ECE 563 FA25 HW1 Solutions

Problem 1. (An axiomatic characterization of the Rényi entropy.)

Solution (A sketch of solution). See the original paper by Rényi [[1]. The main idea is to use some results about quasi-arithmetic
means (such as [2, Theorem 83]) to force the generator ¢ to be the ones for the Rényi entropy.

Remark. The terminology in [1f] is somewhat different from the description of this problem. In particular, 1] considered the
measures of randomness to be defined for “generalized probability distributions”, which means non-negative numbers whose
sum is less than or equal to one. You may try figuring out how the axioms in [1]] are related to the ones in this problem.

Problem 2. Show that

HX)Y)+HY,Z)-H(Y)=H(X,Y,Z)+ I(X; Z|Y). 2.1)
Solution. By the definition of conditional mutual information, we have
I(X;Z|Y)=HX|Y) - HX|Y, Z). (2.2)
On the other hand, by the chain rule of conditional entropy, we have
H(X,Y,Z)=H(Y,Z)+ H(X|Y, Z). (2.3)
Summing up and yields
HX,)Y,2)+I(X;Z|Y)=HX|Y)+ H(Y, 2). 2.4)

At the same time, we have by the chain rule of conditional entropy again that
H(X|Y)=H(X,Y)—-H(Y). (2.5)
Putting 2.3) into (2.4), we get
HX,Y,2)+ I(X;Z)Y)=H(X,Y)-H(Y)+ H(Y, Z),
which is exactly (2.1).
Problem 3. (Han’s Theorem.) Show that

1 n
}‘X) <H(X,...,X S Z X[n]\{z} . 3.1
Remark. Here [n] denotes the set { 1, 2,...,n}.
Solution. We first prove the first inequality
1 n
— ZH(XM\{Z-}\Xi) < H(X1,...,X,). (3.2)
i=1

To start with, note that by the chain rule of conditional entropy, we have for each i € [n] that
H(Xpp iy X3) = H(Xy,..., Xp) = H(X;). (33)

Summing up (3.3) over all i € [n], we get

S H(Xpp iy Xi) = nH(Xy,..., X) = > H(X)). (3.4)

i=1
Then, note that by the chain rule and the fact that conditioning reduces entropy, we have

n
H(Xy,.. ., Xp) =Y H(Xi|X;1,...,X1)

i=1

<Y H(X). (3.5)



Putting (3:3) into (3.4) yields

Z H(Xpp iy | X0) < nH (X1, ..., X,) — H(Xq, ..., X5)

i=1
=(n-1)H(X1,...,Xn). (3.6)
Dividing both sides of (3.6) by n — 1 gives (3.2).
We now prove the second inequality
1 n
H(Xy,., Xp) € —— > H(Xpup ) (3.7)
i=1
By the chain rule, we have for each i € [n] that
H(Xpp\y) = H(X1, ., X)) — H(XG | X\ (1) (3.8)
Summing up (3:8) over all i € [n], we obtain
N H(X ) =nH (X1, ..., Xn) = Y H(X| Xpp iy)- (3.9)
i=1 1=1

Now, notice that by, again, the chain rule and the fact that conditioning reduces entropy, we have

S H(Xi | Xppqy) <O H(Xi| Xy, X1)
i=1 i=1

= H(X, Xn). (3.10)
Putting (3:10) into (3.9) gives

n

S H(Xppy) = nH(Xy,..., X,) = H(Xy, ..., X5)

i=1
=n-1)H(Xq,...,X,). 3.11)
Dividing both sides of (3.11) by n — 1 yields (3.7).
Finally, combining (3:2) and (3.7) gives (3.I).
Problem 4. Prove that
I(X1,..., X Y) :ZI(Xi;Y|X1,...,Xi,1). 4.1
i=1
Then, prove the tensorization inequality for mutual information: Let (X;1,Y7),...,(X,,Y,) be random pairs satisfying the
following property
PyIx (Ui, YnlTr, . mn) = Hpmxf (yilzi), (4.2)

where we define X = (X1,...,X,,) and Y = (Y3,...,Y,,). Show that

zn: I(X;: V7). 4.3)

Remark. Without the additional assumption in (4.2)), the inequality in .3) does not hold for general 2n random variables
X1,...,X,, and Y7,...,Y,. You are encouraged to find four random variables X1, X5, Y7,Y5 such that [(X;, Xo;Y7,Ys) >
I(X1;: Y1) + I(Xa; Ya).

Solution. The proof of @.I) can already be seen on Cover and Thomas [[3, Page 24].
As for (@3], we start with the decomposition [(X;Y) = H(Y) — H(Y|X). Then, note that

HY) < zn: H(Y)), @.4)



the derivation of which is exactly the same as (3.3). At the same time, we have

HY|X) =

which proves (@.3).

Z pX7Y(x15'"amnvyla"'ayn) long\X(yla"'ay7b|x17"'

T1yeesTn,yYlsesYn

n
> pxy(@nma ) log [ [ pvix (wil)

L1y Tn Y1s--3Yn =1
n
E pX,Y(xla'"amnayla"'ayn) § 1ngY1|Xz(yZ|xl)
Tl YlsesYn =1

Z Z pX,Y(xla"'7xn7y1a"'7yn)pYi\X,y(yi|mi)

=1 &1, Tn,Y150Yn

Z Z Px;v; (@i, yi) logpmxi (yi|95i)

=1 x;,y;

i=1

where in we used the additional assumption in (#.2). Combining {#.4) and (@.6), we get

I(X:Y)=H() - H(Y|X)

Problem 5. [3, Problem 2.9], Metric.

Solution.

(a) We check the following four properties:

« Since conditional entropy is non-negative, we have p(X,Y) > 0.

« Since addition is commutative in real numbers, we have p(X,Y) = p(Y, X).

« By the non-negativity of conditional entropy again, p(X,Y) = 0 implies H(X|Y) = H(Y|X) = 0. Note that
H(X|Y) = 0 means that X is a function of Y, and similarly H(Y|X) = 0 implies that ¥ is a function of X.
Therefore, from H(X|Y) = H(Y|X) = 0 we can infer that there is a bijection between X and Y, or equivalently
X =Y according to the notation defined in the problem description. Conversely, it is clear that if there is a one-to-one
correspondence between X and Y, then p(X,Y) = H(X|Y)+ H(Y|X) =040 =0. As aresult, p(X,Y) = 0 if and

only if X =Y.
o Note that

H(X|Y) = H(X|Y, Z) + I(X; Z|Y),
H(Y|Z)=H(Y|X,2)+ I(X;Y|2),
H(X|Z) = H(X|Y. Z) + I(X;Y]|2).

Therefore, from (3.1), (5.2), and (5.3), we obtain

since both conditional entropy and conditional mutual information are non-negative. A similar derivation gives

H(X|Y)+ H(Y|Z) - H(X|Z)=H(Y|X,Z) + I(X; Z|Y)
Z Oa

H(Y|X)+ H(Z|Y) - H(Z|X) > 0.

Summing up (3.3) and (G.6) gives p(X,Y) + p(Y, Z) > p(Z, X).
These arguments show that p is a metric.

axn)

(4.5)

(4.6)

5.1
(5.2)
(5.3)

54
(5.5)

(5.6)



Remark. The equality in (5.4) can be easily visualized on a Venn diagram. A takeaway is: Whenever you want to simplify
an expression involving (conditional) entropy and/or mutual information of three random variables, you may first use a
Venn diagram to guess the final answer and then prove it.

(b) We first expand

p(X,Y)=H(X,Y)- HY)+ H(X,Y) - HX)
=2H(X,Y) - H(X)— H(Y), (5.7)

which already proves the third expression. Then, from (5.7) and the relationship I(X;Y) = H(X)+ H(Y) — H(X,Y),
we have

p(X,Y)=H(X,Y)+HX,Y)-HX)-H(Y)
= H(X,Y) - I(X;Y), (5.8)
which is the second expression. Lastly, from (5.8) and the relationship H(X;Y) = H(X)+ H(Y) — I(X;Y), we have
p(X,Y)=H(X)+H(Y)-I(X;Y) - I(X;Y)
=H(X)+HY)-2I(X;Y),
which is the first expression.
Problem 6. [3| Problem 2.10] Entropy of a disjoint mixture.

Solution.
(a) Note that the PMF of X, denoted as p(-), satisfy

2) = apr(x), if z € &1,
p(@) {(1—a)p2(x), if v € As.

It follows that the entropy of X is

Zp )log p(x p(x) log p(z)
r=m+1
= — Z api(x) log apy (z) — Z (1 —a)pa(x)log(l — a)pa(x)
=1 r=m-+1

n

— —a> @) (loga +logpi(a) — (1= a) > po(w)(log(l - a) +logpa ()
=1

r=m-+1
= —aloga+aH(X;)— (1 —a)log(l —a)+ (1 — a)H(Xs)
=H(a)+aH(X1)+ (1 — a)H(X2),
where H(z) := —zlogz — (1 — z)log(1l — z) denotes the binary entropy.
An alternative solution to this subproblem is as follows: Define the random variable
1, iftXedX
B= ) 1 € Ay,
2, if X € X,.
In particular, B is a function of X. Furthermore, B follows a distribution of a shifted Bernoulli(or) random variable.

Also note that given B = 1, the distribution of X is X7, and similarly, given B = 2, X follows the distribution of Xbs.
Therefore, we have

H(X)=H

(X, B)

(B)+H(X\B)

H(a) +P(B=1)H(X|B=1)+P(B=2)H(X|B=2)
= H(a) + aH(X1) + (1 — a)H(X2),

which gives the same result as the first solution.
(b) Let f(a) = H(X) = H(a) + aH(X1) + (1 — a)H(X3). By a direct calculation, it can be shown that

f'(a) =log(1 — a) —log(a) + H(X1) — H(X2), (6.1)
P B | 1
fla)=—15G=5*+3) <0 6.2)



where In(-) denotes the natural log. Solving f’(«) = 0 in (6.1)) gives
9H(X1)

@= QH(X1) 4 9H(X2)"

6.3)

oH(X1)

Furthermore, (6.2) implies that f attains maximum at & = 57 mrx,y. as derived in (6.3). Then, a direct calculation

shows that
9H(X1)

f(2H(X1) T 2H(X2)) = 1Og(2 +2 2 ) 6.4)

It follows that for any « € [0,1] we have
H(a) < log(2H(X1) 4 9H(X2)y, (6.5)

Or equivalently, 27(X) < 9H(X1) | 9H(X2),

Interpretation: 27(X1) is the “effective alphabet size” of X, and 2/7(X2) is the “effective alphabet size” of X,. At the
same time, these two “effective alphabets” are still disjoint. Therefore, X is a random variable over an “effective alphabet”
of size 27(X1) 4 2H(X2) 1t follows that the entropy of X cannot exceed the log of the “effective alphabet size”, which
is exactly saying that 27(X) < 2H(X1) 4 oH(Xz),

Problem 7. [3, Problem 2.11] A measure of correlation.

Solution.
(a) Using the relation I(X1; Xo) = H(X1) — H(X1]|X2), we have
H(X:) - H(X4|Xz)  I(X1;Xp)

H(X,) - H(Xy)

(b) From the definition of p and the fact that (conditional) entropy is non-negative, we have p =1 — HX:X) <10 =1.
On the other hand, from Part (a) and the fact that mutual information is non-negative, we have p > 0.

(c) From Part (a) and (b), we can see that p = 0 if and only if [(X7;X5) = 0. That is, p = 0 if and only if X; and X are
independent.

(d) From Part (a) and (b), we can also see that p = 1 if and only if H(X3|X;) = 0. That is, p = 1 if and only if X5 is a
function of X;. At the same time, since X; and X5 have the same distribution, we have from Part (a) that

I(Xl; XQ)

H(X>)

B H(X1]|X32)
H(Xs)

It follows that p = 1 if and only if X is a function of X5.

We can conclude that the following statements are equivalent (that is, one implies the other two):

=1

o P = 0,
e X; is a function of Xo,
e X5 is a function of Xj.

Problem 8. [3| Problem 2.25] Venn diagrams.

Solution. We first find X,Y, Z such that I(X;Y;Z) = I(X;Y) - I(X;Y]Z) < 0.

One way to find such counterexamples is to construct pairwise independent but not mutually independent random variables.
Consider X and Y to be i.i.d. Bernoulli(3) random variables. That is, (X =0) =P(X =1)=P(Y =0)=P(Y =1) = ,
and X is independent of Y. In particular, since they are independent, we have

I(X;Y) =0. 8.1)
Then, define

1, ifx =Y,

]o, ifX#Y.

It can be checked that:

1) X and Z are independent.
2) X is a function of Y and Z.



It follows that
H(X|Z)=H(X)=1, (8.2)
and that
H(X|Y,Z)=0. (8.3)
Combining (8:2) and [83) gives
I(X;Y|Z)=H(X|Z)—- H(X|Y,2)
-1 8.4)
From (8:1) and (8:4), we have
I(X;Y;2)=1(X;Y) - I(X;Y|2)
=0-1
=-1
<0.
(a) Using the following equalities
H(X|Z)=H(X
H(Y|Z) = H(Y) - I(Y;2),
H(X,Y|Z) = H(X,Y,Z) - H(Z),

|
=~
I
N

we can obtain
I(X;Y|Z) = H(X|Z)+ H(Y|Z) — H(X,Y|Z)
=—-HX,Y,2)+ HX)+ HY)+ H(Z)-I(X;2)-I1(Y; Z). (8.5)
Then, from (8.5) we have
I(X;Y;2)=I(X;Y) - I(X;Y|Z)
=HX,)Y,Z)-HX)-HY)-H2Z)+I(X;Y)+ I(Y;2)+ I(X; Z).

(b) Using I(X;Y) = H(X)+ H(Y) - H(X,Y), [(Y; Z) = HY) + H(Z) - H(Y, Z), and I(X; Z) = H(X) + H(Z) —

H(X,Z), from Part (a) we have

I(X:Y;2)=H(X,Y,Z) - HX) - HY) - HZ) + 2H(X) + 2H(Y) + 2H(Z) — H(X,Y) — H(Y, Z) — H(X, Z)

—H(X,Y,Z)-H(X,Y) - H(Y,Z) - H(X,Z) + HX) + HY) + H(Z).

REFERENCES

[1] A. Rényi, “On measures of entropy and information,” in Proceedings of the fourth Berkeley symposium on mathematical statistics and probability, volume
1: contributions to the theory of statistics, vol. 4. University of California Press, 1961, pp. 547-562.

[2] G. H. Hardy, J. E. Littlewood, and G. Pdlya, Inequalities. Cambridge university press, 1952.

[3] T. M. Cover, Elements of information theory. John Wiley & Sons, 1999.



	References

