


One approach that helps with low-resource ma-
chine translation is to train the system with one
or more other languages. This involves training a
single model from multiple source languages into
multiple target languages. Aharoni et al. (2019)
found that a many-to-many shared multilingual
model performs the best in low-resource settings
but does not uniformly out-perform the many-to-
one/one-to-many models in the high-resource set-
tings. This shows that when the model capac-
ity is fixed, there could be a trade-off between
the number of languages and translation perfor-
mance. Wang and Neubig (2019) experimented
on the same low-resource corpus used by Aharoni
et al. (2019), and found that without their proposed
target conditioned sampling, which are some simi-
larity measures based on language model probabil-
ities or vocabulary overlaps, a multilingual many-
to-one model that utilizes all language pairs does
not outperform the model that utilizes only the re-
lated higher-resource language pair. Guzmán et al.
(2019) also reported that additional parallel data in
English-Hindi, a related language pair for English-
Nepali, further improve Nepali’s translation quality
for both the supervised and the unsupervised set-
tings. Therefore, this project focuses on developing
low-resource translation models that leverage the
parallel examples from only one higher-resource
language pair.

While the parallel examples from a higher re-
source language significantly improve the trans-
lation quality for the low-resource pair, the num-
ber of parallel examples overall can still be some-
what limited. For example, in this project, the
parallel corpus (190k) from a related language pair
(Turkish and English) is still below 200k, and the
model may still suffer from data scarcity issues.
Fortunately, usually, there exists some additional
monolingual data from either the source side or the
target side. Back-translation operates in a semi-
supervised setup that assumes additional monolin-
gual data in the target language is available. It first
trains an initial model in the reverse direction, trans-
lating the target monolingual data into the source
language. With synthetic parallel examples added
to the genuine parallel examples, a final system is
trained that translates from the source to the target
language. Edunov et al. (2018) performed an ex-
tensive study on different settings (synthetic data
generation methods, low resource vs. high resource
setup, size and domain of monolingual data, e.t.c).

Relevant findings to this project include the fact
that sampling and beam+noise generation methods
are too detrimental for low-resource settings, while
pure beam search provides better results. On the
other hand, self-training starts from a base model
trained with parallel data for the designated trans-
lation direction and applies the trained model to
obtain predictions for monolingual instances on
the source side. It then trains a new model from
scratch using only the pseudo parallel data gener-
ated by the current model, followed by finetuning
the pre-trained model using real parallel data. He
et al. (2020) explained that the secrets behind self-
training for machine translation include the applica-
tion of beam search, dropout during model training,
and further input perturbation of the self-generated
synthetic data, or noisy ST. They report that noisy
ST can improve the performance over baseline for
both the synthetic WMT100k English-German set
and the real low-resource FloRes (Guzmán et al.,
2019) English-Nepali pair under domain mismatch.
Recently, mBART (Liu et al., 2020b), a multilin-
gual sequence-to-sequence denoising auto-encoder,
has been proposed. As in BART (Lewis et al.,
2020), two types of noise (removing spans of text
and replacing them with a mask token and sentence
permuting) were applied to the monolingual inputs.
They reported that initializing with the pre-trained
mBART weights using 25 languages shows gains
on all the low and medium resource pair compared
with randomly initialized baselines. The mBART
models trained on only the source and target lan-
guages can also achieve over 20 BLEU with only
10K training examples.

This project applies back-translation, self-
training, and mBART for the many-to-one/one-
to-many multilingual NMT models under the ex-
tremely low-resource scenario, with only one re-
lated higher resource language pair available. In
addition to the limits on parallel examples (6k and
182k), all monolingual data from each language are
relatively limited (300k) and come from a relatively
mismatched domain than the parallel training and
test examples. The project studies different avail-
abilities of monolingual data as well, including
no availability at all (for studying back-translation
only), limited on the source side or the target side
(for comparing back-translation with self-training
and mBART), as well as mixing in only the low-
resource or the high-resource synthetic examples
(for simulating a lack of low-resource monolin-



gual data as well as different ablation studies on
back-translation and self-training). Some simple
combinations of different methods are also studied
in this project to check for orthogonality between
different data augmentation methods, and the in-
clusion of 600k more monolingual data from each
language compares mBART and back-translation
under further different data availability scenarios.

2 Experiments and Results

2.1 Experimental setup

The project takes the Azerbaijani (AZE) /English
(ENG) pair from the multilingual TED corpus (Qi
et al., 2018) as the low-resource language pair,
which contains less than 6k parallel examples. Qi
et al. (2018) showed that their best standard 1-layer
encoder-decoder model with attention could only
achieve a 2.1 BLEU score for the AZE to ENG
direction. As another set of baselines, the project
additionally exploits the Turkish (TUR) /English
(ENG) pair in the TED corpus as the related higher-
resource language pair, which consists of around
182k examples, as previous work on the same cor-
pus (Qi et al., 2018; Wang and Neubig, 2019) usu-
ally found multilingual training with a related high
resource pair lend itself to be immensely useful.

For each of the experiments, all texts from each
language are encoded individually with a Byte Pair
Encoding (BPE) model with a vocabulary size of
8000, trained on the training set using sentence-
piece (Sennrich et al., 2016; Kudo and Richardson,
2018). All models are trained in fairseq (Ott et al.,
2019) and use the same Transformer architecture,
with 6 encoder layers and 6 decoder layers, a model
dimension of 512, an FFN dimension of 1024, and
4 attention heads. For all the experiments, all the
tokens from the source and target side languages
are combined to form a shared dictionary, and a
shared embedding layer is used for the encoder and
the decoder. Unless otherwise specified, all models
are trained with the same set of hyper-parameters,
with a learning rate of 2e-4, a dropout rate of 0.3,
4000 warmup steps, and a label-smoothing rate of
0.1. The baseline AZE-ENG models are trained for
80 epochs, while all other multilingual models that
utilize parallel TUR-ENG examples are trained for
40 epochs. The best checkpoint is recorded on the
development set. We evaluate all models on the
parallel AZE-ENG test set with 903 examples un-
der the BLEU metric (Papineni et al., 2002) with
standard SacreBLEU scripts (Post, 2018).

2.2 Objective 1: Establishing baselines
As the first step, Table 1 shows the baselines for
both the AZE to ENG direction and the ENG to
AZE direction, with or without additional paral-
lel examples from the higher resource language
pair (TUR-ENG). From the table, one could see
that with only 6k parallel examples constructed
from noisy TED talk transcripts, the standard NMT
systems only achieve mediocre BLEU scores in
both directions. As reported multiple times in other
work, leveraging the parallel examples from a high-
resource related language substantially improves
the performance of the low-resource NMT systems
for both directions. The ENG→AZE direction still
suffers more from data scarcity issues than the
AZE→ENG direction, and previous work (John-
son et al., 2017; Aharoni et al., 2019) has noticed
the same issue.

AZE→ENG ENG→AZE

2.67 1.64

AZE→ENG
(Aug with TUR)

ENG→AZE
(Aug with TUR)

12.33 5.88

Table 1: Baseline BLEU scores

2.3 Objective 2: Back-translation on the
training set only

Under this setting, one assumes no availability for
any additional monolingual data. This means ap-
plying data-augmentation methods to the original
parallel examples from the low-resource and the
higher resource language. Here, we only study the
effect of back-translation on the training set. For
augmenting the ENG→AZE direction, the origi-
nal training examples in AZE and TUR are back-
translated into English, while for augmenting the
AZE→ENG direction, the original training exam-
ples in ENG are back-translated into both AZE and
TUR. The main concern of this method is that the
ENG→AZE model used for generating synthetic
data is still weak at this point. Surprisingly, even
under this less-than-ideal scenario, the results in
Table 2 show that the BLEU scores on both trans-
lation directions improve by a significant margin
compared to the HRL+LRL baseline. Furthermore,
this set of experiments does not apply either itera-
tive or on-the-fly back-translation (which in theory
could be more beneficial); rather, after synthetic
parallel data is collected, a new model is re-trained



on the combined pseudo-parallel corpus from ran-
dom initialization. The results show that even when
limited to the given parallel examples from a low-
resource pair and a higher resource pair, knowledge
distillation from back-translation still helps.

AZE→ENG
(Aug with TUR)

ENG→AZE
(Aug with TUR)

12.33 5.88

AZE→ENG
(Aug with TUR

+BT on training set)

ENG→AZE
(Aug with TUR

+BT on training set)

13.44 7.06

Table 2: BLEU scores with back-translation on the
training set

2.4 Objective 3: Back-translation with
target-side monolingual data from a
mismatched domain

In this set of experiments, the project collects
monolingual instances for all three languages
by randomly sampling from their corresponding
Wikipedia distribution. However, unlike most pre-
vious work, which assumes millions of available
monolingual instances for each language, all results
in this section only assume that 300k unlabeled ex-
amples exist for each language. Furthermore, as the
multilingual TED corpus is constructed from talk
transcripts, a moderate domain mismatch exists
between the real parallel examples and the mono-
lingual data leveraged for data augmentation. Fur-
thermore, as the project operates in an LRL+HRL
scenario, it explores different scenarios and set-
tings regarding the availability of target-side mono-
lingual data and different ways of constructing a
pseudo-parallel corpus. For the back-translation
experiments in this section, in addition to the two
default settings where:
1) For augmenting the ENG→AZE direction, both
monolingual AZE and TUR instances are back-
translated into English;
2) For augmenting the AZE→ENG direction,
monolingual ENG instances are back-translated
into both AZE and TUR;
four additional scenarios are studied to gain a better
picture of back-translation in the LRL+HRL set-
ting:
3) For augmenting the ENG→AZE direction, only
monolingual TUR instances are back-translated
into English;
4) For augmenting the ENG→AZE direction, only

monolingual AZE instances are back-translated
into English;
5) For augmenting the AZE→ENG direction,
monolingual ENG instances are back-translated
into only TUR;
6) For augmenting the AZE→ENG direction,
monolingual ENG instances are back-translated
into only AZE.
The two models from 2.3 are used to generate syn-
thetic back-translated examples, as they are the best
models available up to this point.

AZE→ENG
(Aug with TUR)

ENG→AZE
(Aug with TUR)

12.33 5.88

AZE→ENG
(Aug with TUR

+BT on training set)

ENG→AZE
(Aug with TUR

+BT on training set)

13.44 7.06
AZE→ENG

(Aug with TUR
+BT on training set

+BT with ENG→AZE)

ENG→AZE
(Aug with TUR

+BT on training set
+BT with AZE→ENG)

14.03 8.04
AZE→ENG

(Aug with TUR
+BT on training set

+BT with ENG→TUR)

ENG→AZE
(Aug with TUR

+BT on training set
+BT with TUR→ENG)

10.73 6.03
AZE→ENG

(Aug with TUR
+BT on training set

+BT with ENG→TUR
+BT with ENG→AZE)

ENG→AZE
(Aug with TUR

+BT on training set
+BT with TUR→ENG
+BT with AZE→ENG)

14.55 8.67

Table 3: BLEU scores for different settings under back-
translation

Setting 3 assumes a realistic scenario with
no availability of monolingual low-resource in-
stances. All other settings are for exploring the best
way to build the pseudo-parallel corpus for back-
translation. To ensure the results are comparable
to the results in 2.3, the original back-translated
examples on the training set from 2.3 are reused.
Table 3 displays the results for all six settings, and
the previous baselines are kept for comparison. The
observations are as follows:

1) For the ENG→AZE direction, back-translated
examples using monolingual data from the related
high resource language alone do not help improve
the BLEU score at all. The scores even fall behind
the baseline that only applies back-translation on



the training set. When monolingual data from the
low-resource language is available and utilized for
constructing the pseudo-parallel corpus, the model
achieves a significant improvement over the base-
line. However, combining pseudo-parallel exam-
ples from both the target low-resource language
and the high-resource related language achieves
the highest BLEU score.

2) For the AZE→ENG direction, the results
are strikingly similar, even though the same set
of monolingual ENG is used across all relevant
settings: when monolingual ENG is only back-
translated to TUR and added to the synthetic cor-
pus, the BLEU score falls behind the baseline that
applies back-translation on the training set. When
monolingual ENG is only back-translated to AZE,
it significantly outperforms the baseline. Adding
back the synthetic TUR-ENG subset obtained ear-
lier further improves the performance.

The observations above indicate that for aug-
menting the ENG→AZE model, even though the
two languages of study (AZE and TUR) are highly
related, simply utilizing the monolingual data from
the higher resource language does not help improve
low-resource translation performance. Synthetic
parallel corpora for both translation directions need
to include the target low-resource synthetic exam-
ples to be useful. Only then could synthetic exam-
ples from the high resource language further boost
the model performance.

2.5 Objective 4: Self-training with
target-side monolingual data from a
mismatched domain

For studying self-training, the project uses the same
300k unlabeled examples from Wikipedia for each
language. Unlike back-translation that uses target-
side monolingual data and a model trained un-
der the reverse direction, source-side monolingual
data is used, and synthetic parallel examples are
generated using the model for the current trans-
lation direction. As the project operates in an
LRL+HRL scenario, it also explores different sce-
narios and settings regarding the availability of
source-side monolingual data and different ways
of constructing a pseudo-parallel corpus for self-
training. Therefore, like the experiments in 2.4,
this subsection explores six different scenarios:
1) For augmenting the ENG→AZE direction,
monolingual ENG instances are translated into both
AZE and TUR;

1) For augmenting the AZE→ENG direction, both
monolingual AZE and TUR instances are trans-
lated into English;
3) For augmenting the ENG→AZE direction,
monolingual ENG instances are translated into only
TUR;
4) For augmenting the ENG→AZE direction,
monolingual ENG instances are translated into only
AZE;
5) For augmenting the AZE→ENG direction, only
monolingual TUR instances are back-translated
into English;
6) For augmenting the AZE→ENG direction, only
monolingual AZE instances are back-translated
into English.
The two models from 2.3 are again used to generate
synthetic examples for self-training to compare the
results with those obtained using back-translation
in 2.4. To make sure the results are comparable to
the results in 2.3, the original back-translated exam-
ples on the training set from 2.3 are reused, and a
new model is trained from random initialization on
the combined pseudo-parallel corpus. Unlike He
et al. (2020), no input perturbation is applied to
the self-translated monolingual examples (unlike
the original paper) as it is less effective. However,
beam search and a large dropout rate during re-
training still skew the self-translation distribution
away from the true model distribution, allowing
self-distillation. Table 4 displays the results for
all six settings, along with baselines copied from
previous sections.

Setting 6 assumes a realistic scenario with no
availability of monolingual low-resource instances.
All other settings are for exploring the best way to
build the pseudo-parallel corpus for self-training.
The observations are as follows:

1) For the AZE→ENG direction, self-training
on monolingual data from the related high resource
language alone does not help improve the BLEU
score at all. Self-training on monolingual data
from the low-resource language alone still does
not beat the baseline established with only back-
translation on the training set. However, the final
model achieves a moderate improvement over the
results in 2.3 when pseudo-examples from the high-
resource related language are added back to the
synthetic parallel corpus.

2) For the ENG→AZE direction, the results are
very similar: when monolingual ENG is only trans-
lated to TUR and added to the synthetic corpus,



AZE→ENG
(Aug with TUR)

ENG→AZE
(Aug with TUR)

12.33 5.88

AZE→ENG
(Aug with TUR

+BT on training set)

ENG→AZE
(Aug with TUR

+BT on training set)

13.44 7.06
AZE→ENG

(Aug with TUR
+BT on training set

+ST with AZE→ENG)

ENG→AZE
(Aug with TUR

+BT on training set
+ST with ENG→AZE)

13.30 7.31
AZE→ENG

(Aug with TUR
+BT on training set

+ST with TUR→ENG)

ENG→AZE
(Aug with TUR

+BT on training set
+ST with ENG→TUR)

10.51 5.67
AZE→ENG

(Aug with TUR
+BT on training set

+ST with TUR→ENG
+ST with AZE→ENG)

ENG→AZE
(Aug with TUR

+BT on training set
+ST with ENG→TUR
+ST with ENG→AZE)

13.76 7.73

Table 4: BLEU scores for different settings under self-
training

the BLEU score falls behind the baseline in 2.2.
When monolingual ENG is only translated to AZE,
it offers some moderate improvement over the re-
sults in 2.3, and adding back the synthetic subset
from monolingual ENG to TUR further improves
the performance.

The observations above indicate that one needs
to combine the synthetic corpus from both the low-
resource and the related high resource language
pair for self-training to be useful. For both di-
rections, using synthetic parallel examples from
only the related high-resource pairs hurts the per-
formance greatly. Overall, self-training does not
lend itself to be as useful as back-translation in 2.4
for both translation directions. This is surprising
for the AZE→ENG direction, as back-translation
should have generated synthetic examples of lower
quality than self-training. This indicates that the
synthetic data distribution needs to be different
enough from the current model distribution for
more successful data augmentation.

2.6 Objective 5: Combining self-training
with back-translation

To study whether the improvement brought by self-
training and back-translation are orthogonal to each
other, this experiment uses the two models obtained

in Settings 1) and 2) of 3 to translate source-side
monolingual data and append the newly-generated
synthetic corpora to the original synthetic corpora
used in those two experiments. The two models are
then again trained from scratch. Table5 shows the
results for two translation directions.

AZE→ENG
(Aug with TUR

+BT on training set
+BT with ENG→TUR
+BT with ENG→AZE
+ST with TUR→ENG
+ST with AZE→ENG)

ENG→AZE
(Aug with TUR

+BT on training set
+BT with TUR→ENG
+ BT with AZE→ENG
+ST with ENG→TUR
+ST with ENG→AZE)

14.12 8.35

Table 5: BLEU scores for back-translation + self-
training

Unfortunately, compared to the best back-
translation model in 2.4, adding more self-training
augmentation with source-side monolingual data
does not further improve the translation quality
for both directions, indicating that while both data
augmentation methods can improve with only lim-
ited additional monolingual data significantly, their
benefits are not necessarily orthogonal.

2.7 Objective 6: mBART pre-training with
monolingual data from all three
languages

This set of experiments explores applying the
mBART objective to the LRL+HRL setting, where
the encoder-decoder architecture is pre-trained on
the 300k monolingual instances from AZE, TUR,
and ENG under the mBART denoising objective.
Following Liu et al. (2020b), 35% of the words are
masked by random sampling a span length accord-
ing to a Poisson distribution (λ= 3.5). Additionally,
the order of sentences is permuted within each ex-
ample (if multiple sentences exist in the example).
A language id symbol ¡LID¿ is also used as the
initial token to predict the sentence. The final NMT
models for both directions are fine-tuned from the
pre-trained model checkpoint, first using only the
original LRL+HRL parallel corpus and then using
the original corpus plus the same back-translated
monolingual examples used in Settings 1) and 2)
in 2.4. Table 6 displays the results. From the results,
it seems that the effect of mBART pre-training with
limited monolingual data is not significant: while
starting from a pre-trained checkpoint offers a large
improvement over starting from random initializa-
tion when only the original LRL+HRL parallel cor-



AZE→ENG
(Random init

+Aug with TUR)

ENG→AZE
(Random init

+Aug with TUR)

12.33 5.88
AZE→ENG
(mBART init

+Aug with TUR)

ENG→AZE
(mBART init

+Aug with TUR)

13.86 6.82

AZE→ENG
(Random init

+Aug with TUR
+BT on training set

+BT with ENG→TUR
+BT with ENG→AZE)

ENG→AZE
(Random init

+Aug with TUR
+BT on training set

+BT with TUR→ENG
+BT with AZE→ENG)

14.55 8.67
AZE→ENG
(mBART init

+Aug with TUR
+BT on training set

+BT with ENG→TUR
+BT with ENG→AZE)

ENG→AZE
(mBART init

+Aug with TUR
+BT on training set

+BT with TUR→ENG
+BT with AZE→ENG)

13.77 8.67

Table 6: BLEU scores for starting from a pre-trained
mBART checkpoint

pus is used, the benefit disappears completely when
back-translated monolingual examples are added to
the training set. Surprisingly, for the AZE→ENG
direction, when starting from an mBART check-
point, the BLEU score with back-translated exam-
ples added is even lower than the case without. For
the ENG→AZE direction, with back-translated ex-
amples added, starting from an mBART checkpoint
achieves exactly the same BLEU score as starting
from random initialization. Unlike what was shown
in Liu et al. (2020b), the mBART objective is again
not necessarily orthogonal with back-translation,
at least in this ad-hoc HRL+LRL case when mono-
lingual data is also somewhat limited and reused
for back-translation. This is, however, not surpris-
ing. One reason is that pre-training methods usu-
ally tend to be very data-hungry. Even some of
the low-resource languages in Liu et al. (2020b)
still contain several gigabytes of monolingual data.
Another reason is that while both multilingual de-
noising and translation learn a source side language
model and a target side language model, they are
still very different tasks. Thus, when monolingual
data is somewhat limited, it is best to use it for cre-
ating a synthetic parallel corpus rather than using
it for denoising pre-training.

The comparison of mBART + back-translation
is repeated with 900k monolingual data. While

mBART again helps under the case of no
back-translation (test BLEU scores of 14.23 for
AZE→ENG and 7.20 for ENG→AZE), when back-
translation is applied, mBART again offers no
additional gain(test BLEU scores of 15.83 for
AZE→ENG and 9.23 for ENG→AZE, with or
without mBART).

2.8 Objective 7: Comparing BLEU score
with BERT-SCORE

Recently, BERT-SCORE (Zhang et al., 2020) was
proposed as an automatic evaluation metric for
text generation. Given a reference sentence x =
〈x1, . . . , xk〉 and a hypothesis x̂ = 〈x̂1, . . . , x̂l〉,
the tokens are represented using contextualized em-
beddings, and pairwise cosine similarity was com-
puted for matching. The score is then optionally
weighted with inverse document frequency scores.
In more details, the precision, recall, and F-1 BERT-
SCORE can be calculated as

RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

x>
i x̂j (1)

PBERT =
1

|x̂|
∑
x̂j∈x̂

max
xi∈x

x>
i x̂j (2)

FBERT = 2
PBERT ·RBERT

PBERT +RBERT
(3)

while idf re-weighting works as follows (for recall;
the precision measure follows the same modifica-
tion)

RBERT =

∑
xi∈x idf (xi)maxx̂j∈x̂ x

>
i x̂j∑

xi∈x idf (xi)
(4)



Figure 1: BERT-SCORE vs BLEU score for
AZE→ENG

Figure 2: BERT-SCORE vs BLEU score for
ENG→AZE

Here the idf-reweighted F-1 score is calculated
by treating each test example in the parallel test set
as a document. The calculation is only carried out
on the baseline LRL+HRL models in 2.2 (named
Baseline in the figures), the two models from 2.3
that back-translates the training set only (named
BT in the figures), and the four models in Settings
1) and 2) from 2.4 and 2.5 (named BT Mono and
ST Mono in the figures). The AZE→ENG BERT-
SCOREs are calculated using a RoBERTa-large

model (Liu et al., 2019), while the ENG→AZE
BERT-SCOREs are calculated using the multilin-
gual BERT (Devlin et al., 2019). Figures 1 and 2
indicates that the BLEU scores’ improvements cor-
relate well with improvements in contextualized
token representations.

3 Conclusion

The project explores back-translation, self-training,
and mBART denoising pre-training for a low-
resource language pair, with additional parallel
examples available for another related higher-
resource language to train a many-to-one and a
one-to-many multilingual NMT model. The project
experiments with a wide array of monolingual
data availability scenarios and synthetic corpus
construction settings but kept the total amount of
monolingual data to a bare minimum. The re-
sults show that even without additional monolin-
gual data, back-translation on the HRL+LRL train-
ing set alone offers a considerable improvement
over the HRL+LRL baseline and with additional
monolingual data from a different domain at the
target side available, back-translation gives an even
greater boost. If instead source-side monolingual
data is utilized, using the current model to perform
self-training still offers some, albeit more mod-
erate, improvements. Both back-translation and
self-training, however, fail if only additional mono-
lingual data is available for the higher resource
language, or if additional monolingual English is
translated into the higher resource language only,
and works the best when both the low-resource and
the higher resource language pairs are included in
the synthetic pseudo parallel corpus. Unfortunately,
a simple combination of synthetic corpora gener-
ated by back-translation and self-training offers no
real benefit than the best back-translation model.
While multilingual denoising pre-training on the
monolingual data offers a better starting point, it
also shows no benefit when back-translation is ap-
plied, which indicates that such pre-training does
not help when there isn’t an abundant amount of
monolingual data. These results also indicate that
all methods are ultimately limited by the amount
of data available in current experimental settings.
This calls for future work to explore the best set of
strategies further to apply when monolingual data
is not as abundant as assumed in previous work,
which could be the case for some of the dying lan-
guages in the world.
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