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Abstract

Modern large-scale generative language mod-
els (GLMs) are capable of generating multi-
paragraph texts that are virtually indistinguish-
able from human-written text. The task of au-
tomatic machine-generated text detection has
garnered much research and social interests.
However, the current approaches are heavily
dependent on the decoding strategy used to
generate the text: the classifier that works for
one decoding strategy does not work at all for
the other. Hence, in this project, we explore
to use Fisher Information Matrix to create hid-
den representations for the textual input and
utilize representation learning, one-class tech-
niques, outlier detection algorithms and nov-
elty detection algorithms to achieve a more
generalizable detector for machine-generated
texts. As a result, our method achieve a gain
of 0.18 in AUC for the cross decoding strategy
performance while still maintaining a accept-
able performance for same decoding strategy
performance.

1 Introduction

With the advent of large-scale generative language
models (GLMs), such as BERT (Devlin et al.,
2019), GPT-2 (Radford et al., 2019), the line be-
tween human-written and machine-generated text
has become more and more blurry. At a sur-
face level, humans can no longer distinguish be-
tween human-written and machine-generated text:
for longer text, human may still detect machine-
generated text through subtleties such as logical
fallacies, topic drafting and certain domain-related
knowledge, however, for shorter text with less than
32 tokens, humans struggles to even successfully
distinguish machine-generated text half of the time
(Ippolito et al., 2020). Moreover, harnessing the
power of these powerful GLMs no longer requires
knowledge in them nor the computing sources, nu-
merous online API provides access to a selection

GLMs 1.
The powerful language, coupling with the ease

of use, has made GLMs dangerous and detrimen-
tal when used under malicious intent. Deceptive
text aided by the GLMs can quickly produce and
disseminate untruthful and hateful information to
cause social harm, set political agenda, and even
influences elections. For private companies and in-
dividuals, text riddled with fake and harmful infor-
mation can dismantle the user trust in cyber-spaces,
such as online communities and marketplaces, via
fake post and fake reviews. Therefore, it is of the
interest of both public and private individuals for
the machine-generated texts to be detected.

Traditionally, the problem of machine-generated
text detection is straightforwardly framed as a bi-
nary classification problem: given a piece of text,
the task is classify the text into machine-generated
class and human-written class. Past work has ex-
plored the use of simple statistic method to eval-
uate generation probability of each token or the
probability of the entire sentence according to a
given GLM (Gehrmann et al., 2019); based on
these probabilities, these methods rank the sen-
tences and perform binary classification using a pre-
defined threshold. These methods are essentially
unsupervised since they do not require any training
other than the pre-trained GLM itself. Other works
have tried to explicitly fine-tune a language model
(LM)-based binary classifier, such as BERT (De-
vlin et al., 2019), on human-written and machine-
generated text. These methods result in classifiers
that achieve impressive performance when testing
on machine-generated texts that are generated us-
ing the same generation algorithm (in-domain),
yet they fail almost completely when testing on
texts generated from another generation algorithm
(cross-domain). Specifically, Devlin et al. (2019)
found that the performance of these binary classi-
fiers are highly dependent on the decoding strategy,

1https://transformer.huggingface.co/



the generation algorithm that determines which to-
ken is selected the next from the provability distri-
bution over all tokens given the previously decoded
token in a sequence; and the classifier trained with
texts generated by one decoding strategy will not
generalize to texts generated by another decoding
strategy.

This project aims address this generalization
problem by re-frame the machine-generated text
detection task from a binary classification prob-
lem to a one-class classification problem. Specif-
ically, instead of creating a model that classifies
texts into human-written and machine-generated
class, we create a model that classifies texts into
human-written and non-human-written class. In or-
der to achieve the machine-generated text detection
in this one-class setting, we attempt to improve the
past methods in two aspects: (1) representation and
(2) detection method.

To acquire better hidden representation of the
textual data, we leverage Fisher Information Ma-
trix (FIM). FIM has been shown to be able to cre-
ate textual representations of corpora that capture
the transferability between natural language under-
standing (NLU) tasks (Vu et al., 2020); and com-
pare to the last hidden layer output from LMs, FIM
computed from a set of selective modules of a LM
offers a more multifaceted, comprehensive view of
the input textual data. Moreover, we utilize metric
learning and representation learning method such
as the triplet network (Dong and Shen, 2018) and
Deep SVDD (Ruff et al., 2018) in attempt to trans-
form the FIM representations into a space where
the human-written texts are congregated together
and more segregated from all the other sources
of machine-generated texts. In terms of detection
method, we explore the uses of outlier detection
and novelty detection methods to classify the trans-
formed FIM representations into human-written
and non-human-written classes. Outlier detection,
also known as, anomaly detection, aims to capture
the “normalcy” represented by the majority of the
data and thereby detect the abnormal data patterns
that deviate from the normal data (Chandola et al.,
2009). Novelty detection aims to discern if test data
are from the same distribution as the data available
during training and classify test data that are dif-
ferent from training data into a new “novel” class
(Pimentel et al., 2014). Outlier detection and nov-
elty detection are two very related domains with
only a subtle difference: in outlier detection, the

training data is assumed to be contaminated with
abnormal data, albeit in small quantity, yet in nov-
elty detection, the training data is assumed to be
only from the normal class. Either way these meth-
ods are applicable to our problem by considering
the human-written texts as the normal class and the
non-human-written text, i.e., machine-generated
texts from various decoding strategies, as the ab-
normal or novel class.

Using textual data from human-written texts and
machine-generated texts of two decoding strate-
gies, we experiment our FIM-based textual data
representation with various methods from outlier
detection and novelty detection in both in-domain
and cross-domain setting. We show that creating
a machine-generated text detector that is gener-
alizable among decoding strategies is a difficult
problem: even with more comprehensive represen-
tation and detection methods that directly aim to
improve the generalizability, the barrier of machine-
generated text identifying features between differ-
ent decoding strategies is greater than previously
perceived. Although through our representation
and detection method, we managed to improve
Area Under the Receiver Operating Characteris-
tic Curve (AUC) by around 18%, the overall AUC
is still too low for the method to be reliably used in
practice.

2 Related Work

Machine-Generated Text Detection The prob-
lem of machine-generated text detection has gained
more attention since the advent of powerful
pre-trained generative language models. These
Transformer-based large-scale models are capable
of generating convincing multi-paragraph texts in
multiple domains, including creative writing 2 and
academic paper writing (Beltagy et al., 2019), and
etc. Some work (Gehrmann et al., 2019) is focus-
ing on using the a GLM to evaluate the probability
of a given text or the individual tokens under the as-
sumption that if higher the probability more likely
the text is generated by the GLM. However, these
works are directly dependent on the GLM was used
to generated the texts: if the texts were generated
by the same GLM used for the evaluation, then
the method would have a higher chance of success,
otherwise, these methods would not work. Other
methods (Devlin et al., 2019) fine-tune another
LM to classify the texts into human-written and

2https://www.gwern.net/GPT-3



machine-generated class by performing sequence
classifications. However, as shown by Devlin et al.
(2019), these methods are also dependent on the
decoding strategy and GLM that was used to gen-
erated the texts. Hence, in this project, we aim to
breach this dependency on decoding strategy by
utilizing a different textual data representation and
various detection methods.

Textual Representation via Fisher Information
Matrix Fisher Information Matrix (FIM) is a
parameterization-independent metric on statistical
models (Osawa et al., 2020). Intuitively, FIM pro-
vides a measure of importance, or informative con-
tent, of a weight in a statistical model for a given
set of input and output. FIM determines which
weights are more important by computing the aver-
age KL-divergence between the output distribution
with the original weights and the output distribu-
tion with a set of slightly perturbed weights. Due
to its computationally expensive computation, re-
cent works have focused on computing the approx-
imation of FIM. Achille et al. (2019) used FIM
to characteristic computer vision tasks to measure
the similarities among tasks for meta-learning. Vu
et al. (2020) applied FIM to textual data and NLP
tasks and successfully use FIMs to create hidden
representation to NLP tasks and predict their trans-
ferability. Since FIM provides a importance map
over model weights given a set of input and output,
FIM can then provide a more comprehensive repre-
sentation of a model’s internal response to a given
input compared to hidden representation given by
the last layers of a model. Hence, in this project,
we attempt to use FIM to create textual input data
representations.

Outlier Detection and Novelty Detection Out-
lier detection methods aim to Outlier detection, as
known as anomaly detection, aims to recognize the
expected behavior from a given dataset and then
identify the patterns that are non-conforming to
the expected behavior; the data points with these
non-conforming patterns are referred to as outliers
or anomalies. There are two general types of out-
liers, namely, global outliers and local outliers. For
global outliers, the are far away from all normal
data regions in the space. The local outliers, on the
other hand, although far away from some normal
regions, are relatively close to at least one normal
region. Different unsupervised methods are devel-
oped for both detecting global and local outliers

(Chandola et al., 2009). Novelty detection is a prob-
lem that is related to outlier detection in that it aims
to detect previously unobserved patterns in the data,
such as data from a new class. The difference be-
tween outlier defection and novelty detection is
that the for outlier detection it is assumed that the
given training data contains anomalies, however,
for novelty detection it is assumed the training data
should only contain the normal data.

3 Method

In this section, we introduce the methods we used
in our exploration for this project.

3.1 FIM Generation

Following the work by Ippolito et al. (2020), we
generate FIM using a pre-trained base, uncased
BERT model. Since we want the FIM to capture
the generic textual information, we select the next
token prediction as the task to produce loss and
generate gradient. For modules, we select the 12
encoder layer outputs and 12 multi-attention layer
outputs to compute the the FIM for each input sen-
tence. To observe if the FIMs can differentiate
textual inputs of different sources, i.e., decoding
strategies and human-written, we compute and ob-
serve the T-SNE 2D visualizations of the average
FIMs from each source. As a results, we observe
that the FIMs from the 12 multi-attention layers are
not as distinctive as the FIMs from the 12 encoder
layers. Hence, we decided to use only the encoder
layer outputs to compute the FIM for each textual
input. Therefore, for each data sentence, we com-
pute a 12-by-768 dimension FIM where 768 is the
hidden dimension of the pre-trained BERT.

3.2 Representation Learning

To further transform the representations to make
the FIMs from different sources become more dis-
tinguishable, we apply metric learning techniques.
First, we apply Deep Support Vector Data Descrip-
tion (Deep SVDD) (Ruff et al., 2018), which is
a one-class classification technique. Deep SVDD
learns a neural network transformation that aims
the given hidden representations of data points into
a hypersphere, such that the center of the hyper-
sphere is a trainable parameter and the radius of
the hypersphere is optimized to be as small as pos-
sible. As a one-class technique, it would only take
the data from the “normal” class, i.e., the human-
written class in attempts to map all the human-



written texts into the hypersphere and leave out the
machine-generated texts as anomalies.

Triplet loss is another metric learning technique
that is originally designed to learn image similari-
ties such that similar images, i.e., images from the
same class, are map closer together yet far from
dissimilar images, i.e., images from other classes.
It is another way of learning a transformation to
group and segregate normal (human-written) and
abnormal data (machine-generated) in the embed-
ding space. The one caveat is that Triplet loss
requires at least two classes: one positive and one
negative. In this case, the learned representation
could potentially overfit to the a available nega-
tive class similar to the classifiers with trained with
direct supervision as discussed in Section 2. In
this project, besides using Deep SVDD to compute
representations, we also explore using a Triplet
loss + Deep SVDD technique, where we jointly
optimize the triplet loss and the deep SVDD loss
together. The benefit is that through the triplet loss,
the human-written texts would locate far away from
the machine-generated text of one decoding strat-
egy. Then, through the Deep SVDD loss, we also
transform the human-written texts into a tight hy-
persphere so that they have a better chance of being
separated from the machine-generated text from
other decoding strategies other the one exposed to
the model during training.

3.3 Detection

3.3.1 One-Class Classification

Following the Deep SVDD, one natural detection
method perform one-class classification using the
learned representation transformation and the cen-
ter of the hypersphere: For a given FIM to a tex-
tual input, we first use the trained deep SVDD to
transform into the learned representation; then, we
compute the distance between the representation
to the center of the hypersphere in the embedding
space; finally, this distance is used as the “anomaly”
score indicating how likely the given textual input
belongs to the human-written class.

3.3.2 Unsupervised Outlier Detection

The one-class classification method discussed
above is naturally detecting the global outliers to
human-written data in the embedding space. Hence,
in this method, we apply unsupervised outlier de-
tection methods that aim to detect local outliers to
the representation learned using the deep SVDD

+ triplet loss method. We also apply one super-
vised outlier detection method, HBOS, to detect
the global outliers from the deep SVDD + triplet
loss representation.

3.3.3 Novelty Detection
For the novelty detection, we follow the cur-
rent state-of-the-art method from computer vision,
Skip-GANomaly (Akçay and andToby P. Breckon,
2019), a generative adversarial network (GAN) us-
ing U-Net with skip connection as its encoder. In-
stead of image, in our case, we use the 12-by-768
dimension FIMs as the input to the U-Net. We
use a vanilla U-Net as stated without additional
modifications.

4 Experiment

4.1 Data

Ippolito et al. (2020) collected human-written texts
from web and machine-generated texts produced
by GPT-2. Specifically, the human-written texts
are taken from popular web pages that are from the
same distribution as the training data of GPT-2 data.
The machine-generated texts are generated by GPT-
2 LARGE model with 774M parameters with two
decoding strategies: (1) random and (2) top-k. For
the random decoding, the output token at each step
is randomly sample with probability proportional to
the predicted distribution over the entire vocabulary.
Top-k decoding restricts the predicted distribution
at each step to be limited to the top k most likely
tokens, where k is a constant and set to be 40 for
this dataset. And top-k randomly sample the output
token at each step from a distribution over the top
k most likely words. Although random and top-k
seem similar, given that the predicted distribution
over the entire vocabulary is a long-tail distribution,
the output texts from these two decoding strategies
can be very different since the words from the long-
tail forms a substantial amount of probability mass.

For training data, there are 250K sentences from
the human-written text gathered from web (Web-
Text) and 250K sentences each for random decod-
ing strategy (Random) and top-40 decoding strat-
egy (Top-40). For testing data, there are 50K sen-
tences for WebText, Random, and Top-40 each.

In our experiment for machine-generated text de-
tection, there are two settings: (1) In-Domain and
(2) Out-domain. For in-domain, we train on Web-
Text and Top-40 (if the method requires instances
from the negative class) and test on WebText and



Top-40. For out-domain, we train on WebText and
Top-40 and test WebText and Random.

4.2 Baselines

For our experiments, we consider the following
baseline models.
Fine-tuned BERT (FT-BERT). Following the
work by Ippolito et al. (2020), we fine-tuned base,
uncased pretrained BERT models to two classifiers;
one for WebText and Random and another for Web-
Text and Top-40. The BERT model is fine-tuned
for sequence classification such that a multi-layer
perceptron (MLP) is attached to the last hidden
layer of the <CLS> token. FT-BERT represents the
current state-of-the-art in machine-generated text
detection.
FIM + SVDD + One-Class Classifier (SVDD-
OC). One-class classifier is a natural extension to
SVDD. Given the FIM of a textual input, use the
trained SVDD network to compute the distance
between its embedding and the centroid. The the
distance can be used as the “anomaly score” to in-
dicate how much this given instance belongs to the
“normal”, i.e., human-written, class. SVDD-OC
is explored to examine if the representation learn-
ing on FIMs is helpful for machine-generated text
detection.
FIM + Triplet-SVDD + One-Class Classifier
(TS-OC). This model is similar to SVDD-OC only
now the representation learning is done using a
jointly trained triplet loss and SVDD loss. It uses
the same way of computing the anomaly scores as
SVDD-OC.
FIM + Skip-GANomaly (Skip-GAN). As dis-
cussed in 2, Skip-GAN is the state-of-the-art model
for novelty detection for computer vision applica-
tions. Here we consider to use FIMs to represent
our textual input and then use ResNet from the
Skip-GAN to directly extract features from the
FIMs. The rest follows the original Skip-GAN
paper for its novelty detection setup. Skip-GAN
explores if the use of novelty detection method can
help the machine-generated text detection.
FIM + LOF (FIM-LOF). Here we apply an unsu-
pervised outlier detection method, namely Local
Outlier Factor (LOF) (Breunig et al., 2000), to FIM
representation of the textual input. With these mod-
els, we explore if the use of outlier detection meth-
ods can help to improve machine-generated text
detection. During the project, we explored with as
many as 9 outlier detection methods, but we only

present LOF here since it has the best performance.

4.3 Implementation Details

The algorithm used to compute FIM is adapted
from the official implementation released by Vu
et al. (2020). The pre-trained, base uncased BERT3

model is implemented and maintained by the Hug-
gingface’s library, Transformers (Wolf et al., 2020).
The code on the Skip-GANomaly’s main archi-
tecture and loss computation is adapted from its
official release4 by Akçay and andToby P. Breckon
(2019). The LOF and other outlier detection meth-
ods used in our experiments are implemented and
maintained by the Python library PyOD5 (Zhao
et al., 2019). All the model and training parameters
are set to their default values.

5 Results and Discussion

Detection Performance. We present the model
performances on machine-generated text detection
task in terms of AUC. As shown in Table 1, the
FT-BERT model, as expected based on the results
from Ippolito et al. (2020), achieves a near-perfect
in-domain performance, with an AUC larger than
0.99. However, FT-BERT’s out-domain AUC is a
meager 0.45, which is worse than change and the
lowest among all the models. This indicates that
FT-BERT severely overfit to the training strategy
provided during training.

For SVDD-OC, TS-OC, Skip-GAN and FIM-
LOF, although the out-domain performances have
seen some gain, ranging from 0.02 to 0.11, their
in-domain performances have also suffered a great
deal to the point that the in-domain performances is
also around chance level. This indicates these meth-
ods have failed to learn any features that is useful in
separating human-written and machine-generated
texts. The commonality among these methods is
that they all only do not receive any supervision
that differentiate the human-written and machine-
generated text during training. Some methods,
i.e., Skip-GAN and SVDD-OC, are not exposed
to the machine-generated texts during training at
all. These results show that the learning algorithms
needs some level of supervision to be able to ex-
tract useful features to distinguish human-written
and machine-generated texts.

3https://huggingface.co/bert-base-uncased
4https://github.com/samet-akcay/skip-ganomaly
5https://pyod.readthedocs.io/en/latest/



Model Top-40 (In-Domain) Random (Out-Domain)
FT-BERT 0.9972 0.4504

SVDD-OC 0.5109 0.5677
TS-OC 0.8727 0.6359

Skip-GAN 0.4762 0.4764
FIM-LOF 0.4581 0.5411

Table 1: The in-domain and cross-domain performance for models in terms of AUC. For the in-domain experiment,
the model is trained and evaluated on the top-40 decoding strategy. For out-domain, the model is trained on top-40
and evaluated on random decoding strategy. The best performances are in bold.

Lastly, for TS-OC, it achieves the highest out-
domain AUC of 0.64 and a moderate in-domain
AUC of 0.87. Although TS-OC’s out-domain is
still less than generally acceptable, it is already
higher than the FT-BERT by 0.18. Moreover, com-
paring to FT-BERT, TS-OC’s loss in out-domain
gain of 0.18 outweighs its in-domain AUC loss
of 0.13. Moreover, an in-domain AUC of 0.87 is
still a generally acceptable level of performance.
However, it does seem as though the gain of the
out-domain AUC is obtained at the expenses of the
loss of the in-domain AUC.

6 Conclusion and Future Work

In this project, we attempt to increase the gener-
alizability of the existing machine-generated text
detection method. Specifically, we aim to create a
detection algorithm that is less dependent on the
decoding strategy of the machine-generated text.
In creating the algorithm, we explore the possibil-
ity of using FIM as representation for textual data
instead of last hidden layer output from pre-trained
LMs, and using various one-class classification and
outlier detection algorithms instead of a binary clas-
sifier trained with direct supervision. As a result,
we use a metric learning algorithm with one-class
classification that is jointly optimized with triplet
loss and SVDD loss to achieved a 0.18 AUC gain
in out-domain scenario.

In terms of future work, one immediate step is
to evaluate our method under more cross decoding
strategy and cross GLM scenarios. A second di-
rection would be to perform a careful study on the
features that are helpful in performing the machine-
generated text detection and analyze if the features
needed for different decoding strategies are in con-
flict with each other in the sense that the features
that are useful for detecting one decoding strategy’s
text is detrimental to detecting the other.
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