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ECE 563 FA25 HW2 Solutions

Problem 1. Properties of mutual information.

Solution.
(a) No, there exist random variables X , Y1, and Y2 such that I(X;Y1) = I(X;Y2) = 0 while I(X;Y1, Y2) ̸= 0.

Similar to the solution to Problem 8 of HW1, one way to find such a counterexample is to consider pairwise independent
but not mutually independent random variables. Let Y1 and Y2 to be i.i.d. Bernoulli( 12 ) random variables, and let X be
the indicator function of the event Y1 = Y2. Then, it can be checked that X and Y1 are independent, and so are X and
Y2. These properties imply that I(X;Y1) = I(X;Y2) = 0. At the same time, X is clearly a function of Y1 and Y2, and
we can check that X is a Bernoulli( 12 ) random variable as well. Therefore, we have I(X;Y1, Y2) = H(X) = 1 ̸= 0.

(b) No, there exist random variables X , Y1, and Y2 such that I(X;Y1) = I(X;Y2) = 0 while I(Y1;Y2) ̸= 0.
We can simply consider X,Y1 to be i.i.d. Bernoulli( 12 ) random variables and let Y2 = Y1. It then follows that I(X;Y1) =
I(X;Y2) = 0 and I(Y1;Y2) = H(Y1) = 1 ̸= 0.

Problem 2. Data Processing Inequality.

Solution.
(d) We first prove Part (d). We start with the formula

I(X;Z|Y ) = H(X|Y ) +H(Z|Y )−H(X,Z|Y )

= −
∑
x,y

p(x, y) log p(x|y)−
∑
y,z

p(y, z) log p(z|y) +
∑
x,y,z

p(x, y, z) log p(x, z|y)

= −
∑
x,y,z

p(x, y, z) log p(x|y)−
∑
x,y,z

p(x, y, z) log p(z|y) +
∑
x,y,z

p(x, y, z) log p(x, z|y) (2.1)

=
∑
x,y,z

p(x, y, z) log
p(x, z|y)

p(x|y)p(z|y)
, (2.2)

where in (2.1) we used the fact that p(x, y) =
∑

z p(x, y, z) and p(y, z) =
∑

x p(x, y, z). Then, by the assumption that
X → Y → Z, we have for all x, y, z that p(x, z|y) = p(x|y)p(z|y). Thus, (2.2) becomes

I(X;Z|Y ) =
∑
x,y,z

p(x, y, z) log
p(x|y)p(z|y)
p(x|y)p(z|y)

=
∑
x,y,z

p(x, y, z) log 1

= 0.

(a) Note that

H(X,Z|Y ) = H(X|Y, Z) +H(Z|Y ), (2.3)
H(X,Z|Y ) = H(Z|X,Y ) +H(X|Y ). (2.4)

Comparing (2.3) and (2.4), we can see that H(X|Y ) = H(X|Y, Z) if and only if

H(Z|Y ) = H(Z|X,Y ). (2.5)

But note that from Part (d) we have I(X;Z|Y ) = H(Z|Y ) − H(Z|X,Y ) = 0. Therefore (2.5) holds, which implies
H(X|Y ) = H(X|Y, Z).

(b) From Part (a) and the fact that conditioning reduces entropy, we have

H(X|Y ) = H(X|Y, Z)

≤ H(X|Z).

(c) From Part (b), we have

I(X;Y ) = H(X)−H(X|Y )

≥ H(X)−H(X|Z)

= I(X;Z).
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Problem 3. Divergence. Prove that

d(p||q) ≥ 2(p− q)2 log e. (3.1)

Solution.
We first prove (3.1) for p, q ∈ (0, 1).
Fix p ∈ (0, 1). Consider the function

f(q) := d(p||q)− 2(p− q)2 log e

= p log
p

q
+ (1− p) log

1− p

1− q
− 2(p− q)2 log e, (3.2)

which is defined for q ∈ (0, 1). Taking the derivative of f(q) in (3.2) with respective to q gives

f ′(q) = (log e)(−p

q
+

1− p

1− q
+ 4(p− q))

= (log e)
(q − p)(2q − 1)2

q(1− q)
. (3.3)

From (3.3) we can see that
• f ′(q) ≤ 0 for q < p, and
• f ′(q) ≥ 0 for q > p.

This implies
• f(q) is non-increasing on the interval (0, p), and
• f(q) is non-decreasing on the interval (p, 1).

We can thus deduce that f(q) attains a global minimum at q = p. That is, we have for any q ∈ (0, 1) that

f(q) ≥ f(p)

= d(p||p)− 2(p− p)2 log e

= 0,

which proves (3.1) for p, q ∈ (0, 1).
Then consider p ∈ {0, 1} and q ∈ (0, 1). We will only show the derivations for the case p = 0, and the case p = 1 can be

done similarly. Note that we can still construct the same function f(q) as in (3.2), but now we can extend the domain of f(q)
to be [0, 1) (since 0 log 0

0 = 0 by convention). A similar computation to that in (3.3) shows that f ′(q) ≥ 0 for all q ∈ [0, 1),
and thus f(q) attains a global minimum at q = 0. That is, we have f(q) ≥ f(0) = d(0||0) − 2(0 − 0)2 log e = 0 for all
q ∈ [0, 1), which in particular holds for q ∈ (0, 1).

Lastly, consider q ∈ {0, 1}. Note that in this case we have for all p ∈ [0, 1] that

d(p||q) =

{
∞, if p ̸= q,

0, if p = q,

and the inequality in (3.1) easily follows.

Problem 4. [1, Problem 3.7] “AEP-like limit.”

Solution.
Note that

log(p(X1, . . . , Xn))
1
n =

1

n

n∑
i=1

log p(Xi). (4.1)

Thus we first find the limit of 1
n

∑n
i=1 log p(Xi). Define for each i ≥ 1 that Yi := log p(Xi). Since X1, X2, . . . , are i.i.d., we

know that Y1, Y2, . . . are i.i.d. as well. We can then use the strong law of large numbers to deduce that

1

n

n∑
i=1

Yi
a.s.−−→ E[Y1], (4.2)

where a.s.−−→ means almost sure convergence. Note that E[Y1] is simply

E[Y1] = E[log p(X1)]

=
∑
x

p(x) log p(x)

= −H(X1). (4.3)
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That is, we have from (4.2) and (4.3) that

1

n

n∑
i=1

log p(Xi)
a.s.−−→ −H(X1). (4.4)

It then follows from (4.1), (4.4), and the continuity of t 7→ 2t that

(p(X1, . . . , Xn))
1
n = 2log(p(X1,...,Xn))

1
n

a.s.−−→ 2−H(X1).

Problem 5. [1, Problem 3.10] “Random box size.”

Solution.
Following a similar construction as in Problem 4, we define for each n ≥ 1 that Yn := lnXn, where ln(·) denotes the

natural log. It follows that Y1, Y2, . . . are i.i.d., and thus the strong law of large number implies that

1

n

n∑
i=1

Yi
a.s.−−→ E[Y1], (5.1)

where

E[Y1] = E[lnX1]

=

∫ 1

x=0

lnxdx

= x lnx− x|1x=0

= −1. (5.2)

It follows from (5.1), (5.2), the definition of Yn, and the continuity of t 7→ et that

V 1/n
n = e

1
n

∑n
i=1 lnXn

a.s.−−→ e−1. (5.3)

We now calculate E[Vn]
1
n . By the independence of X1, X2, . . ., we have

E[Vn] =

n∏
i=1

E[Xi]

= 2−n,

where we used the fact that the expectation of a uniform [0, 1] random variable is 1
2 . It follows that E[Vn]

1
n = 1

2 , which is
different from the a.s. limit V 1/n

n
a.s.−−→ e−1 in (5.3).

Problem 6. [1, Problem 5.2] “How many fingers has a Martian?”

Solution.
Since the codewords are uniquely decodable, by the McMillan inequality, we must have

D−1 +D−1 +D−2 +D−3 +D−2 +D−3 ≤ 1,

or equivalently

D3 − 2D2 − 2D − 2 ≥ 0. (6.1)

Define f(D) := D3 − 2D2 − 2D − 2. It can be calculated that f(1) = −5 < 0, f(2) = −6 < 0, and f(3) = 1 ≥ 0. At the
same time, we have f ′(D) = 3D2 − 4D − 2 > 0 for D ≥ 3. Therefore, the alphabet size D (which is necessarily a positive
integer) satisfies (6.1) if and only if D ≥ 3. That is, the McMillan inequality is satisfied if and only if D ≥ 3, and thus a good
lower bound on D is 3.

The preparers of these solutions do not find how the alphabet size of uniquely decodable codes is related to the number
of fingers a Martian (or any species) has. We human have ten fingers, but we are using binary uniquely decodable codes
everywhere.

Problem 7. Depth constraint Huffman codes.

Solution.
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The paper ”Near-Optimal Depth-Constrained Codes” by Gupta, Prabhakar, and Boyd [2] addresses the problem of construct-
ing prefix codes with a maximum depth constraint L, providing efficient algorithms with provable performance guarantees.

Main Results:
1) Theorem 1 (Huffman codes): A depth-constrained Huffman code can be constructed in O(n log n) time and O(n) space,

with average codeword length within 1 bit of the optimal depth-constrained code.
2) Theorem 2 (Alphabetic codes): A depth-constrained alphabetic code can be constructed in O(n log n) time and O(n)

space, with average codeword length within 2 bits of the optimal depth-constrained alphabetic code.
Approach:
The key innovation is recasting the depth-constrained coding problem as a convex optimization problem:

1) Probability transformation: Given probabilities {pi}, find transformed probabilities {q∗i } satisfying:
•
∑

i qi = 1
• qi ≥ Q = 2−L for all i (ensures depth ≤ L)
• Minimize the relative entropy: D(p||q) =

∑
i pi log(pi/qi)

2) Lagrange multiplier solution: Using Lagrange multipliers, the optimal solution is:

q∗i = max(pi/µ
∗, Q)

where µ∗ is found via binary search to satisfy
∑

i q
∗
i = 1.

3) Codeword construction:
• For Huffman codes: l∗i = ⌈− log q∗i ⌉
• For alphabetic codes: Modified lengths satisfying Yeung’s characteristic inequality

Intuition:
1) Why transform probabilities? If pmin < 2−L, the natural code would have depth > L. Transforming to qi ≥ 2−L

ensures all codewords have length ≤ L.
2) Why minimize relative entropy? The average codeword length satisfies:∑

i

pil
∗
i ≤

∑
i

pi log(1/qi) + 1 = D(p||q) +H(p) + 1

Thus minimizing D(p||q) minimizes an upper bound on the average length.
3) Geometric interpretation: The solution q∗i = max(pi/µ

∗, Q) scales down probabilities uniformly but clips them at the
minimum threshold Q = 2−L.

4) Convex optimization advantage: The problem has a unique global optimum that can be found efficiently, avoiding the
complexity of exact algorithms like Package-Merge.

5) Trade-off: Sacrificing 1-2 bits of optimality yields a simple, fast algorithm with no dependence on letter probabilities in
the complexity.
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