# ECE 586BH: Problem Set 3

Fictitious play dynamics, minimum regret learning from forecasters

**Due:** Tuesday, October 17, at beginning of class

Reading: Course notes, Chapter 3

#### 1. [Which symmetric games are potential games?]

A two player normal form game  $G = (\{1, 2\}, S_1, S_2, u_1, u_2)$  is symmetric if  $S_1 = S_2$  and  $u_1(i, j) = u_2(j, i)$  for any  $i, j \in S_1$ . The following definition makes sense because  $u_2$  is determined by  $u_1$  for such a game. Define a function  $u_1$  on a set  $S_1 \times S_1$  to have property P if it is the payoff function for player 1 in a symmetric two person potential game.

- (a) If there is a function g such that  $u_1(i,j) = g(i)$  for all  $i,j \in S_1$ , does  $u_1$  have property P? If so, give the potential function. If not, give a counter example.
- (b) If  $u_1(i,j) = H(i,j)$  such that H is symmetric (i.e. H(i,j) = H(j,i) for all  $i, j \in S_1$ ) does  $u_1$  have property P? If so, give the potential function. If not, give a counter example.
- (c) For  $S_1$  fixed and a function  $u_1: S_1 \times S_1 \to \mathbb{R}$ , does property P hold if and only if there exist  $g: S_1 \to \mathbb{R}$  and  $H: S_1 \times S_1 \to \mathbb{R}$  such that H is symmetric and  $u_1(i,j) = g(i) + H(i,j)$  for all  $i, j \in S_1$ ? Justify your answer. Hint: How would you construct and verify a potential function for the symmetric game, given  $u_1$ ?

#### 2. [Doubling trick]

Proposition 3.18 of the notes on prediction with expert advice provides the upper bound  $\max_i R_{i,n} \leq \sqrt{2n \ln N}$  for the exponentially weighted forecaster with parameter  $\eta = \sqrt{\frac{2 \ln N}{n}}$ . In some situations there is not a single time horizon n known in advance, so it would be nice to have a forecaster and similar maximum regret bound that holds uniformly over time. That can be accomplished by letting  $\eta$  get smaller with time. A simple approach to this problem is to partition time into periods  $I_0 = \{1\}$ ,  $I_1 = \{2, 3\}$ , ...,  $I_k = \{2^k, \ldots, 2^{k+1} - 1\}$ , ... doubling in length. Instead of carrying over information from one interval to the next, suppose we simply apply the algorithm used Proposition 3.18 separately for each interval.

- (a) Verify that the proof of Proposition 3.18 shows that a bit more is true, namely,  $\max_i R_{i,n'} \le \sqrt{2n \ln N}$  for any n' with  $1 \le n' \le n$ .
- (b) For the forecaster based on the doubling trick, describe the choice of  $\eta$  in each interval and find the smallest constant c so that  $\max_i R_{i,n} \leq c\sqrt{2n \ln N}$  for all  $n \geq 1$ . (Hint: The cumulative regret at  $t \in I_k$  is the sum for intervals  $I_0$  through  $I_k$ .

#### 3. [Existence of Hannan consistent estimators]

- (a) Show that if  $(D_t: t \geq 0)$  is a martingale difference sequence such that  $|D_t| \leq 1$  for all t, then the corresponding martingale defined by  $X_n = X_1 + \cdots + X_n$  satisfies  $\limsup_{n \to \infty} \frac{X_n}{2\sqrt{n \ln n}} \leq 1$  almost surely (i.e. with probability one). (Hint: Use the Azuma-Hoeffding inequality and the Borel Cantelli lemma both in the notes.)
- (b) Combine part (a) and previous problem to show a Hannan consistent estimator exists.

## 4. [One Hannan consistent player]

Consider a finite two-player zero-sum game such that  $\ell: S_1 \times S_2 \to \mathbb{R}$  serves as the loss function of player 1 and reward function of player 2, as usual. Suppose the game is played repeatedly to produce a sequence of outcome tuples  $(I_t, J_t)_{t>1}$ .

- (a) State what it means in this instance for player 1 to use a Hannan consistent strategy.
- (b) If player 1 uses a Hannan consistent strategy, and if  $p^*$  is a limit point of the empirical distribution of plays of player one,  $(\hat{p}_n^I)_{n\geq 1}$ , then must  $p^*$  be a minmax optimal strategy for player 1 for a single play of the game? If yes, give a proof. If no, give a counter example.

# 5. [Blackwell approachability for a simple game with vector valued payoff] Consider a two player game with strategy spaces

$$S_1 = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\} \text{ and } S_2 = \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} \right\},$$

such that if player 1 selects  $x \in S_1$  and player 2 selects  $y \in S_2$ , the payoff vector for player 1 is x + y.

- (a) An arbitrary half space H in the plane can be expressed as  $H = \{v : v \cdot u \leq c\}$ , where u is a unit length vector in  $\mathbb{R}^2$  and  $c \in \mathbb{R}$ . Under what condition on u and c is this half space approachable (for player 1)?
- (b) Let B(r) denote the disk in  $\mathbb{R}^2$  of radius r. Find the minimum value of r so that B(r) is approachable.

## 6. [Pursuit evasion game]

Consider a two-player, zero sum game with  $S_1 = S_2 = \{1, ... 6\}$  and  $\ell(i, j) = \mathbf{1}_{\{|i-j| \geq 2\}}$ . Player 1 seeks to select i to minimize  $\ell(i, j)$ , i.e., to have  $|i - j| \leq 1$ , whereas player 2 seeks to select j to maximize  $\ell(i, j)$ , i.e. to have  $|i - j| \geq 2$ . Basically, player 1 is trying to get close to player 2 while player 2 wants to evade player 1.

- (a) Show that for any Nash equilibrium, or equivalently, saddlepoint, (in mixed strategies), each player wins with equal probability.
- (b) Find the minmax strategy for player 1 (it is unique) and all the maxmin strategies for player 2. Simplify your answer as much as possible.

#### 7. [Simulations for pursuit evasion game]

Run Python simulations of repeated play of the game in the previous problem. See the Jupyter notebook at

http://nbviewer.jupyter.org/urls/courses.engr.illinois.edu/ece586GT/fa2017/ece586GTps3.ipynb? flush\_cache=true. You are free to make use of the notebook for your assignment, for example by modifying some part of it. Investigate three scenarios, with both players using:

**Fictitious play (FP)** At each time t+1, each player plays a strategy that is a pure strategy best response to the empirical average of the previous t plays of the other player. You can break ties any way you'd like.

Regularized fictitious play (RFP) Weighted predictors with exponential weights  $w_{i,t} = e^{-\eta_t L_{i,t}}$  with  $\eta_t = \frac{\eta_1}{t}$ . (Perhaps taking  $\eta_1 = 10$  or  $\eta_1 = 100$  works well.)

Optimized regularized fictitious play (ORFP) Weighted predictors with exponential weights  $w_{i,t} = e^{-\eta_t L_{i,t}}$  with  $\eta_t = \sqrt{8(\ln(6)/t}$ .