Recitation #1

Problems 2.9, 2.13, and 2.14 covered by Kanad Sarkar

- 9) **A metric.** A function $\rho(x, y)$ is a metric if for all x, y ,
	- $\rho(x, y) \geq 0$
	- $\rho(x,y) = \rho(y,x)$
	- $\rho(x, y) = 0$ if and only if $x = y$
	- $\rho(x, y) + \rho(y, z) \ge \rho(x, z)$.
	- a) Show that $\rho(X,Y) = H(X|Y) + H(Y|X)$ satisfies the first, second and fourth properties above. If we say that $X = Y$ if there is a one-to-one function mapping from X to Y, then the third property is also satisfied, and $\rho(X, Y)$ is a metric.
	- b) Verify that $\rho(X, Y)$ can also be expressed as

$$
\rho(X,Y) = H(X) + H(Y) - 2I(X;Y) \tag{5}
$$

$$
= H(X,Y) - I(X;Y) \tag{6}
$$

$$
= 2H(X,Y) - H(X) - H(Y). \tag{7}
$$

9) A metric

a) Let

$$
\rho(X, Y) = H(X|Y) + H(Y|X).
$$
\n(21)

Then

- Since conditional entropy is always ≥ 0 , $\rho(X, Y) \geq 0$.
- The symmetry of the definition implies that $\rho(X, Y) = \rho(Y, X)$.
- By problem 2.6, it follows that $H(Y|X)$ is 0 iff Y is a function of X and $H(X|Y)$ is 0 iff X is a function of Y. Thus $\rho(X, Y)$ is 0 iff X and Y are functions of each other - and therefore are equivalent up to a reversible transformation.
- Consider three random variables X , Y and Z . Then

$$
H(X|Y) + H(Y|Z) \ge H(X|Y,Z) + H(Y|Z) \tag{22}
$$

 $= H(X, Y|Z)$ (23)

$$
= H(X|Z) + H(Y|X,Z) \tag{24}
$$

$$
\geq H(X|Z),\tag{25}
$$

from which it follows that

$$
\rho(X,Y) + \rho(Y,Z) \ge \rho(X,Z). \tag{26}
$$

Note that the inequality is strict unless $X \to Y \to Z$ forms a Markov Chain and Y is a function of X and Z .

b) Since $H(X|Y) = H(X) - I(X;Y)$, the first equation follows. The second relation follows from the first equation and the fact that $H(X, Y) = H(X) + H(Y) - I(X; Y)$. The third follows on substituting $I(X; Y) = H(X) + H(Y) - H(X, Y).$

13) **Inequality.** Show $\ln x \ge 1 - \frac{1}{x}$ for $x > 0$.

13) Inequality. Using the Remainder form of the Taylor expansion of $\ln(x)$ about $x = 1$, we have for some c between 1 and x $(1 + 1)^2$ (1) $(1 + 1)^2$ (1) $(1 + 1)^2$

$$
\ln(x) = \ln(1) + \left(\frac{1}{t}\right)_{t=1} (x-1) + \left(\frac{-1}{t^2}\right)_{t=c} \frac{(x-1)^2}{2} \le x-1
$$

since the second term is always negative. Hence letting $y = 1/x$, we obtain

$$
-\ln y \le \frac{1}{y} - 1
$$

OΓ

$$
\ln y \geq 1 - \frac{1}{y}
$$

with equality iff $y = 1$.

- 14) Entropy of a sum. Let X and Y be random variables that take on values x_1, x_2, \ldots, x_r and y_1, y_2, \ldots, y_s , respectively. Let $Z = X + Y$.
	- a) Show that $H(Z|X) = H(Y|X)$. Argue that if X, Y are independent, then $H(Y) \leq H(Z)$ and $H(X) \leq$ $H(Z)$. Thus the addition of *independent* random variables adds uncertainty.

14) Entropy of a sum.

a)
$$
Z = X + Y
$$
. Hence $p(Z = z | X = x) = p(Y = z - x | X = x)$.
\n
$$
H(Z|X) = \sum_{x} p(x)H(Z|X = x)
$$
\n
$$
= -\sum_{x} p(x) \sum_{z} p(Z = z | X = x) \log p(Z = z | X = x)
$$
\n
$$
= \sum_{x} p(x) \sum_{y} p(Y = z - x | X = x) \log p(Y = z - x | X = x)
$$
\n
$$
= \sum_{x} p(x)H(Y|X = x)
$$
\n
$$
= H(Y|X).
$$

If X and Y are independent, then $H(Y|X) = H(Y)$. Since $I(X; Z) \ge 0$, we have $H(Z) \ge H(Z|X) =$ $H(Y|X) = H(Y)$. Similarly we can show that $H(Z) \ge H(X)$.

- 14) Entropy of a sum. Let X and Y be random variables that take on values x_1, x_2, \ldots, x_r and y_1, y_2, \ldots, y_s , respectively. Let $Z = X + Y$.
	- a) Show that $H(Z|X) = H(Y|X)$. Argue that if X, Y are independent, then $H(Y) \leq H(Z)$ and $H(X) \leq$ $H(Z)$. Thus the addition of *independent* random variables adds uncertainty.
	- b) Give an example of (necessarily dependent) random variables in which $H(X) > H(Z)$ and $H(Y) >$ $H(Z)$.
	- c) Under what conditions does $H(Z) = H(X) + H(Y)$?

b) Consider the following joint distribution for X and Y Let and the state of the state of the

$$
X = -Y = \begin{cases} 1 & \text{with probability } 1/2 \\ 0 & \text{with probability } 1/2 \end{cases}
$$

Then $H(X) = H(Y) = 1$, but $Z = 0$ with prob. 1 and hence $H(Z) = 0$. c) We have

$$
H(Z) \le H(X,Y) \le H(X) + H(Y)
$$

because Z is a function of (X, Y) and $H(X, Y) = H(X) + H(Y|X) \leq H(X) + H(Y)$. We have equality iff (X, Y) is a function of Z and $H(Y) = H(Y|X)$, i.e., X and Y are independent.