorem (Ehrhart)

If P is a rational D-dimensional polytope, then LP(t) is a “quasipolynomial”

(polynomial with periodic functions as coe�cients) in t of degree D.
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Lattice Point Enumeration in Dilated Polytopes
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For a polytope P ⊂ RN and t ∈ R, the dilation tP is given by

tP = {tx ∶ x ∈ P}.
The lattice point enumerator for P is LP ∶ R→ Z defined by

LP(t) = �tP ∩ ZN �.

Theorem (Ehrhart-Macdonald’s Reciprocity)

The number of lattice points in the interior of tP is given by (−1)DLP(−t),
and is thus a “quasipolynomial” of degree D.
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Main Enumeration Results

Theorem

Suppose D(S) is strongly connected. Then �E(n;S)� and �F(n;S)� are both

quasipolynomials in n of the same degree �S� − �V (S)�. In particular,�Q(n;S)� = ⇥′ �n�S�−�V (S)��.

001

0011 //
011

0110

✏✏

0111

##
010

0101,,
101

1010
ll

1011
;;

111

1110{{
100

1001

OO

110

1101

cc

1100
oo

Here, �Q(n;S)� = ⇥′(n3).
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Corollaries of Main Enumeration Result

00

001

✏✏

000

))
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100oo

101vv
01

011
//

010
66

11

110

OO

111

ii

Here, �Q(n;S)� = n3

288
+O(n2) (Curtesy of Latte).

Theorem (Jacquet, Knessl, Szpankowski, 2012; Ukkonnen, Pevzner 1990’s)

Fix q, ` and let S be the set of all q-ary strings of length `. Then

�E(n;S� ∼ �F(n;S)� ∼ �Q(n;S)� ∼ c(S)nq`−q`−1
where c(S) is a constant.

f ∼ g means that limn→∞ f(n)�g(n) = 1.

Corollary

Suppose D(S) is strongly connected and contains loops. Then

�E(n;S� ∼ �F(n;S)� ∼ �Q(n;S)� ∼ c(S)n�S�−�V � where c(S) is a constant.
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Varshamov Codes

Fix d and let p be a prime such that p > d and p > N . Choose N distinct
nonzero elements ↵1,↵2, . . . ,↵N in Z�pZ and consider the matrix

H =
�����

↵1 ↵2 � ↵N

↵2
1 ↵2

2 � ↵2
N⋮ ⋮ � ⋮

↵d
1 ↵d

2 � ↵d
N

�����
.

Pick any vector � ∈ (Z�pZ)N and define the code

C(H,�) = {u ∈ ZN ∶Hu ≡ � mod p}.

Theorem (Varshamov, 1973)

C(H,�) is a code with minimum asymmetric distance d + 1.
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Gram Reconstruction Codes

Construction I

Let pQ(n;S) be the set of distinct profile vectors of words in S and N = �S�.
Then C(H,�) ∩ pQ(n;S) is an (n, d + 1;S)-`-gram reconstruction code.

Example

Let q = 2, ` = 3, S = {001,010,011,100,101,110} and so, N = 6. Let d = 3 and
pick p = 7, so that

H = � 1 2 3 4 5 6

1 4 2 2 4 1

� and � = � 0

0

� .
Then C(H,�) contains the following words.(4,0,0,1,0,1) (0,1,1,4,0,0)(2,2,0,2,0,0) ↔ 00100100 (0,1,0,0,4,1)(1,4,0,0,1,0) (0,0,4,1,1,0)(1,1,1,1,1,1) ↔ 00101100 (0,0,2,0,2,2) ↔ 01101101(1,0,1,0,0,4)
Above, three profile vectors in pQ(8;S).



Motivation Implementations The Write and Read Channels The DNA Storage Channel Profile Vectors and `-Gram Codes THANK YOU!

Gram Reconstruction Codes

Construction I

Let pQ(n;S) be the set of distinct profile vectors of words in S and N = �S�.
Then C(H,�) ∩ pQ(n;S) is an (n, d + 1;S)-`-gram reconstruction code.

Example

Let q = 2, ` = 3, S = {001,010,011,100,101,110} and so, N = 6. Let d = 3 and
pick p = 7, so that

H = � 1 2 3 4 5 6

1 4 2 2 4 1

� and � = � 0

0

� .
Then C(H,�) contains the following words.(4,0,0,1,0,1) (0,1,1,4,0,0)(2,2,0,2,0,0) ↔ 00100100 (0,1,0,0,4,1)(1,4,0,0,1,0) (0,0,4,1,1,0)(1,1,1,1,1,1) ↔ 00101100 (0,0,2,0,2,2) ↔ 01101101(1,0,1,0,0,4)
Above, three profile vectors in pQ(8;S).



Motivation Implementations The Write and Read Channels The DNA Storage Channel Profile Vectors and `-Gram Codes THANK YOU!

Gram Reconstruction Codes

Construction I

Let pQ(n;S) be the set of distinct profile vectors of words in S and N = �S�.
Then C(H,�) ∩ pQ(n;S) is an (n, d + 1;S)-`-gram reconstruction code.

Pigeonhole principle: there exists a � such that �C(H,�) ∩pQ(n;S)� is at
least �pQ(n;S)��pd.
However, the optimal choice of � is not known.

We fix a certain choice of H and � and provide lower bounds on the size ofC(H,�) ∩ pQ(n;S) as a function of n.
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Ehrhart Theory Continued

Define the (�V � + 1 + d) × (�S� + d)-matrix

AGRC = � A 0

H −pId � .
Proposition

If D(S) is strongly connected and C(H,0) ∩Null>0B is nonempty, then�C(H,0) ∩ pQ(n;S)� is at least the number of lattice points in the interior of

the polytope

�u ∈ R�S�+d ∶AGRCu = (n − ` + 1)b� .
� Null>0B denotes the set of vectors in the null space of B with strictly positive entries.

Theorem

If D(S) is strongly connected and C(H,0) ∩Null>0B is nonempty, then

�C(H,0) ∩ pQ(n;S)� = ⌦′ �n�S�−�V (S)�� .
� f(n) = ⌦′(g(n)) means that for a fixed value of `, there exists an integer � and a positive

constant c so that f(n) ≥ cg(n) for su�ciently large n with ��(n − ` + 1).
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Encoding and Decoding?

�
Encoding: Systematic encoder that takes profile of input x and converts
it into redundant profile.

�
Decoding: Receive profile. Correct errors in profile. Assemble profile (say,
by using Hierholzer’s algorithm).
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