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ECE 563 FA25 HW1 Solutions

Problem 1. (An axiomatic characterization of the Rényi entropy.)

Solution (A sketch of solution). See the original paper by Rényi [1]. The main idea is to use some results about quasi-arithmetic
means (such as [2, Theorem 83]) to force the generator ϕ to be the ones for the Rényi entropy.

Remark. The terminology in [1] is somewhat different from the description of this problem. In particular, [1] considered the
measures of randomness to be defined for “generalized probability distributions”, which means non-negative numbers whose
sum is less than or equal to one. You may try figuring out how the axioms in [1] are related to the ones in this problem.

Problem 2. Show that

H(X,Y ) +H(Y, Z)−H(Y ) = H(X,Y, Z) + I(X;Z|Y ). (2.1)

Solution. By the definition of conditional mutual information, we have

I(X;Z|Y ) = H(X|Y )−H(X|Y, Z). (2.2)

On the other hand, by the chain rule of conditional entropy, we have

H(X,Y, Z) = H(Y,Z) +H(X|Y, Z). (2.3)

Summing up (2.2) and (2.3) yields

H(X,Y, Z) + I(X;Z|Y ) = H(X|Y ) +H(Y,Z). (2.4)

At the same time, we have by the chain rule of conditional entropy again that

H(X|Y ) = H(X,Y )−H(Y ). (2.5)

Putting (2.5) into (2.4), we get

H(X,Y, Z) + I(X;Z|Y ) = H(X,Y )−H(Y ) +H(Y,Z),

which is exactly (2.1).

Problem 3. (Han’s Theorem.) Show that

1

n− 1

n∑
i=1

H(X[n]\{i}|Xi) ≤ H(X1, . . . , Xn) ≤
1

n− 1

n∑
i=1

H(X[n]\{i}). (3.1)

Remark. Here [n] denotes the set {1, 2, . . . , n}.

Solution. We first prove the first inequality

1

n− 1

n∑
i=1

H(X[n]\{i}|Xi) ≤ H(X1, . . . , Xn). (3.2)

To start with, note that by the chain rule of conditional entropy, we have for each i ∈ [n] that

H(X[n]\{i}|Xi) = H(X1, . . . , Xn)−H(Xi). (3.3)

Summing up (3.3) over all i ∈ [n], we get
n∑

i=1

H(X[n]\{i}|Xi) = nH(X1, . . . , Xn)−
n∑

i=1

H(Xi). (3.4)

Then, note that by the chain rule and the fact that conditioning reduces entropy, we have

H(X1, . . . , Xn) =

n∑
i=1

H(Xi|Xi−1, . . . , X1)

≤
n∑

i=1

H(Xi). (3.5)
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Putting (3.5) into (3.4) yields
n∑

i=1

H(X[n]\{i}|Xi) ≤ nH(X1, . . . , Xn)−H(X1, . . . , Xn)

= (n− 1)H(X1, . . . , Xn). (3.6)

Dividing both sides of (3.6) by n− 1 gives (3.2).
We now prove the second inequality

H(X1, . . . , Xn) ≤
1

n− 1

n∑
i=1

H(X[n]\{i}) (3.7)

By the chain rule, we have for each i ∈ [n] that

H(X[n]\{i}) = H(X1, . . . , Xn)−H(Xi|X[n]\{i}). (3.8)

Summing up (3.8) over all i ∈ [n], we obtain
n∑

i=1

H(X[n]\{i}) = nH(X1, . . . , Xn)−
n∑

i=1

H(Xi|X[n]\{i}). (3.9)

Now, notice that by, again, the chain rule and the fact that conditioning reduces entropy, we have
n∑

i=1

H(Xi|X[n]\{i}) ≤
n∑

i=1

H(Xi|Xi−1, . . . , X1)

= H(X1, . . . , Xn). (3.10)

Putting (3.10) into (3.9) gives
n∑

i=1

H(X[n]\{i}) ≥ nH(X1, . . . , Xn)−H(X1, . . . , Xn)

= (n− 1)H(X1, . . . , Xn). (3.11)

Dividing both sides of (3.11) by n− 1 yields (3.7).
Finally, combining (3.2) and (3.7) gives (3.1).

Problem 4. Prove that

I(X1, ..., Xn;Y ) =

n∑
i=1

I(Xi;Y |X1, ..., Xi−1). (4.1)

Then, prove the tensorization inequality for mutual information: Let (X1, Y1), . . . , (Xn, Yn) be random pairs satisfying the
following property

pY |X(y1, . . . , yn|x1, . . . , xn) =

n∏
i=1

pYi|Xi
(yi|xi), (4.2)

where we define X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn). Show that

I(X;Y ) ≤
n∑

i=1

I(Xi;Yi). (4.3)

Remark. Without the additional assumption in (4.2), the inequality in (4.3) does not hold for general 2n random variables
X1, . . . , Xn and Y1, . . . , Yn. You are encouraged to find four random variables X1, X2, Y1, Y2 such that I(X1, X2;Y1, Y2) >
I(X1;Y1) + I(X2;Y2).

Solution. The proof of (4.1) can already be seen on Cover and Thomas [3, Page 24].
As for (4.3), we start with the decomposition I(X;Y ) = H(Y )−H(Y |X). Then, note that

H(Y ) ≤
n∑

i=1

H(Yi), (4.4)
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the derivation of which is exactly the same as (3.5). At the same time, we have

H(Y |X) = −
∑

x1,...,xn,y1,...,yn

pX,Y (x1, . . . , xn, y1, . . . , yn) log pY |X(y1, . . . , yn|x1, . . . , xn)

= −
∑

x1,...,xn,y1,...,yn

pX,Y (x1, . . . , xn, y1, . . . , yn) log

n∏
i=1

pY |X(yi|xi) (4.5)

= −
∑

x1,...,xn,y1,...,yn

pX,Y (x1, . . . , xn, y1, . . . , yn)

n∑
i=1

log pYi|Xi
(yi|xi)

= −
n∑

i=1

∑
x1,...,xn,y1,...,yn

pX,Y (x1, . . . , xn, y1, . . . , yn)pYi|Xi
(yi|xi)

= −
n∑

i=1

∑
xi,yi

pXi,Yi
(xi, yi) log pYi|Xi

(yi|xi)

=

n∑
i=1

H(Yi|Xi), (4.6)

where in (4.5) we used the additional assumption in (4.2). Combining (4.4) and (4.6), we get

I(X;Y ) = H(Y )−H(Y |X)

≤
n∑

i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)

=

n∑
i=1

(H(Yi)−H(Yi −Xi))

=

n∑
i=1

I(Xi;Yi),

which proves (4.3).

Problem 5. [3, Problem 2.9], Metric.

Solution.
(a) We check the following four properties:

• Since conditional entropy is non-negative, we have ρ(X,Y ) ≥ 0.
• Since addition is commutative in real numbers, we have ρ(X,Y ) = ρ(Y,X).
• By the non-negativity of conditional entropy again, ρ(X,Y ) = 0 implies H(X|Y ) = H(Y |X) = 0. Note that
H(X|Y ) = 0 means that X is a function of Y , and similarly H(Y |X) = 0 implies that Y is a function of X .
Therefore, from H(X|Y ) = H(Y |X) = 0 we can infer that there is a bijection between X and Y , or equivalently
X = Y according to the notation defined in the problem description. Conversely, it is clear that if there is a one-to-one
correspondence between X and Y , then ρ(X,Y ) = H(X|Y )+H(Y |X) = 0+0 = 0. As a result, ρ(X,Y ) = 0 if and
only if X = Y .

• Note that

H(X|Y ) = H(X|Y, Z) + I(X;Z|Y ), (5.1)
H(Y |Z) = H(Y |X,Z) + I(X;Y |Z), (5.2)
H(X|Z) = H(X|Y, Z) + I(X;Y |Z). (5.3)

Therefore, from (5.1), (5.2), and (5.3), we obtain

H(X|Y ) +H(Y |Z)−H(X|Z) = H(Y |X,Z) + I(X;Z|Y ) (5.4)
≥ 0, (5.5)

since both conditional entropy and conditional mutual information are non-negative. A similar derivation gives

H(Y |X) +H(Z|Y )−H(Z|X) ≥ 0. (5.6)

Summing up (5.5) and (5.6) gives ρ(X,Y ) + ρ(Y,Z) ≥ ρ(Z,X).
These arguments show that ρ is a metric.



4

Remark. The equality in (5.4) can be easily visualized on a Venn diagram. A takeaway is: Whenever you want to simplify
an expression involving (conditional) entropy and/or mutual information of three random variables, you may first use a
Venn diagram to guess the final answer and then prove it.

(b) We first expand

ρ(X,Y ) = H(X,Y )−H(Y ) +H(X,Y )−H(X)

= 2H(X,Y )−H(X)−H(Y ), (5.7)

which already proves the third expression. Then, from (5.7) and the relationship I(X;Y ) = H(X) +H(Y )−H(X,Y ),
we have

ρ(X,Y ) = H(X,Y ) +H(X,Y )−H(X)−H(Y )

= H(X,Y )− I(X;Y ), (5.8)

which is the second expression. Lastly, from (5.8) and the relationship H(X;Y ) = H(X) +H(Y )− I(X;Y ), we have

ρ(X,Y ) = H(X) +H(Y )− I(X;Y )− I(X;Y )

= H(X) +H(Y )− 2I(X;Y ),

which is the first expression.

Problem 6. [3, Problem 2.10] Entropy of a disjoint mixture.

Solution.
(a) Note that the PMF of X , denoted as p(·), satisfy

p(x) =

{
αp1(x), if x ∈ X1,

(1− α)p2(x), if x ∈ X2.

It follows that the entropy of X is

H(X) = −
m∑

x=1

p(x) log p(x)−
n∑

x=m+1

p(x) log p(x)

= −
m∑

x=1

αp1(x) logαp1(x)−
n∑

x=m+1

(1− α)p2(x) log(1− α)p2(x)

= −α

m∑
x=1

p1(x)(logα+ log p1(x))− (1− α)

n∑
x=m+1

p2(x)(log(1− α) + log p2(x))

= −α logα+ αH(X1)− (1− α) log(1− α) + (1− α)H(X2)

= H(α) + αH(X1) + (1− α)H(X2),

where H(x) := −x log x− (1− x) log(1− x) denotes the binary entropy.
An alternative solution to this subproblem is as follows: Define the random variable

B =

{
1, if X ∈ X1,

2, if X ∈ X2.

In particular, B is a function of X . Furthermore, B follows a distribution of a shifted Bernoulli(α) random variable.
Also note that given B = 1, the distribution of X is X1, and similarly, given B = 2, X follows the distribution of X2.
Therefore, we have

H(X) = H(X,B)

= H(B) +H(X|B)

= H(α) + P(B = 1)H(X|B = 1) + P(B = 2)H(X|B = 2)

= H(α) + αH(X1) + (1− α)H(X2),

which gives the same result as the first solution.
(b) Let f(α) := H(X) = H(α) + αH(X1) + (1− α)H(X2). By a direct calculation, it can be shown that

f ′(α) = log(1− α)− log(α) +H(X1)−H(X2), (6.1)

f ′′(α) = − 1

ln 2
(

1

1− α
+

1

α
) < 0, (6.2)
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where ln(·) denotes the natural log. Solving f ′(α) = 0 in (6.1) gives

α =
2H(X1)

2H(X1) + 2H(X2)
. (6.3)

Furthermore, (6.2) implies that f attains maximum at α = 2H(X1)

2H(X1)+2H(X2) , as derived in (6.3). Then, a direct calculation
shows that

f(
2H(X1)

2H(X1) + 2H(X2)
) = log(2H(X1) + 2H(X2)). (6.4)

It follows that for any α ∈ [0, 1] we have

H(α) ≤ log(2H(X1) + 2H(X2)). (6.5)

Or equivalently, 2H(X) ≤ 2H(X1) + 2H(X2).
Interpretation: 2H(X1) is the “effective alphabet size” of X1, and 2H(X2) is the “effective alphabet size” of X2. At the
same time, these two “effective alphabets” are still disjoint. Therefore, X is a random variable over an “effective alphabet”
of size 2H(X1) + 2H(X2). It follows that the entropy of X cannot exceed the log of the “effective alphabet size”, which
is exactly saying that 2H(X) ≤ 2H(X1) + 2H(X2).

Problem 7. [3, Problem 2.11] A measure of correlation.

Solution.
(a) Using the relation I(X1;X2) = H(X1)−H(X1|X2), we have

ρ =
H(X1)−H(X1|X2)

H(X1)
=

I(X1;X2)

H(X1)
.

(b) From the definition of ρ and the fact that (conditional) entropy is non-negative, we have ρ = 1− H(X2|X1)
H(X1)

≤ 1− 0 = 1.
On the other hand, from Part (a) and the fact that mutual information is non-negative, we have ρ ≥ 0.

(c) From Part (a) and (b), we can see that ρ = 0 if and only if I(X1;X2) = 0. That is, ρ = 0 if and only if X1 and X2 are
independent.

(d) From Part (a) and (b), we can also see that ρ = 1 if and only if H(X2|X1) = 0. That is, ρ = 1 if and only if X2 is a
function of X1. At the same time, since X1 and X2 have the same distribution, we have from Part (a) that

ρ =
I(X1;X2)

H(X2)

= 1− H(X1|X2)

H(X2)
.

It follows that ρ = 1 if and only if X1 is a function of X2.
We can conclude that the following statements are equivalent (that is, one implies the other two):
• ρ = 0,
• X1 is a function of X2,
• X2 is a function of X1.

Problem 8. [3, Problem 2.25] Venn diagrams.

Solution. We first find X,Y, Z such that I(X;Y ;Z) = I(X;Y )− I(X;Y |Z) < 0.
One way to find such counterexamples is to construct pairwise independent but not mutually independent random variables.

Consider X and Y to be i.i.d. Bernoulli( 12 ) random variables. That is, P(X = 0) = P(X = 1) = P(Y = 0) = P(Y = 1) = 1
2 ,

and X is independent of Y . In particular, since they are independent, we have

I(X;Y ) = 0. (8.1)

Then, define

Z =

{
1, if X = Y,

0, if X ̸= Y.

It can be checked that:
1) X and Z are independent.
2) X is a function of Y and Z.
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It follows that

H(X|Z) = H(X) = 1, (8.2)

and that

H(X|Y, Z) = 0. (8.3)

Combining (8.2) and (8.3) gives

I(X;Y |Z) = H(X|Z)−H(X|Y,Z)

= 1. (8.4)

From (8.1) and (8.4), we have

I(X;Y ;Z) = I(X;Y )− I(X;Y |Z)

= 0− 1

= −1

< 0.

(a) Using the following equalities

H(X|Z) = H(X)− I(X;Z),

H(Y |Z) = H(Y )− I(Y ;Z),

H(X,Y |Z) = H(X,Y, Z)−H(Z),

we can obtain

I(X;Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z)

= −H(X,Y, Z) +H(X) +H(Y ) +H(Z)− I(X;Z)− I(Y ;Z). (8.5)

Then, from (8.5) we have

I(X;Y ;Z) = I(X;Y )− I(X;Y |Z)

= H(X,Y, Z)−H(X)−H(Y )−H(Z) + I(X;Y ) + I(Y ;Z) + I(X;Z).

(b) Using I(X;Y ) = H(X) +H(Y )−H(X,Y ), I(Y ;Z) = H(Y ) +H(Z)−H(Y,Z), and I(X;Z) = H(X) +H(Z)−
H(X,Z), from Part (a) we have

I(X;Y ;Z) = H(X,Y, Z)−H(X)−H(Y )−H(Z) + 2H(X) + 2H(Y ) + 2H(Z)−H(X,Y )−H(Y, Z)−H(X,Z)

= H(X,Y, Z)−H(X,Y )−H(Y,Z)−H(X,Z) +H(X) +H(Y ) +H(Z).
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