Recitation #1

Problems 2.9, 2.13, and 2.14 covered by Kanad Sarkar

- 9) **A metric.** A function $\rho(x,y)$ is a metric if for all x,y,
 - $\rho(x,y) \ge 0$
 - $\rho(x,y) = \rho(y,x)$
 - $\rho(x,y) = 0$ if and only if x = y
 - $\rho(x,y) + \rho(y,z) \ge \rho(x,z)$.
 - a) Show that $\rho(X,Y) = H(X|Y) + H(Y|X)$ satisfies the first, second and fourth properties above. If we say that X = Y if there is a one-to-one function mapping from X to Y, then the third property is also satisfied, and $\rho(X,Y)$ is a metric.
 - b) Verify that $\rho(X,Y)$ can also be expressed as

$$\rho(X,Y) = H(X) + H(Y) - 2I(X;Y)$$
 (5)

$$= H(X,Y) - I(X;Y) \tag{6}$$

$$= 2H(X,Y) - H(X) - H(Y). (7)$$

replacement is lower.

- 9) A metric
 - a) Let

$$\rho(X, Y) = H(X|Y) + H(Y|X).$$
 (21)

Then

- Since conditional entropy is always ≥ 0, ρ(X, Y) ≥ 0.
- The symmetry of the definition implies that $\rho(X,Y) = \rho(Y,X)$.
- By problem 2.6, it follows that H(Y|X) is 0 iff Y is a function of X and H(X|Y) is 0 iff X is a function of Y. Thus ρ(X,Y) is 0 iff X and Y are functions of each other - and therefore are equivalent up to a reversible transformation.
- Consider three random variables X, Y and Z. Then

$$H(X|Y) + H(Y|Z) \ge H(X|Y,Z) + H(Y|Z)$$
 (22)

$$= H(X, Y|Z) (23)$$

$$= H(X|Z) + H(Y|X,Z)$$
 (24)

$$\geq H(X|Z),$$
 (25)

from which it follows that

$$\rho(X, Y) + \rho(Y, Z) \ge \rho(X, Z)$$
. (26)

Note that the inequality is strict unless $X \to Y \to Z$ forms a Markov Chain and Y is a function of X and Z.

b) Since H(X|Y) = H(X) − I(X; Y), the first equation follows. The second relation follows from the first equation and the fact that H(X, Y) = H(X) + H(Y) − I(X; Y). The third follows on substituting I(X; Y) = H(X) + H(Y) − H(X, Y).

13) **Inequality.** Show $\ln x \ge 1 - \frac{1}{x}$ for x > 0.

13) Inequality. Using the Remainder form of the Taylor expansion of $\ln(x)$ about x=1, we have for some c between 1 and x

$$\ln(x) = \ln(1) + \left(\frac{1}{t}\right)_{t=1} (x-1) + \left(\frac{-1}{t^2}\right)_{t=c} \frac{(x-1)^2}{2} \le x-1$$

since the second term is always negative. Hence letting y=1/x, we obtain

$$-\ln y \le \frac{1}{y} - 1$$

 $\mathbf{O}\Gamma$

$$\ln y \ge 1 - \frac{1}{y}$$

with equality iff y = 1.

- 14) **Entropy of a sum.** Let X and Y be random variables that take on values x_1, x_2, \ldots, x_r and y_1, y_2, \ldots, y_s , respectively. Let Z = X + Y.
 - a) Show that H(Z|X) = H(Y|X). Argue that if X, Y are independent, then $H(Y) \le H(Z)$ and $H(X) \le H(Z)$. Thus the addition of *independent* random variables adds uncertainty.

14) Entropy of a sum.

a)
$$Z = X + Y$$
. Hence $p(Z = z | X = x) = p(Y = z - x | X = x)$.
$$H(Z|X) = \sum_{x} p(x) H(Z|X = x)$$

$$= -\sum_{x} p(x) \sum_{z} p(Z = z | X = x) \log p(Z = z | X = x)$$

$$= \sum_{x} p(x) \sum_{y} p(Y = z - x | X = x) \log p(Y = z - x | X = x)$$

$$= \sum_{x} p(x) H(Y|X = x)$$

$$= H(Y|X).$$

If X and Y are independent, then H(Y|X) = H(Y). Since $I(X;Z) \ge 0$, we have $H(Z) \ge H(Z|X) = H(Y|X) = H(Y)$. Similarly we can show that $H(Z) \ge H(X)$.

- 14) **Entropy of a sum.** Let X and Y be random variables that take on values x_1, x_2, \ldots, x_r and y_1, y_2, \ldots, y_s , respectively. Let Z = X + Y.
 - a) Show that H(Z|X) = H(Y|X). Argue that if X, Y are independent, then $H(Y) \le H(Z)$ and $H(X) \le H(Z)$. Thus the addition of *independent* random variables adds uncertainty.
 - b) Give an example of (necessarily dependent) random variables in which H(X) > H(Z) and H(Y) > H(Z).
 - c) Under what conditions does H(Z) = H(X) + H(Y)?

b) Consider the following joint distribution for X and Y Let

$$X = -Y = \begin{cases} 1 & \text{with probability } 1/2 \\ 0 & \text{with probability } 1/2 \end{cases}$$

Then H(X) = H(Y) = 1, but Z = 0 with prob. 1 and hence H(Z) = 0.

c) We have

$$H(Z) \le H(X,Y) \le H(X) + H(Y)$$

because Z is a function of (X,Y) and $H(X,Y) = H(X) + H(Y|X) \le H(X) + H(Y)$. We have equality iff (X,Y) is a function of Z and H(Y)=H(Y|X), i.e., X and Y are independent.