ECE 563 FA25 HW?2 Solutions

Problem 1. Properties of mutual information.

Solution.

(a) No, there exist random variables X, Y7, and Y3 such that I(X;Y7) = I(X;Y2) = 0 while I(X;Y7,Ys) # 0.
Similar to the solution to Problem 8 of HW1, one way to find such a counterexample is to consider pairwise independent
but not mutually independent random variables. Let Y; and Y5 to be i.i.d. Bernoulli(%) random variables, and let X be
the indicator function of the event Y; = Y5. Then, it can be checked that X and Y7 are independent, and so are X and
Y5. These properties imply that 1(X;Y7) = I(X;Y5) = 0. At the same time, X is clearly a function of Y7 and Y5, and
we can check that X is a Bernoulli() random variable as well. Therefore, we have I(X;Y7,Ys) = H(X) =1 # 0.

(b) No, there exist random variables X, Y7, and Y5 such that I(X;Y7) = I(X;Ys) = 0 while 1(Y7;Y2) # 0.
We can simply consider X, Y; to be i.i.d. Bernoulli(%) random variables and let Y5 = Y;. It then follows that I(X;Y7) =
I(X;Y2)=0and I(Y1;Y2) = H(Y1)=1#0.

Problem 2. Data Processing Inequality.

Solution.
(d) We first prove Part (d). We start with the formula

I(X: Z|Y) = H(X|Y) + H(Z|Y) — H(X, Z|Y)
== p(x,y)log p(xly) — Zp y,2)logp(2ly) + Y p(x,y, ) log p(x, 2|y)

T,y ,Y,2
== plz,y,2)logp(zly) = Y pla,y,2)logp(zly) + > plw,y,2)logp(x, 2|y) @.1)
z,Y,z Z,Y,z xT,Y,2
= plr,y,2)log ———— Pz, 21y) 2.2)
o p(ely)p(zly)’

where in (2.I) we used the fact that p(z,y) = > p(x,y,2) and p(y,z) = >, p(x,y,2). Then, by the assumption that
X =Y — Z, we have for all z,y, z that p(x, z|y) = p(x|y)p(z|y). Thus, 2.2) becomes
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= Z p(l’,y,Z) 1Og1

z,Y,z

=0.
(a) Note that
H(X, Z)Y) = H(X|Y, Z) + H(Z]Y), 23)
H(X,Z|Y)=H(Z|X,Y)+ H(X|Y). 2.4)
Comparing and (24), we can see that H(X|Y) = H(X|Y, Z) if and only if
H(Z|Y)=H(Z|X,Y). (2.5)
But note that from Part (d) we have I(X; Z|Y) = H(Z|Y) — H(Z|X,Y) = 0. Therefore holds, which implies
H(X|Y)=H(X|Y,Z).
(b) From Part (a) and the fact that conditioning reduces entropy, we have
H(X|Y) = H(X|Y,2)
< H(X|Z).
(c) From Part (b), we have
I(X;Y)=H(X)- HX|Y)
> H(X) - H(X|2)
=I1(X;2).



Problem 3. Divergence. Prove that

d(pllg) > 2(p — q)* loge. 3.1

Solution.
We first prove (3.1 for p,q € (0,1).
Fix p € (0, 1). Consider the function

f(q) = d(pllg) — 2(p — q)*loge

D 1-—
pogq+( p)log T—

2’ —2(p— q)*loge, (3.2)
which is defined for ¢ € (0, 1). Taking the derivative of f(q) in with respective to g gives

£ = (oge) (=2 + =2 +4(p— )
(a-p)(2¢—1)*
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From (3.3)) we can see that
e f'(q) <0 for ¢ < p, and
e f(q) >0 for g > p.
This implies
o f(q) is non-increasing on the interval (0, p), and
o f(q) is non-decreasing on the interval (p, 1).
We can thus deduce that f(q) attains a global minimum at ¢ = p. That is, we have for any ¢ € (0,1) that

fla) = f(p)
= d(pllp) — 2(p — p)* loge
=0,
which proves for p,q € (0,1).

Then consider p € {0,1} and g € (0,1). We will only show the derivations for the case p = 0, and the case p = 1 can be
done similarly. Note that we can still construct the same function f(g) as in (3:2)), but now we can extend the domain of f(q)
to be [0,1) (since 0log 2 = 0 by convention). A similar computation to that in (3:3) shows that f’(¢) > 0 for all ¢ € [0,1),
and thus f(q) attains a global minimum at ¢ = 0. That is, we have f(g) > f(0) = d(0]|0) — 2(0 — 0)?loge = 0 for all
q € [0, 1), which in particular holds for ¢ € (0,1).

Lastly, consider ¢ € {0,1}. Note that in this case we have for all p € [0, 1] that

oo, if p # g,
d(pllq) = L
0, if p=gq,
and the inequality in (3.I)) easily follows.
Problem 4. []1} Problem 3.7] “AEP-like limit.”

Solution.
Note that
1
log(p(X1,...,X,))" Zlogp 4.1)
Thus we first find the limit of + ZZ 1 log p(X;). Define for each 7 > 1 that Y; := logp(X;). Since X, Xo, ..., are ii.d., we
know that Y7,Y5, ... are i.i.d. as well. We can then use the strong law of large numbers to deduce that
- Z Y; 2255 RBY4), 4.2)

where %> means almost sure convergence. Note that E[Y;] is simply

E[Y1] = E[log p(X1)]
= Zp ) log p(

fH(Xl). 4.3)



That is, we have from @.2) and @.3) that
- Zlogp ) “% —H(X1). (4.4)

It then follows from (#.1), #.4), and the continuity of ¢ — 2 that

(X1, X)) = 2BP(X10Xo))
as. 9—H(X1)

Problem 5. [1, Problem 3.10] “Random box size.”

Solution.
Following a similar construction as in Problem 4, we define for each n > 1 that Y,, := In X,,, where In(-) denotes the
natural log. It follows that Y7, Y5, ... are i.i.d., and thus the strong law of large number implies that
- Z Y; L5 B[y, (5.1)
where
E[Yl] = E[lnXﬂ

1
/ In xdx
x=0

=zlnr -zl

— 1 (5.2)
It follows from (3.1), (5.2), the definition of Y,,, and the continuity of ¢ — e’ that

/n _ 23" InX,
V., " =e

N (5.3)
We now calculate E[Vn]%. By the independence of X1, X, ..., we have
E[Vn} = E[Xz}
i=1

where we used the fact that the expectation of a uniform [0,1] random variable is 3. It follows that E[V,]% = 1, which is

different from the a.s. limit V,//™ %5 =1 in 33).
Problem 6. [, Problem 5.2] “How many fingers has a Martian?”

Solution.
Since the codewords are uniquely decodable, by the McMillan inequality, we must have

D' '4+D'+D2?24+D3+D 24+ D3<1,
or equivalently
D?*—2D?>—-2D —2>0. (6.1)

Define f(D) := D? — 2D? — 2D — 2. It can be calculated that f(1) = -5 < 0, f(2) = —6 < 0, and f(3) =1 > 0. At the
same time, we have f'(D) = 3D? —4D — 2 > 0 for D > 3. Therefore, the alphabet size D (which is necessarily a positive
integer) satisfies (6.1)) if and only if D > 3. That is, the McMillan inequality is satisfied if and only if D > 3, and thus a good
lower bound on D is 3.

The preparers of these solutions do not find how the alphabet size of uniquely decodable codes is related to the number
of fingers a Martian (or any species) has. We human have ten fingers, but we are using binary uniquely decodable codes
everywhere.

Problem 7. Depth constraint Huffman codes.

Solution.



The paper “Near-Optimal Depth-Constrained Codes” by Gupta, Prabhakar, and Boyd [2] addresses the problem of construct-
ing prefix codes with a maximum depth constraint L, providing efficient algorithms with provable performance guarantees.
Main Results:
1) Theorem 1 (Huffman codes): A depth-constrained Huffman code can be constructed in O(n logn) time and O(n) space,
with average codeword length within 1 bit of the optimal depth-constrained code.
2) Theorem 2 (Alphabetic codes): A depth-constrained alphabetic code can be constructed in O(nlogn) time and O(n)
space, with average codeword length within 2 bits of the optimal depth-constrained alphabetic code.
Approach:
The key innovation is recasting the depth-constrained coding problem as a convex optimization problem:
1) Probability transformation: Given probabilities {p;}, find transformed probabilities {¢g } satisfying:
. Zz g =1
o q; > Q= 2L for all i (ensures depth < L)
« Minimize the relative entropy: D(pl||q) = >, p; log(pi/¢;)
2) Lagrange multiplier solution: Using Lagrange multipliers, the optimal solution is:

q; = max(p;/p", Q)

where p* is found via binary search to satisfy ). ¢ = 1.
3) Codeword construction:
« For Huffman codes: I = [—log ¢}
« For alphabetic codes: Modified lengths satisfying Yeung’s characteristic inequality
Intuition:
1) Why transform probabilities? If p;, < 2L the natural code would have depth > L. Transforming to ¢; > oL
ensures all codewords have length < L.
2) Why minimize relative entropy? The average codeword length satisfies:

Zpilf < sz‘ log(1/g:) + 1= D(pllg) + H(p) +1

Thus minimizing D(p||q) minimizes an upper bound on the average length.

3) Geometric interpretation: The solution ¢f = max(p;/u*, Q) scales down probabilities uniformly but clips them at the
minimum threshold Q = 2~ %.

4) Convex optimization advantage: The problem has a unique global optimum that can be found efficiently, avoiding the
complexity of exact algorithms like Package-Merge.

5) Trade-off: Sacrificing 1-2 bits of optimality yields a simple, fast algorithm with no dependence on letter probabilities in
the complexity.
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