
Constrained Coding
The State-Splitting Algorithm

Han-Mo Ou
Evangelos Tsiamalos

Constrained System
State-Splitting

Finite-State Encoder
Approximate Eigenvectors
State-splitting Algorithm

Background: Labeled Graph and Constrained System

▶ A constrained system S can be described by a labeled graph
H(V ,E , L)
▶ vertices v ∈ V are called ”states”
▶ edges e ∈ E are labeled with the code
▶ each edge is labeled with the symbol

▶ Note: the labeled graph is not unique

Figure: Labeled Graph - cannot have consecutive 0s

Background: Graph Powers

▶ the qth power of a graph H = (V ,E , L), Hq, is the graph with
same set of states V , but one edge of each path of length q in
H labeled by the q-block generated by that path

Figure: Labeled graph and its cube

Background: Decodability

▶ Anticipation of a graph: the smallest N such that any two
paths of length N + 1 with same initial state and labeling
must have same initial edge

▶ to decode, we want the graph to have finite anticipation

▶ Definite: a graph is (m, a)-definite if given any word
w−m . . .w0 . . .wa, the set of paths e−m . . . e0 . . . ea that
generate the word would agree on e0
▶ a stronger condition than finite-anticipation

Background: Capacity of System

▶ Capacity of system: defined as
cap(S) = lim supℓ→∞

1
ℓ log2N(ℓ,S)

▶ N(ℓ,S) is number of words of length ℓ in S
▶ Finite state coding theorem (Theorem 4.1): for integers p, q,

if p
q ≤ cap(S), there exists a rate p : q finite state encoder for
S with finite anticipation

▶ How do we find such an encoder? → State-splitting

State (out-)Splitting

▶ For a labeled graph H = (V ,E , L), splitting at state u is
determined by partitioning the set Eu of outgoing edges of u
into Eu = E

(1)
u ∪ E

(2)
u

▶ Resulting graph H ′ = (V ′,E ′, L′)

▶ u partitioned into u(1) and u(2)

▶ The new set of vertices would be
V ′ = (V − {u}) ∪ {u(1), u(2)}

▶ Incoming edges to u would produce two edges to u(1) and
u(2)

▶ Outgoing edges from u would belong to one of the
descendant states according to the partition

State Splitting Example

Figure: State-splitting example

State Splitting Properties

▶ Both H and H ′ represent the same constrained system

▶ The anticipation of H ′ is at most 1 above that of H

▶ Finite iterations of state splitting preserve the finite
anticipation property of a graph

▶ If H is (m, a)-definite, H ′ is (m, a + 1)-definite

Goal

We start with a constraint system that is described by a
deterministic graph GGG .

We want to construct a finite state encoder.

Encoder

Take some constraint system S . We consider an (S , n) encoder
which is an encoder that can be represented as a graph where the
outgoing edges are assigned distinct input labels (or tags) from an
alphabet of size n and the output labels (not necessarily distinct)
correspond to some word in S .

From state u to state v , u
s/a−→ v means that we have input label

s and output label a.

A rate p : q finite state encoder for S is a tagged (Sq, 2p) encoder.

This means that we are going to use blocks of size q to encode a
word of length p of the message.

Example

The (0, 1)-runlength-limited constraint.

▶ the runs of 0s have length at most one

▶ we can have arbitrarily long runs of 1s

An example of a 2 : 3 finite state encoder is:

Source: Marcus, Brian H., Ron M. Roth, and Paul H. Siegel. ”An introduction to coding for constrained systems.” Lecture notes (2001)

Example

Source: Marcus, Brian H., Ron M. Roth, and Paul H. Siegel. ”An introduction to coding for constrained systems.” Lecture notes (2001)

We can use this graph as follows:

▶ Start from any one of the states, either (A) or (B). Let’s say
that we start at (A).

▶ If we follow any of the outgoing edges, we get a block of
length 3 that satisfies the constraints of the system.

▶ We can encode the message by using the input labels which
are binary strings of length 2.

Example

Source: Marcus, Brian H., Ron M. Roth, and Paul H. Siegel. ”An introduction to coding for constrained systems.” Lecture notes (2001)

For example, if we have the message
011000

that we want to encode using (0,1)-RLL we can use the graph to encode it as follows :

▶ Start at state (A)

▶ We encode ”01” as ”011” using the edge A
01/011−−−−→ B

▶ We encode ”10” as ”101” using the edge B
10/101−−−−→ B

▶ We encode ”00” as ”101” using the edge B
00/101−−−−→ A

So the encoded message is ”011101101” which satisfies the (0,1)-RLL constraint.

Build an Encoder

▶ Start from the graph GGG of the constraint system.

▶ Take the q−power GGG q

▶ Iteratively modify it (state splitting)

▶ Until we end up with a subgraph with minimum degree of
out-edges at least 2p

Approximate Eigenvectors

Definition

We have a non-negative integer matrix AAA and integer n, an
(AAA, n)−approximate eigenvector xxx is a non-negative integer vector:

Ax ≥ nx

In the Scope of a Graph

▶ AAA is the adjacency matrix

▶ Think of xxx as a vector of state weights

xxx = (xu)u∈VG

▶ The vector xxx is an (A, n)− eigenvector if∑
e∈Eu

xτG (e) ≥ nxu

for every state u.

Important Property

For a Graph GGG ,

▶ the all-one vector 1 is an (AAAG , n)−approximate eigenvector ⇔
the graph has minimum out-degree at least n

▶ a 0− 1 vector is an (AAAG , n)-approximate eigenvector ⇔ there
is a sub-graph with minimum out-degree at least n

For a given Graph, are there approximate eigenvectors?

There exists an (A, n) approximate eigenvector if and only if
λ(A) ≥ n

Computing Approximate Eigenvectors

The Franaszek Algorithm

1: Input: non-negative integer matrix A, positive integer n
2: y ← ξ # Initialization
3: x ← 0
4: while x ̸= y do
5: x ← y
6: y ← min{⌊ 1nAx⌋, x}
7: end while
8: return x

where xxx ,yyy , ξξξ are vectors, ⌊·⌋ denotes the floor function and it acts

component-wise on a vector ⌊xxx⌋ =

⌊x1⌋...
⌊xk⌋



Some Notes on the Algorithm

We observe the following:

▶ If we have two vectors xxx ,yyy that are (AAA, n) approximate
eigenvectors, then zzz = (zu)u∈V with zu = max{xu, vu} is also
an approximate eigenvector.

▶ So if we fix some vector ξξξ

▶ There may be no approximate eigenvector xxx with xxx ≤ ξξξ
▶ There exists some approximate eigenvector that is the

”largest” approximate eigenvector xxx with xxx ≤ ξξξ

Some Notes on the Algorithm

The initialization of the algorithm ξξξ matters.

If we use initialization ξξξ, the Franaszek Algorithm returns a vector
xxx such that

▶ either xxx = 0 if there are no approximate eigenvectors ≤ ξξξ

▶ or xxx ̸= 0 that is the ”largest” (component-wise) approximate
eigenvector with xxx ≤ ξξξ

So the initialization ξξξ serves as an ”upper bound”
(component-wise) for the returned vector.

Consistent Splitting

Definition

Let HHH be a labeled graph and xxx = (xu)u∈V be an (AAAH , n)
approximate eigenvector.

We do state splitting on some state u, so we get a partition of the
outgoing edges Eu = E

(1)
u ∪ E

(2)
u

The splitting is called xxx−consistent if it ”maintains” the
approximate eigenvector property:

xxx is (AAA, n) approximate eigenvector means∑
e∈Eu

xτG (e) ≥ nxu

we do state splitting∑
e∈E (1)

u

xτ(e) ≥ ny (1) and
∑
e∈E (2)

u

xτ(e) ≥ ny (2)

for some non-negative integers y (1) + y (2) = xu

Observation

If we have a state uuu and some (AAA, n) approximate eigenvector xxx
and we perform xxx−consistent splitting, then we get

A new graph HHH ′ from the partition E
(1)
u ,E

(2)
u of Eu with

two new states u(1), u(2)

A partition of xu into y (1) and y (2)

So take a new vector x ′ = (xv)v∈VH′ with

(x ′)v =


xv if v ̸= u

y (1) if v = u(1)

y (2) if v = u(2)

Then x ′ is an (AH ′, n) approximate eigenvector.

x =


x1
...
xu
...

x|V |

 −→


x1
...

y (1)

y (2)
...

x|V |


= x ′

▶ We have the original Graph HHH

▶ We have some (AAAH , n) approximate eigenvector xxx

▶ We do xxx-consistent splitting and we get

▶ A new graph HHH ′ with more edges
▶ A new (AAAH ′, n) approximate eigenvector xxx ′ and that

eigenvector has smaller values in its coordinates than xxx .

Is there an xxx-consistent splitting

If we have an irreducible graph HHH and xxx is an AAAH approximate
eigenvector that is not the all-one vector and is strictly positive
→ Then there exists a basic xxx-consistent splitting of HHH

Build the Encoder

Start with a graph GGG of finite anticipation that describes a
constraint system. Choose two integers p, q so that
p/q ≤ cap(SSS).

1. Begin with GGG q

2. Find a (AAAG q , 2p) approximate eigenvector (it exists).

▶ If it is a 0− 1 a (AAAG q , 2p) approximate eigenvector we are
done.

Otherwise

▶ We reduce ourselves into the non-zero states of xxx ; let’s call
the subgraph GGG 0 and the eigenvector xxx0:

▶ If the graph GGG 0 is not irreducible, we reduce it to an
irreducible sink

▶ We do xxx0-consistent splitting.

▶ We get a graph GGG 1 that is irreducible and an (AAAG1
, 2p)

approximate eigenvector xxx1 with positive coordinates.
▶ If that is a 0-1 vector then we are done. Otherwise repeat

the same with GGG 1 and xxx1

GGG

GGG → GGG q

x an (AAAG q , 2p) appr. eig.

GGG → GGG q

x an (AAAG q , 2p) appr. eig.
keep non-zero entries−−−−−−−−−−−→

of x

GGG 0

xxx0

GGG → GGG q

x an (AAAG q , 2p) appr. eig.
keep non-zero entries−−−−−−−−−−−→

of x

GGG 0

xxx0

xxx0 consistent splitting−−−−−−−−−−−−→ GGG 1

xxx1

GGG → GGG q

x an (AAAG q , 2p) appr. eig.
keep non-zero entries−−−−−−−−−−−→

of x

GGG 0

xxx0

xxx0 consistent splitting−−−−−−−−−−−−→ GGG 1

xxx1

xxx1 consistent splitting−−−−−−−−−−−−→ GGG 2

xxx2

GGG → GGG q

x an (AAAG q , 2p) appr. eig.
keep non-zero entries−−−−−−−−−−−→

of x

GGG 0

xxx0

xxx0 consistent splitting−−−−−−−−−−−−→ GGG 1

xxx1

xxx1 consistent splitting−−−−−−−−−−−−→ GGG 2

xxx2

→ . . . → GGGT

xxxT

The last graph GGGT has a minimum out-degree of 2p

and out-splitting preserves finite anticipation

⇒ GGGT has finite anticipation

We delete excess edges and we get an (SSSq, 2p) encoder.

We tag it with input labels and we get a p : q finite state encoder.

References

Chapters 1 - 5 of:

Marcus, Brian H., Ron M. Roth, and Paul H. Siegel. ”An
introduction to coding for constrained systems.” Lecture notes
(2001).

