Logistics

• Presentation slots

• Lecture videos posted on class channel on Mediaspace

• Assignment 1 out
 • due 2/11
 • post issues on Piazza
 • submit on Gradescope
From Words to Word Sequences

• Words as units of text
 • Word level models for text classification

• Relations between words
 • Word meaning and similarity
Words to Word-Sequences

NLP rich in sequences
- Characters to words
- Words to sentences
- Sentences to documents

- Two models of words as sequences
 - Language modeling
 - Tagging
Words to Word Sequences

• Language modeling

• Tagging
Which of These are Valid?

• Iryna went to the museum.

• museum Iryna to the went.

• Iryna went museum.

• The museum went Iryna.

• The mobile museum went to Iryna.
Language Modeling

• Probability of a sentence (sequence of words)
 • \(p(w_1, w_2, \ldots, w_M) \), with \(w_m \in V \) (vocabulary)

• Why is probability of a sentence useful?
 • Machine translation

他向记者介绍了发言的主要内容
– He briefed to reporters on the chief contents of the statement
– He briefed reporters on the chief contents of the statement
– He briefed to reporters on the main contents of the statement
– He briefed reporters on the main contents of the statement
Language Modeling

• Probability of a sentence (sequence of words)
 • $p(w_1, w_2, \ldots, w_M)$, with $w_m \in V$ (vocabulary)

• Why is probability of a sentence useful?
 • Machine translation
 • Speech recognition
 • Summarization
 • Dialog generation
Language Modeling

- Everyday use of LM
 - Given a part of sentence, predict next word
Language Modeling

- Probability of a sentence
- Measure of fluency of sentence

- El café negro me gusta mucho.

{the coffee black me pleases much, I love black coffee}
N-Gram Language Modeling

• Classical models for LM
 • Definition: \textit{n-gram is a chunk of n consecutive words}
 • Unigram, bigram, trigram

• Core idea:
 • Gather statistics on n-grams from a corpus
 • Use to predict next word/probability of sentence
N-Gram Language Modeling

• Classical models for LM
 • n-gram language models
• Distribution of next word is a multinomial conditioned on previous $n-1$ words
 \[
P(W) = P(w_1, \ldots, w_n) = P(w_1) \cdot \prod_{i=2}^{n} P(w_i | w_1, \ldots, w_{i-1})\]

• Simplifying assumption: k-th order Markov assumption
 K-gram model condition on $k-1$ words
 \[
P(w_n | w_1, \ldots, w_{n-1}) \approx P(w_n | w_{n-k+1}, \ldots, w_{n-1})\]
 • trigram model $P(w_1, \ldots, w_n) = P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_1, w_2) \ldots$
Estimating Probabilities

\[P(w|\text{visited San}) = \frac{\text{count}(\text{visited San}, w)}{\text{count}(\text{visited San})} \]

- Assume we have a vocabulary of size \(V \), how many sequences of length \(n \) do we have?
 A) \(n \times V \)
 B) \(n^V \)
 C) \(V^n \)
 D) \(V/n \)
How to Learn a LM?

\[P(W) = P(w_1, \ldots, w_n) = P(w_1) \cdot \prod_{i=2}^{n} P(w_i | w_{i-k+1} \ldots w_{i-1}) \]

- Conditional probabilities
- Obtained by MLE (counting)

- *I visited San _____*
- put a distribution on next word using trigram language model learned from large corpus

\[P(w|visited \ San) = \frac{\text{count}(visited \ San, w)}{\text{count}(visited \ San)} \]
How to Learn a LM?

• Pad a \texttt{\textless begin\textgreater} and \texttt{\textless end\textgreater} symbol

• Count to obtain MLE of probabilities

• \(P(\text{I like black coffee}) = P(\text{I}| \text{\textless begin\textgreater}) \ldots P(\text{coffee}|\text{black}).P(\text{\textless end\textgreater}| \text{coffee})\)
Problems with N-gram LM?

• Throwing away too much context, impacts the word we predict

• 4-gram LM
 When the lunch bell rang, the students opened their _______

• When the lunch bell rang, the students opened their _______
Problems with N-gram LM?

• Sparsity issues

\[P(w|\text{students opened their}) = \frac{\text{count}(\text{students opened their } w)}{\text{count}(\text{students opened their})} \]

• For some \(w \), the count of numerator is zero

solution: smoothing, have small probability for every \(w \)
Smoothing

We often want to make estimates from sparse statistics:

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

Smoothing flattens spiky distributions so they generalize better

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total
Problems with N-gram LM?

• Sparsity issues

\[
P(w|\text{students opened their}) = \frac{\text{count}(\text{students opened their } w)}{\text{count}(\text{students opened their})}
\]

• Sparsity in terms of count of denominator
 • Solution: Back off

• Worsens for large \(n \), so \(n \leq 5 \) typically

• Number of parameters grows with \(n \)
All Our N-gram are Belong to You

Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects, ...

That’s why we decided to share this enormous dataset with everyone. We processed 1,024,908,267,229 words of running text and are publishing the counts for all 1,176,470,663 five-word sequences that appear at least 40 times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.
What else can you use LMs for?

- Generate text
 - <start> I love ____
 - <start> I love to ____

while didn’t choose end-of-sentence symbol:
- calculate probability
- sample a new word from the probability distribution
Evaluating LM

- Extrinsic: check whether the language model improves a task

- Intrinsic: Best LM is one that best predicts an unseen test set
 - Gives the highest $P(\text{sentence})$
Evaluating LM

- Extrinsic: check whether the language model improves a task

- Intrinsic: held-out likelihood on tests

\[\ell(w) = \sum_{m=1}^{M} \log p(w_m | w_{m-1}, \ldots, w_1), \]

Perplexity: inverse probability of the test set, normalized by the number of words

\[\text{Perplex}(w) = 2^{-\frac{\ell(w)}{M}}, \]

Minimizing perplexity == maximizing probability
<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy to compute</td>
<td>Requires domain match between train and test</td>
</tr>
<tr>
<td>standardized</td>
<td>might not correspond to end task optimization</td>
</tr>
<tr>
<td>directly useful, easy to use to correct sentences</td>
<td>log 0 undefined</td>
</tr>
<tr>
<td>nice theoretical interpretation - matching distributions</td>
<td>can be ‘cheated’ by predicting common tokens</td>
</tr>
<tr>
<td></td>
<td>size of test set matters</td>
</tr>
<tr>
<td></td>
<td>can be sensitive to low prob tokens/sentences</td>
</tr>
</tbody>
</table>
Problems and Solutions

• Cannot share strength among **similar words**

 she **bought** a car
 she **bought** a bicycle
 she **purchased** a car
 she **purchased** a bicycle

 → solution: class based language models

• Cannot condition on context with **intervening words**

 Dr. Jane **Smith**
 Dr. Gertrude **Smith**

 → solution: skip-gram language models

• Cannot handle **long-distance dependencies**

 for **tennis** class he wanted to buy his own **racquet**
 for **programming** class he wanted to buy his own **computer**

 → solution: cache, trigger, topic, syntactic models, etc.
Alternative: Featurized Linear Models

• Calculate features of the context
• Based on the features, calculate probabilities
• Optimize feature weights using gradient descent
Example

Previous words: “giving a"

\[
b = \begin{pmatrix}
 3.0 \\
 2.5 \\
 -0.2 \\
 0.1 \\
 1.2 \\
 \vdots
\end{pmatrix}, \quad w_{1,a} = \begin{pmatrix}
 -6.0 \\
 -5.1 \\
 0.2 \\
 0.1 \\
 0.5 \\
 \vdots
\end{pmatrix}, \quad w_{2,giving} = \begin{pmatrix}
 -0.2 \\
 -0.3 \\
 1.0 \\
 2.0 \\
 -1.2 \\
 \vdots
\end{pmatrix}, \quad s = \begin{pmatrix}
 -3.2 \\
 -2.9 \\
 1.0 \\
 2.2 \\
 0.6 \\
 \vdots
\end{pmatrix}
\]

Words we’re predicting	How likely are they?	How likely are they given prev. word is “a”?	How likely are they given 2nd prev. word is “giving”?	Total score

Convert scores into probabilities by taking the exponent and normalizing (softmax)
Problems and Solutions

• Cannot share strength among **similar words**

 | she bought a car | she bought a bicycle |
 | she purchased a car | she purchased a bicycle |

 → not solved yet 😞

• Cannot condition on context with **intervening words**

 | Dr. Jane Smith | Dr. Gertrude Smith |

 → solved! 😊

• Cannot handle **long-distance dependencies**

 | for tennis class he wanted to buy his own racquet |
 | for programming class he wanted to buy his own computer |

 → not solved yet 😞
Linear Models Can’t Learn Feature Combinations

students take tests \rightarrow **high**
students write tests \rightarrow **low**
teachers take tests \rightarrow **low**
teachers write tests \rightarrow **high**

- These can’t be expressed by linear features
- What can we do?
 - Remember combinations as features (individual scores for “students take”, “teachers write”)
 \rightarrow Feature space explosion!
 - Neural nets
Neural Networks

• Complex models for NLP

• Text classification
Text Classification

A First Try:
Bag of Words (BOW)
Text Classification

- Each word has its own 5 elements corresponding to [very good, good, neutral, bad, very bad]
- “hate” will have a high value for “very bad”, etc.

- Does it contain “don’t” and “love”?
- Does it contain “don’t”, “i”, “love”, and “nothing”?

A First Try: Bag of Words (BOW)

I don’t love this movie

There’s nothing I don’t love about this movie
Neural Networks for Text Classification

I
lookup

hate
lookup

this
lookup

movie
lookup

some complicated function to extract combination features (neural net)

scores

probs

softmax
Continuous Bag of Words (CBOW)

- Still no combination features: only the expressive power of a linear model, but dimension reduced
Deep CBOW

\[\text{hate} + \text{this} + \text{movie} = \tanh(W_1 \cdot h + b_1) + \tanh(W_2 \cdot h + b_2) \]

\[W + \text{bias} = \text{scores} \]
Neural Networks for Text Classification

- Now things are more interesting!
- We can learn feature combinations (a node in the second layer might be “feature 1 AND feature 5 are active”)
- e.g. capture things such as “not” AND “hate”
Neural Language Models

- (See Bengio et al. 2004)
Neural Language Models = Shared Strength

Word embeddings: Similar input words get similar vectors

Similar output words get similar rows in the softmax matrix

Similar contexts get similar hidden states

\[
\text{tanh}(W_1^\top h + b_1)
\]

\[
W + \text{bias} \quad \rightarrow \quad \text{scores} \quad \rightarrow \quad \text{softmax} \quad \rightarrow \quad \text{probs}
\]
Problems and Solutions

- Cannot share strength among **similar words**

<table>
<thead>
<tr>
<th>she bought a car</th>
<th>she bought a bicycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>she purchased a car</td>
<td>she purchased a bicycle</td>
</tr>
</tbody>
</table>

 → solved, and similar contexts as well! 😊

- Cannot condition on context with **intervening words**

 | Dr. Jane Smith | Dr. Gertrude Smith |

 → solved! 😊

- Cannot handle **long-distance dependencies**

 | for tennis class he wanted to buy his own racquet |
 | for programming class he wanted to buy his own computer |

 → not solved yet 😞
Long Range Dependencies

- Agreement in number, gender, etc.

 He does not have very much confidence in himself.
 She does not have very much confidence in herself.

- Selectional preference

 The reign has lasted as long as the life of the queen.
 The rain has lasted as long as the life of the clouds.
Long Range Dependencies

- What is the referent of “it”?

 The trophy would not fit in the brown suitcase because it was too **big**.

 Trophy

 The trophy would not fit in the brown suitcase because it was too **small**.

 Suitcase

(from Winograd Schema Challenge: http://commonsensereasoning.org/winograd.html)
Recurrent Neural Networks (Elman 1990)

Feed-forward NN

- context
- lookup
- transform
- predict
- label

Recurrent NN

- context
- lookup
- transform
- predict
- label
Recurrent Neural Networks (Elman 1990)

- What does processing a sequence look like?
RNN Training

1 → hate → this → movie → prediction 1 → prediction 2 → prediction 3 → prediction 4 → sum → total loss

loss 1 → label 1 → loss 2 → label 2 → loss 3 → label 3 → loss 4 → label 4
RNN Advantage

- Represent a sentence
 - Read whole sentence, make a prediction
- Represent a context within a sentence
 - Read context up until that point
Represent Sentences

\[\text{RNN} \rightarrow \text{RNN} \rightarrow \text{RNN} \rightarrow \text{RNN} \rightarrow \text{predict} \]

\[\text{I} \rightarrow \text{hate} \rightarrow \text{this} \rightarrow \text{movie} \rightarrow \text{prediction} \]
Represent Sentences

- Sentence classification
- Conditioned generation
- Retrieval
RNN Advantage

- Represent a sentence
 - Read whole sentence, make a prediction
- Represent a context within a sentence
 - Read context up until that point
Represent Contexts

I → RNN → predict → label

hate → RNN → predict → label

this → RNN → predict → label

movie → RNN → predict → label
Represent Contexts: Language Modeling

- Language modeling is like a tagging task, where each tag is the next word!
Bidirectional RNNs

- A simple extension, run the RNN in both directions