

Fabio Petroni, Tim Rockt aschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,

Alexander H. Miller, Sebastian Riedel

Jon Vincent Medenilla ECE 594 March 24, 2022

Knowledge Bases

- A knowledge base allows for rapid search, retrieval, and reuse
- Stores information as answers to questions or solutions to problems
- Can be fed into a language model

Examples of Knowledge bases

- Concepts like classes and individuals are modeled as nodes
- Relations as edges of graphs
- Classes concepts like documents, events, or subjects
- Individuals instances of a class or an object
- Relations capture relationships between classes and individuals
 - is-type-of, is-instance-of, and has-attribute

WordNet Search - 3.1

- WordNet home page - Glossary - Help

Word to search for: smile Search WordNet

Display Options: (Select option to change) ✓ Change

Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations Display options for sense: (gloss) "an example sentence"

Noun

 S: (n) smile, smiling, grin, grinning (a facial expression characterized by turning up the corners of the mouth; usually shows pleasure or amusement)

Verb

- S: (v) smile (change one's facial expression by spreading the lips, often to signal pleasure)
- S: (v) smile (express with a smile) "She smiled her thanks"

How knowledge bases are used in NLP models:

• Entity extraction - replace or augment entity occurrences in text

 Coreference resolution: "I voted for Nader because he was most aligned with my values," she said.

• Entity Linking:

Proposed Solution:

- Ask the model to fill in masked tokens
- "Alex was born in [MASK]"
- Pre-trained high-capacity
 models such as ELMo and BERT
 store vast amounts of linguistic
 knowledge useful for
 downstream tasks

The Pros:

- Requires no schema engineering
- No need for human annotations
- Supports a more diverse/open set of inquiries

Questions this paper addresses:

- How much relational knowledge do they store?
- How does this differ for different types of knowledge such as facts about entities, common sense, and general question answering?
- How does their performance without fine-tuning compare to symbolic knowledge bases automatically extracted from text?

LAMA (Language Model Analysis) Probe

- consisting of a set of knowledge sources, each comprised of a set of facts (subject, relation, object)
- Success depends on predicting masked objects such as "Dante was born in ____"
- tested for a variety of types of knowledge: relations between entities stored in Wikidata, common sense relations between concepts from ConceptNet, and knowledge necessary to answer natural language questions in SQuAD.
- Key Steps:
 - Query each model for a missing token
 - Evaluate each model based on how highly they rank the ground truth token against every word
 in a fixed candidate vocabulary

Knowledge Sources Used: Google-RE - contains ~60K facts manually extracted from Wikipedia

- - Only utilized 3 relations: "place of birth", "date of birth" and "place of death"
 - manually defined a template for each considered relation, e.g., "[Adam] was born in [Illinois]" for "place of birth"
- T-Rex is a subset of Wikidata triples
 - Much larger than Google-RE with broader relations
 - Facts were automatically aligned to Wikipedia (can be noisy)
- SQuAD
 - Question-answering dataset
 - a subset of 305 context-insensitive questions with single token answers
 - rewriting "Who developed the theory of relativity?" as "The theory of relativity was developed by
- ConceptNet
 - Multilingual knowledge base, initially built on top of Open Mind Common Sense sentences
 - English parts that have single-token objects covering 16 relations

Language Models evaluated:

Unidirectional Language Models:

• Given a string of input tokens w = [w1, w2, ..., wn], assign probability p(w)

$$p(\mathbf{w}) = \prod_{t} p(w_t | w_{t-1}, \dots, w_1).$$

Using neural language models:

$$p(w_t | w_{t-1}, \dots, w_1) = \operatorname{softmax}(\mathbf{W}\mathbf{h}_t + \mathbf{b})$$

- ht = output vector at position t
- W = learned parameter matrix

Fairseq-fconv

- Multiple layers of gated convolutions
- Trained on the WikiText-103 corpus

Transformer~XL

- Large-scale LM based on the Transformer
- Takes into account a longer history
- Used relative instead of absolute positional encoding
- Trained on the WikiText-103 corpus

Bidirectional Language Models:

- ELMO:
 - Given a string of input tokens w = [w1, w2, ..., wn] and position $1 \le i \le N$, estimate $p(w_i) = p(w_i | w_1, ..., w_{i-1}, w_{i+1}, ..., w_N)$
 - ELMo: Forward and backward LSTM, resulting in $\overrightarrow{\mathbf{h}}_i$ and $\overleftarrow{\mathbf{h}}_i$
 - Trained on the Google Billion Word dataset
 - ELMo 5.5B
 - Trained on English Wikipedia and monolingual news crawl from WMT 2008-2012

• BERT:

- Transformer architecture
- Trained on the BookCorpus and English Wikipedia
- language modelling (15% of tokens were masked and BERT was trained to predict them from context) and next sentence prediction (if a chosen next sentence was probable or not given the first sentence)
- BERT-base (12 encoders with 12 bidirectional self-attention heads)
- BERT-large (24 encoders with 16 bidirectional self-attention heads)

Methodology

$$p(\mathbf{w}) = \prod_{t} p(\mathbf{w}_{t} | \mathbf{w}_{t-1}, \dots, \mathbf{w}_{1}).$$

$$p(\mathbf{w}_{t} | \mathbf{w}_{t-1}, \dots, \mathbf{w}_{1}) = \text{softmax}(\mathbf{W}\mathbf{h}_{t} + \mathbf{b})$$

$$W = [\text{'compare', 'language', 'models', 'to', 'canonical', 'ways'}]$$

$$p(\text{'ways'}) = \prod_{t \in \mathcal{V}} p(\text{'ways'} | \text{'canonical'}, \dots, \text{'compare'}]$$

$$= \text{softmax}(\text{Whways} + \mathbf{b})$$

$$Uni directional:$$

$$h_{t-1} = \text{output vector at 'canonical'}$$

$$Bidirectional:$$

$$ELMo: \qquad (t = 2 \Rightarrow \text{'models'})$$

$$h_{t-1} = \text{output vector at 'language'}$$

$$h_{t+1} = \text{output vector at 'language'}$$

$$h_{t+1} = \text{output vector at 'language'}$$

- ELMo: averaged forward and backward probabilities from the corresponding softmax layers
- BERT: masked the token at position t, fed output to vector corresponding to masked token (ht) into softmax layer

Baselines

Freq

• subject and relation pair, this baseline ranks words based on how frequently they appear as objects for the given relation in the test data

Relation Extraction (RE)

- extracts relation triples from a given sentence using an LSTM-based encoder and an attention mechanism
- constructs a knowledge graph of triples
- At test time, they queried this graph by finding the subject entity and then rank all objects in in the correct relation based on the confidence scores by the RE

DrQA

- a popular system for open-domain question answering
- Two-step pipeline:
 - First, a TF/IDF information retrieval step is used to find relevant articles from a large store of documents (e.g. Wikipedia)
 - Secondly, on the retrieved top k articles, a neural reading comprehension model then extracts answers

Metrics

- Rank-based metrics
- For multiple valid objects for Subject-Relation pair, removed all other valid objects from the candidates when ranking at test time other than the ones they were testing
- Mean precision at k (P@k)
 - For a given fact, this value is 1 if the object is ranked among the top k results, 0 otherwise

Considerations in LAMA

- Manually Define Templates:
 - Manually defined a template that queries for the object slot for each relation
 - For example, for a relation ID "works-for", and the user asks for "is-working-for", the accuracy would be 0
 - e.g., "[S] was born in [O]" for "place of birth".
- Single Token
- Object Slots
 - Only in triples (subject, relation, object)
- Intersection of Vocabularies
 - ELMO uses ~800K tokens compared to BERT's ~30K tokens
 - Intersection of 2 vocabularies yielding ~21K tokens

Results

Corpus	Dalation	Statistics		Baselines		KB		LM						
	Relation	#Facts	#Rel	Freq	DrQA	RE_n	RE_o	Fs	Txl	Eb	E5B	Bb	Bl	
	birth-place	2937	1	4.6	_	3.5	13.8	4.4	2.7	5.5	7.5	14.9	16.1	
Concle PE	birth-date	1825	1	1.9	-	0.0	1.9	0.3	1.1	0.1	0.1	1.5	1.4	
Google-RE	death-place	765	1	6.8	-	0.1	7.2	3.0	0.9	0.3	1.3	13.1	14.0	
	Total	5527	3	4.4	42	1.2	7.6	2.6	1.6	2.0	3.0	9.8	10.5	
	1-1	937	2	1.78	-	0.6	10.0	17.0	36.5	10.1	13.1	68.0	74.5	
T-REx	N-1	20006	23	23.85	_	5.4	33.8	6.1	18.0	3.6	6.5	32.4	34.2	
1-KEX	N-M	13096	16	21.95	-	7.7	36.7	12.0	16.5	5.7	7.4	24.7	24.3	
	Total	34039	41	22.03	2	6.1	33.8	8.9	18.3	4.7	7.1	31.1	32.3	
ConceptNet	Total	11458	16	4.8	-	15.0	-	3.6	5.7	6.1	6.2	15.6	19.2	
SQuAD	Total	305	_	-	37.5	127	_	3.6	3.9	1.6	4.3	14.1	17.4	

Table 2: Mean precision at one (P@1) for a frequency baseline (Freq), DrQA, a relation extraction with naïve entity linking (RE_n), oracle entity linking (RE_o), fairseq-fconv (Fs), Transformer-XL large (Txl), ELMo original (Eb), ELMo 5.5B (E5B), BERT-base (Bb) and BERT-large (Bl) across the set of evaluation corpora.

Discussion of Results

Commun	Relation	Statistics		Baselines		KB		LM					
Corpus		#Facts	#Rel	Freq	DrQA	RE_n	RE_o	Fs	Txl	Eb	E5B	Bb	BI
	birth-place	2937	1	4.6	1.	3.5	13.8	4.4	2.7	5.5	7.5	14.9	16.1
Canala DE	birth-date	1825	1	1.9	-	0.0	1.9	0.3	1.1	0.1	0.1	1.5	1.4
Google-RE	death-place	765	1	6.8	_	0.1	7.2	3.0	0.9	0.3	1.3	13.1	14.0
	Total	5527	3	4.4	()	1.2	7.6	2.6	1.6	2.0	3.0	9.8	10.5

- From earlier example, "Adam was born in [MASK]"
- BERT-Large (last column) outperformed all models by a substantial margin
- REn naïve entity linking, i.e. exact string matching
- REo uses an oracle for entity-linking, i.e. any given (s, r, o) in sentence x, if any other (s', r, o') has been extracted in the same sentence, s will be linked to s', and o to o'

Corous	Relation	Statistics		Baselines		KB		LM						
Corpus		#Facts	#Rel	Freq	DrQA	RE_n	RE_o	Fs	Txl	Eb	E5B	Bb	BI	
	1-1	937	2	1.78	92	0.6	10.0	17.0	36.5	10.1	13.1	68.0	74.5	
T-REx	N-1	20006	23	23.85	-	5.4	33.8	6.1	18.0	3.6	6.5	32.4	34.2	
1-KEX	N-M	13096	16	21.95	-	7.7	36.7	12.0	16.5	5.7	7.4	24.7	24.3	
	Total	34039	41	22.03		6.1	33.8	8.9	18.3	4.7	7.1	31.1	32.3	

- More facts and relations than Google-RE
- BERT-Large performed better on 1-to-1 relations, i.e. "capital-of"
- N-1: Multiple valid subjects-relations-> 1 correct object
- N-M relations: multiple objects for a subject-relation pair. i.e. "Brian owns [car, laptop, iPhone,etc]"

Corpus	Dalation	Statis	Statistics		Baselines		KB		LM					
	Relation	#Facts	#Rel	Freq	DrQA	RE_n	RE_o	Fs	Txl	Eb	E5B	Bb	Bl	
ConceptNet	Total	11458	16	4.8	57.7	270	-	3.6	5.7	6.1	6.2	15.6	19.2	
SQuAD	Total	305	-	7-3	37.5	-	-	3.6	3.9	1.6	4.3	14.1	17.4	

- BERT-Large achieved best performance for ConceptNet
 - Able to retrieve commonsense knowledge at a similar level to factual knowledge

	Relation	Query	Answer	Generation
	AtLocation	You are likely to find a overflow in a	drain	sewer [-3.1], canal [-3.2], toilet [-3.3], stream [-3.6], drain [-3.6]
	CapableOf Ravens can		fly	fly [-1.5], fight [-1.8], kill [-2.2], die [-3.2], hunt [-3.4]
	CausesDesire	Joke would make you want to	laugh	cry [-1.7], die [-1.7], laugh [-2.0], vomit [-2.6], scream [-2.6]
ĕ	Causes	Sometimes virus causes	infection	disease [-1.2], cancer [-2.0], infection [-2.6], plague [-3.3], fever [-3.4]
É.	HasA	Birds have	feathers	wings [-1.8], nests [-3.1], feathers [-3.2], died [-3.7], eggs [-3.9]
e e	HasPrerequisite	Typing requires	speed	patience [-3.5], precision [-3.6], registration [-3.8], accuracy [-4.0], speed [-4.1]
S	HasProperty	Time is	finite	short [-1.7], passing [-1.8], precious [-2.9], irrelevant [-3.2], gone [-4.0]
	MotivatedByGoal	You would celebrate because you are	alive	happy [-2.4], human [-3.3], alive [-3.3], young [-3.6], free [-3.9]
	ReceivesAction	Skills can be .	taught	acquired [-2.5], useful [-2.5], learned [-2.8], combined [-3.9], varied [-3.9]
	UsedFor	A pond is for .	fish	swimming [-1.3], fishing [-1.4], bathing [-2.0], fish [-2.8], recreation [-3.1]

Corpus	Relation	Statis	stics	Baselines		KB		LM						
		#Facts	#Rel	Freq	DrQA	RE_n	RE_o	Fs	Txl	Eb	E5B	Bb	BI	
SQuAD	Total	305	-	7-3	37.5	-	-	3.6	3.9	1.6	4.3	14.1	17.4	

- Open domain cloze-style (fill in the blanks)
- Huge performance gap between BERT-Large and supervised DrQA
- Note: BERT and ELMo were both unsupervised and not fine-tuned for this task
- In terms of P@10 (Top-10 best answers), gap is remarkably small (57.1 for Bl and 63.5 for DrQA)

Conclusions

- For an unsupervised, not fine-tuned, pre-trained model BERT-Large, it is possible to recall knowledge better than its competitors, comparable to that of a knowledge base extracted with an off-the-shelf relation extractor and an oracle-based entity linker from a corpus known to express the relevant knowledge
- factual knowledge can be recovered surprisingly well from pretrained language models, however, for some relations (particularly N-to-M relations) performance is very poor
- This paper focused on the as-is knowledge inherent in the weights of existing pre-trained models which are often used as starting points for most research works
- Language models trained on ever-growing corpora might become a viable alternative to traditional knowledge bases extracted from text in the future

Limitations

- Only used Single-Token objects as prediction targets
- Chose only query objects in triples
- Still spent time manually defining templates for each relation

Questions/Thoughts?