ECE 563: Homework 2 - Due October 15th, 2024

Problem 1: Properties of mutual information. Let X, Y_1, Y_2 be three RVs.

- (a) Given $I(X; Y_1) = I(X; Y_2) = 0$, does it follow that $I(X; Y_1, Y_2) = 0$?
- **(b)** Given $I(X; Y_1) = I(X; Y_2) = 0$, does it follow that $I(Y_1; Y_2) = 0$?

Problem 2: Data Processing Inequality. Let the RVs X, U, Z form a Markov chain, $X \to Y \to Z$.

- (a) Show that H(X|Y) = H(X|Y,Z).
- **(b)** Show that $H(X|Y) \leq H(X|Z)$.
- (c) Show that $I(X;Y) \geq I(X;Z)$.
- (d) Show that I(X; Z|Y) = 0.

Problem 3: Submodularity. Show that Shannon's entropy is a submodular function.

Problem 4: Cover and Thomas, Monotonic convergence of the empirical distribution.

Problem 5: Cover and Thomas, Calculation of typical sets.

Problem 6: LLNs. The problem has two parts. It should help you learn more about different types of LLNs.

- Let x_1, x_2, \ldots and y_1, y_2, \ldots be two sequences of real numbers. The sequence y_1, y_2, \ldots is increasing and diverges (i.e., the limit goes to ∞). Assume now that $\sum_{n=1}^{\infty} \frac{x_n}{y_n}$ converges to a finite limit. Then, $\frac{1}{y_n} \sum_{i=1}^n x_i$ converges to 0 as $n \to \infty$. Hints: you can use the summation by part formula or the Stolz-Cesaro theorem to prove the result feel free to look up the info I gave you as a hint online (e.g., you can check summation by part and/or Stolz-Cesaro's theorem); you are still not allowed to consult any other source to prove the actual question stated.
- (Challenging and **optional.** You can look up Kolmogorov's criteria for the strong LLNs just to learn more about his results.) Using the above result, prove that for a sequence of independent but not necessarily identically distributed RVs, X_1, X_2, \ldots, \ldots , with zero mean, $\sum_{i=1}^{\infty} \frac{var(X_i)}{i^2} \to 0$ implies that $\frac{\sum_{i=1}^{n} X_i}{n} \to 0$ a.s.

Problem 7: Lossless compression. Consider a Discrete Memoryless Source, X, with an alphabet of 7 symbols $\{A, B, C, D, E, F, G\}$ with probabilities $\{0.05, 0.08, 0.13, 0.09, 0.30, 0.20, 0.15\}$ respectively.

- (a) Calculate the entropy of this source.
- (b) Ignore the provided probabilities and implement a fixed-length code for this source.
- (c) Find a prefix-free variable-length code for this source using the Huffman algorithm. Calculate its average codelength and compare it with the values found in (a) and (b).
 - (d) Verify that the code you found in (c) meets the Kraft's Inequality.
- (e) If we encode source symbols in 10-tuples using a fixed-to-variable length code, what are the lower and upper bounds on the minimum average codelength?
 - (f) Consider a source output of EFCEAFBE.
 - Calculate the sample average of the log pmf of this string of symbols.
 - Find the expected value of the log pmf for X.
 - Find the probability that the log pmf sample average for this string is within ± 1 of the source entropy if the log pmf variance is 2.
 - If we examine *n*-tuples from the source, what minimum integer value of *n* is needed if we want the probability of any *n*-tuple being in the typical set to be greater than 0.99.
 - Assume a log pmf variance of 0.25 and $\epsilon = 1$; for the value of n found in the previous part of the problem, how many possible n-tuples are there?
 - Calculate the approximate number of *n*-tuples in the typical set. Calculate the percentage of all *n* tuples that are in the typical set.
 - Calculate the upper bound on the average codelength for a fixed-to-fixed-length code used to encode this typical set.

Problem 8: Lagrange multipliers. Explain the idea behind the Lagrange multipliers method (e.g., why does the formulation of the Lagrange multiplier objective work, what is the role of λ etc) on the example of the following constrained optimization problem: minimize $F(x,y)=8x^2-2y$, where x,y are constrained to satisfy $x^2+y^2=1$.