CS 579: Computational Complexity. Lecture 3

NL=coNL, Polynomial Hierarchy

Alexandra Kolla

Today

- Randomized log-space
- Alternate characterization of NL
- NL=coNL
- Definition of Polynomial Hierarchy
- Alternate characterization
- Some facts, and when does it collapse

Randomized log-space

- Introduce randomized space-bounded TM (for simplicity only for decision problems).
 - Read-only input tape
 - Read/write work tape
 - Read-only random tape with one-way access (the head can only move from left to right)
- For every fixed input and fixed content of random tape, TM is completely deterministic and either accepts or rejects.

Randomized log-space

- For machine M, input x, random tape content r, denote M(r,x) the outcome of the computation.
- Decision problem L belongs to the class RL if there is a probabilistic TM M that uses O(log n) space on inputs of length n and such that
 - For every $x \in L$, $Pr_r[M(r,x) \ accepts] \ge \frac{1}{2}$
 - For every $x \notin L$, $Pr_r[M(r,x) \ accepts] = 0$

Randomized log-space

- Any constant bigger than zero and smaller than one would work.
- Follows that L⊆RL⊆NL

- Even though we now know that L=SL, it is interesting to see the "old" proof of SL⊆RL.
- Theorem. The problem ST-UCONN is in RL.

- We saw alternate definition of NP that used certificates instead of nondeterminism.
- Can we do the same for NL?
- Certificates might be poly length.
- Need to assume that they are provided to a log-space machine on a read only tape.

• **Definition.** A language L is in NL if there exists a deterministic TM M (verifier) with an additional read-once tape, and a polynomial $p:\mathbb{N}\to\mathbb{N}$ such that for every $x\in\{0,1\}^*$ $x\in L\Leftrightarrow \exists u\in\{0,1\}^{p(|x|)}$ s.t. M(x,u)=1

 By M(x,u) we denote the output of M where x is placed on the input tape and u on the special read-once tape, and M uses only O(log(|x|)) space on its work tapes for every input x.

- What if we remove the read-once restriction and allow the TM's to move back and forth on the certificate?
- This changes the class from NL to NP (ex).

NL=coNL

- Analogously to coNP, we define coNL to be the class of languages that are complements of NL languages.
- Complement of STCONN is in coNL, denote it by \overline{STCONN} : Given directed graph G and special vertices s,t decide whether t is NOT reachable from s.
- In fact, it is coNL-complete.

NL=coNL

• Will show that there is an NL TM which solves \overline{STCONN} .

 Generally, for every "well behaved" s(n), NSPACE(s(n))=coNSPACE(s(n)). (ex)

The polynomial hierarchy

- Difference between NP and coNP is questions of the form "does there exist" (simple, efficient proofs) and "for all" (don't seem to have simple and efficient proofs).
- Formally, decision problem A is in NP iff there is poly-time procedure V(.,.) and polynomial bound p(.) such that

$$x \in A \Leftrightarrow \exists y: |y| \le p(|x|) \land V(x, y) = 1$$

 Decision problem A is inco NP iff there is polytime procedure V(.,.) and polynomial bound p(.) such that

$$x \in A \Leftrightarrow \forall y: |y| \le p(|x|) \land V(x, y) = 1$$

Stacking quantifiers

Suppose you had a decision problem A which asked

$$x \in A \Leftrightarrow \exists z \ s. \ t. \ |z| \le p(|x|) \forall y \ s. \ t. \ |y| \le p(|x|), V(x, z, y)$$

Example: given Boolean formula f, over variables $x_1, x_2, ..., x_n$ is there formula f' which is equivalent to f and is of size at most k?

• Member of the second level of the polynomial hierarchy \sum_2

The polynomial hierarchy

- Starts with familiar classes at level 1: $\Sigma_1 = NP$ and Π_1 =coNP.
- For all i, it includes two classes \sum_i and \prod_i $A \in \sum_i \iff \exists y_1 \forall y_2 \dots Qy_i \ V_A(x, y_1, \dots, y_i)$

$$B \in \prod_i \Leftrightarrow \forall y_1 \exists y_2 \dots Q' y_i V_B(x, y_1, \dots, y_i)$$

For clarity, I omitted the p(.) conditions but they are still there.

The polynomial hierarchy

• Easy to see that : $\prod_k = co\sum_k$.

• For all i<k, $\prod_i \subseteq \sum_k$, $\sum_i \subseteq \sum_k$, $\sum_i \subseteq \prod_k$, $\prod_i \subseteq \prod_k$ (ex)

- PH characterized in terms of "oracle machines"
- Oracle has certain power and can be consulted as many times as desired. Every consultation costs only one computational step at a time.
- Syntactically, let A be some decision problem and \mathcal{M} a class of TM. Then \mathcal{M}^A is the class of machines obtained from \mathcal{M} by allowing instances of A to be solved in one step.

• If C is a complexity class, then $\mathcal{M}^{\mathsf{C}} = \cup_{A \in \mathsf{C}} \mathcal{M}^{A}$.

• If L is complete for C and the machines in \mathcal{M} are powerful enough to compute poly-time computations, then $\mathcal{M}^{\mathsf{C}} = \mathcal{M}^{\mathsf{L}}$.

• Theorem. $\Sigma_2 = NP^{3SAT}$

• **Theorem**. For every i>1, $\sum_i = NP^{\sum_{i-1}}$ (ex)

Additional properties

Here are some facts about PH that we will not prove:

- \sum_i and \prod_i have complete problems for all i.
- A \sum_i -complete problem is not in \prod_j , j<i, unless $\sum_i = \prod_j$.
- A \sum_i -complete problem is not in \sum_j , j<i, unless $\sum_i = \sum_j$
- Suppose $\sum_i = \prod_i$ for some i. Then $\sum_j = \prod_j = \sum_i = \prod_i$ for all $j \ge i$.
- Suppose that $\prod_i = \prod_{i+1}$ for some i. Then $\sum_j = \prod_j = \prod_i$ for all $j \ge i$.

Additional properties

Theorem. (Special case of (3) above) Suppose NP=coNP. Then for every $i \ge 2$, $\sum_{i} = NP$.