CS 579:Computational Complexity. Lecture 11

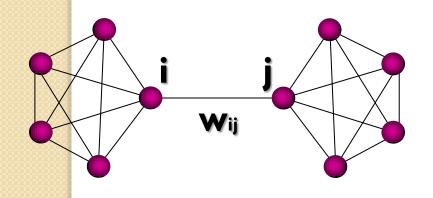
Expansion and Eigenvalues

Alexandra Kolla

In the next few minutes:

Why spectral graph theory is both natural and magical

Representing Graphs



 $G = \{V, E\}$

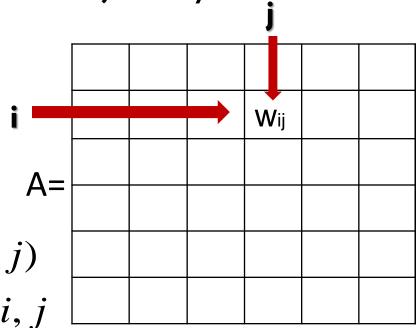
V: n nodes

E: m edges

Adjacency matrix

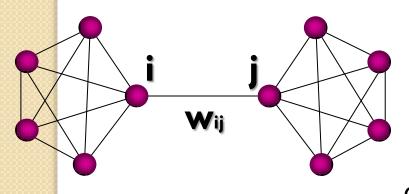
Obviously, we can represent a graph

with an nxn matrix



$$A_{ij} = \begin{cases} w_{ij} & weight of edge (i, j) \\ 0 & if no edge between i, j \end{cases}$$

Representing Graphs



Obviously, we can represent a graph with an nxn matrix

V: n nodes E: m edges $G = \{V,E\}$

What is not so obvious, is that once we have matrix representation view graph as **linear operator**

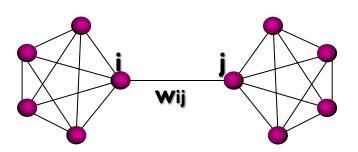
Can be used to multiply vectors.

$$A:\mathfrak{R}^n \to \mathfrak{R}^n$$

- Vectors that don't rotate but just scale = eigenvectors.
- Scaling factor= eigenvalue

$$Ax = \mu x$$

Amazing how this point of view gives information about graph



List of eigenvalues $\{ \mu \text{1} {\geq} \ \mu \text{ 2} {\geq} ... {\geq} \ \mu \text{ n} \ \} \text{:graph SPECTRUM}$

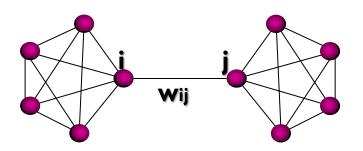
Adjacency matrix

A = Wij

Eigenvalues reveal global graph properties not apparent from edge structure

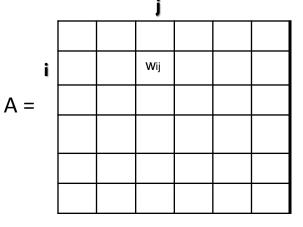
A drum:

Hear shape of the drum



List of eigenvalues $\{ \mu \text{1} {\geq} \ \mu \text{ 2} {\geq} ... {\geq} \ \mu \text{ n} \ \} \text{:graph SPECTRUM}$

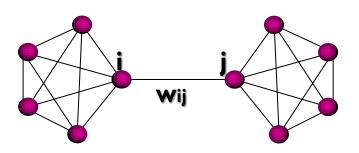
Adjacency matrix



Eigenvalues reveal global graph properties not apparent from edge structure

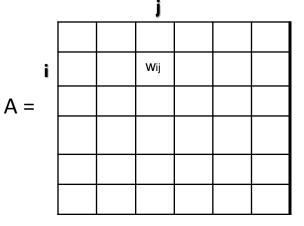
Hear shape of the drum

Its sound:



List of eigenvalues $\{ \mu \text{1} \geq \mu \text{ 2} \geq ... \geq \mu \text{ n } \} \text{:graph SPECTRUM}$

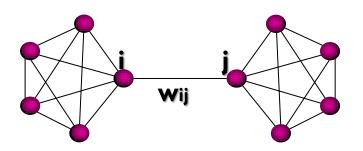
Adjacency matrix



Eigenvalues reveal global graph properties not apparent from edge structure

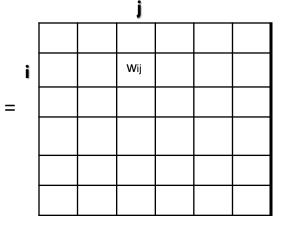
Hear shape of the drum

Its sound (eigenfrequenies):



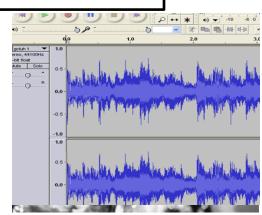
List of eigenvalues $\{ \mu \text{1} \geq \mu \text{ 2} \geq ... \geq \mu \text{ n } \} \text{:graph SPECTRUM}$

Adjacency matrix

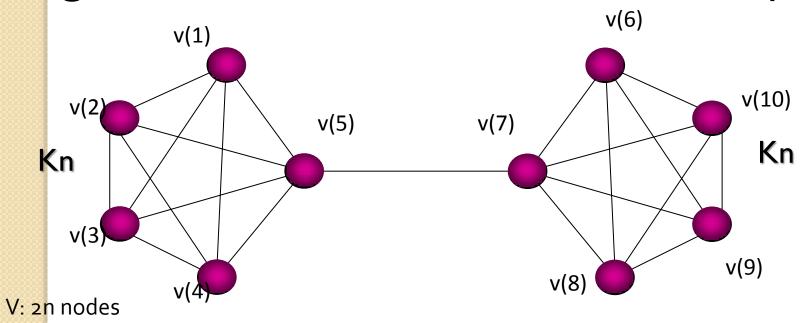


Eigenvalues reveal global graph properties not apparent from edge structure

If graph was a drum, spectrum would be its sound



Eigenvectors are Functions on Graph

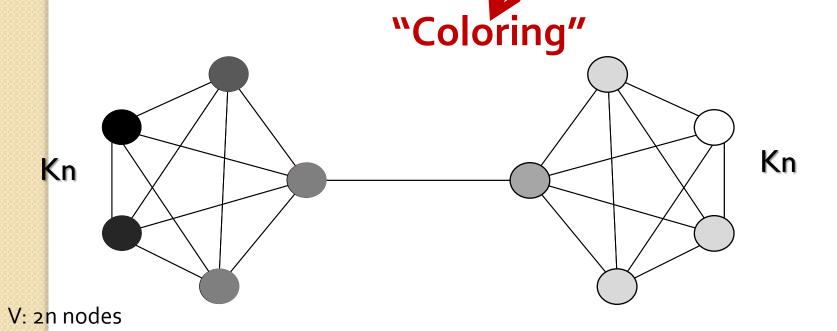


$$v \in \mathbb{R}^n, \quad v: V \to \mathbb{R}$$

$$Av = \mu v$$

$$v(i) = value at node i$$

Eigenvectors are Functions on Graph

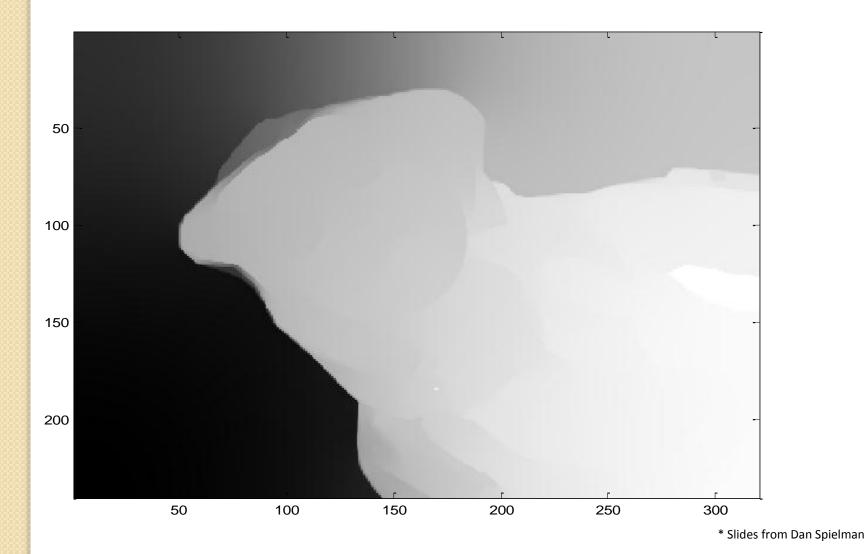


$$v \in \mathfrak{R}^n, \quad v: V \to \mathfrak{R} \qquad Av = \mu v$$

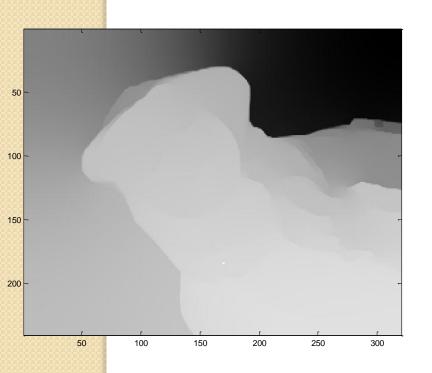
v(i) = value at node i $\overline{}$ different shade of grey

So, let's See the Eigenvectors

The second eigenvector

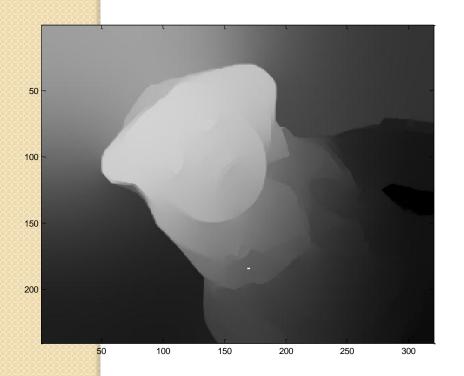


Third Eigenvector





Fourth Eigenvector

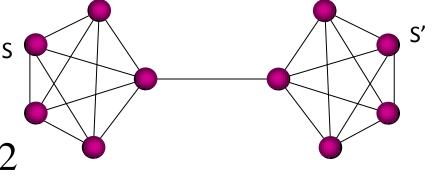




Cuts and Algebraic Connectivity

Cuts in a graph:

$$cut(S, S') = \frac{E(S, S')}{|S|}, |S| \le n/2$$

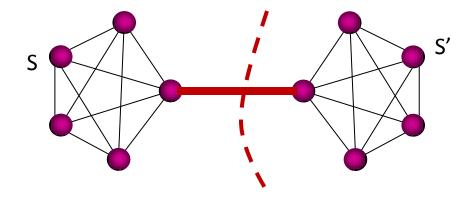


Graph not well-connected when "easily" cut in two pieces

Cuts and eigenvalues

Edge-expansion:

$$h(G) = \min_{S:|S| \le n/2} \frac{E(S,\overline{S})}{|S|}$$



Graph not well-connected when "easily" cut in two pieces

Would like to know Sparsest Cut but NP hard to find

How does algebraic connectivity relate to standard connectivity?

Theorem (Cheeger-Alon-Milman): $\lambda_2 \leq h(G) \leq \sqrt{2d_{\text{max}}} \sqrt{\lambda_2}$

Today

- More on evectors and evalues.
- Evalues of d-regular graphs.
- Relation between eigenvalues and expansion (Cheeger, part 1).

A Remark on Notation

For convenience, we will often use the bra-ket notation for vecotrs:

- We denote vector $v = \begin{pmatrix} v_1 \\ \dots \\ v_n \end{pmatrix}$ with a "bra": $|v\rangle$
- We denote the transpose vector $v^T = (v_1 \dots v_n)$ with a "ket": $\langle v |$
- We denote the inner product $v^T u$ between two vectors v and u with a "braket": $\langle v | u \rangle = \langle v, u \rangle$

Evectors and Evalues

- Vector v is evector of matrix M with evalue λ if Mv= λ v.
- We are interested (almost always) in symmetric matrices, for which the following special properties hold:
 - If v1,v2 are evectors of A with evalues λ_1 , λ_2 and $\lambda_1 \neq \lambda_2$, then v1 is orthogonal to v2. (Proof)
 - If v1,v2 are evectors of A with the same evalue λ , then v1+v2 is as well. The multiplicity of evalue λ is the dimension of the space of evectors with evalue λ .
 - Can assume that eigenvectors have unit length, since every multiple of an eigenvector is also an eigenvector.

Evectors and Evalues

- Generally, $Mv = \lambda v \Rightarrow (M \lambda I)v = 0 \Rightarrow \det(M \lambda I) = 0.$
- The determinant is an n-degree polynomial and has n roots, counting multiplicities.
- Every n-by-n symmetric matrix has n evalues $\{\lambda_1 \leq \dots \leq \lambda_n\}$ counting multiplicities, and and orthonormal basis of corresponding evectors $\{v_1, \dots, v_n\}$, so that $Mv_i = \lambda_i v_i$
- If we let V be the matrix whose i-th column is v_i , and D the diagonal matrix whose i-th diagonal is λ_i , we can compactly write MV=VD. Multiplying by V^T on the right, we obtain the eigendecomposition of M:

$$M = MV V^T = VD V^T = \sum_i \lambda_i v_i v_i^T$$

Some eigenvalue theorems

• Theorem 1. Let $M \in R^{n \times n}$ symmetric. Then $\lambda_1 = \max_{x \in R^n, ||x||=1} \{x^T M x\}$, where $x^T M x = \sum_{i,j} x(i) x(j) M(i,j)$.

- Similarly, $\lambda_2 = \max_{x \in R^n, ||x|| = 1, x \perp x_1} \{x^T M x\}$
- $\max\{|\lambda_2|, ..., |\lambda_n|\} = \max_{x \in \mathbb{R}^n, ||x||=1} \{|x^T M x|\}$

Some eigenvalue theorems

• Theorem 2. Let G be a d-regular graph and M its adjacency matrix. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be its eigenvalues and $x_1, x_2, ..., x_n$ the corresponding eigenvectors. Then $\lambda_1 = d$. Moreover, $x_1 = (1, ..., 1)$.

Eigenvalues and connectivity

- Theorem 2'. Let G be a d-regular graph and M its adjacency matrix. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be its eigenvalues and x_1, x_2, \dots, x_n the corresponding eigenvectors. Then $\lambda_1 = d$. If $\lambda_2 = d$ then the graph is disconnected. The converse is also true (ex). Alternatively, h(G) = 0 iff $\lambda_2 = d$.
- Generally, the more connected the graph is, the smaller λ_2 is.

Eigenvalues and expansion

• Cheeger's Inequality:

$$\frac{d-\lambda_2}{2} \le h(G) \le \sqrt{d(d-\lambda_2)}$$

 Both upper and lower bounds are tight (up to constant), as seen by path graph and complete binary tree.