Constrained Coding
The State-Splitting Algorithm

Han-Mo Ou
Evangelos Tsiamalos

Constrained System
State-Splitting
Finite-State Encoder

Approximate Eigenvectors
State-splitting Algorithm

Background: Labeled Graph and Constrained System

» A constrained system S can be described by a labeled graph
H(V,E,L)
» vertices v € V are called "states”
» edges e € E are labeled with the code
» each edge is labeled with the symbol

» Note: the labeled graph is not unique

LB

Figure: Labeled Graph - cannot have consecutive Os

Background: Graph Powers
» the g™ power of a graph H = (V, E, L), HY, is the graph with
same set of states V/, but one edge of each path of length g in
H labeled by the g-block generated by that path

0
H aOmn0
1

110

i o w(aCl) (o) D

111

Figure: Labeled graph and its cube

Background: Decodability

» Anticipation of a graph: the smallest N such that any two
paths of length N 4 1 with same initial state and labeling
must have same initial edge

» to decode, we want the graph to have finite anticipation

» Definite: a graph is (m, a)-definite if given any word
W_m...Wy...Ws,, the set of paths e_,,...€y...¢e, that
generate the word would agree on g
» a stronger condition than finite-anticipation

Background: Capacity of System

» Capacity of system: defined as
cap(S) = limsup,_, 7 log, N(¢, S)
» N(¢,8) is number of words of length £ in S
» Finite state coding theorem (Theorem 4.1): for integers p, g,
if g < cap(S), there exists a rate p : g finite state encoder for
S with finite anticipation
» How do we find such an encoder? — State-splitting

State (out-)Splitting

» For a labeled graph H = (V, E, L), splitting at state u is
determined by partitioning the set E, of outgoing edges of u
into £, = E{" U E{)

» Resulting graph H' = (V' E',)

» u partitioned into u(® and u(®

» The new set of vertices would be
V= (V= {u}) U {u®), u®}

» Incoming edges to u would produce two edges to u(!) and
u(?)

» Outgoing edges from u would belong to one of the
descendant states according to the partition

State Splitting Example

Figure: State-splitting example

State Splitting Properties

» Both H and H’ represent the same constrained system
» The anticipation of H' is at most 1 above that of H
» Finite iterations of state splitting preserve the finite
anticipation property of a graph
» If His (m, a)-definite, H' is (m, a + 1)-definite

Goal

We start with a constraint system that is described by a
deterministic graph G.

We want to construct a finite state encoder.

Encoder

Take some constraint system S. We consider an (S, n) encoder
which is an encoder that can be represented as a graph where the
outgoing edges are assigned distinct input labels (or tags) from an
alphabet of size n and the output labels (not necessarily distinct)
correspond to some word in S.

s/a .
From state u to state v, u —> v means that we have input label
s and output label a.

A rate p : g finite state encoder for S is a tagged (59, 2P) encoder.

This means that we are going to use blocks of size g to encode a
word of length p of the message.

Example

The (0, 1)-runlength-limited constraint.
» the runs of Os have length at most one
» we can have arbitrarily long runs of 1s

An example of a 2 : 3 finite state encoder is:

’\
00/011 ™ m L 10/101)11/111
Ny

Source: Marcus, Brian H., Ron M. Roth, and Paul H. Siegel. " An introduction to coding for constrained systems.” Lecture notes (2001)

Example

Source: Marcus, Brian H., Ron M. Roth, and Paul H. Siegel. " An introduction to coding for constrained systems.” Lecture notes (2001)

We can use this graph as follows:

» Start from any one of the states, either (A) or (B). Let's say
that we start at (A).

» If we follow any of the outgoing edges, we get a block of
length 3 that satisfies the constraints of the system.

» We can encode the message by using the input labels which
are binary strings of length 2.

Example

Source: Marcus, Brian H., Ron M. Roth, and Paul H. Siegel. " An introduction to coding for constrained systems.” Lecture notes (2001)

For example, if we have the message
011000

that we want to encode using (0,1)-RLL we can use the graph to encode it as follows :

> Start at state (A)

» We encode "01" as "011" using the edge A oo p
» We encode "10" as "101" using the edge B % B
00/101

» We encode "00" as "101" using the edge B —— A
So the encoded message is "011101101" which satisfies the (0,1)-RLL constraint.

Build an Encoder

» Start from the graph G of the constraint system.
» Take the g—power G7
» lteratively modify it (state splitting)

» Until we end up with a subgraph with minimum degree of
out-edges at least 2P

Approximate Eigenvectors

Definition

We have a non-negative integer matrix A and integer n, an
(A, n)—approximate eigenvector x is a non-negative integer vector:

Ax > nx

In the Scope of a Graph

» A is the adjacency matrix
» Think of x as a vector of state weights
X = (Xu)UGVG
» The vector x is an (A, n)— eigenvector if
Z Xr6(e) > NXy
ecE,

for every state w.

Important Property

For a Graph G,

» the all-one vector 1 is an (Ag, n)—approximate eigenvector <
the graph has minimum out-degree at least n

» a 0 — 1 vector is an (Ag, n)-approximate eigenvector < there
is a sub-graph with minimum out-degree at least n

For a given Graph, are there approximate eigenvectors?

There exists an (A, n) approximate eigenvector if and only if
ANA)>n

Computing Approximate Eigenvectors

The Franaszek Algorithm

Input: non-negative integer matrix A, positive integer n
y « & # Initialization
x+0
while x # y do
X4y
y < min{|1Ax], x}
end while
return x

N a s wN

where x,y, € are vectors, |-| denotes the floor function and it acts

Lx_lJ
)

component-wise on a vector |x| =

Some Notes on the Algorithm

We observe the following:

» If we have two vectors x,y that are (A, n) approximate
eigenvectors, then z = (z,),ev with z, = max{x,, v, } is also
an approximate eigenvector.

» So if we fix some vector &

» There may be no approximate eigenvector x with x < &
» There exists some approximate eigenvector that is the
"largest” approximate eigenvector x with x < &

Some Notes on the Algorithm

The initialization of the algorithm & matters.

If we use initialization &, the Franaszek Algorithm returns a vector
x such that

» either x = 0 if there are no approximate eigenvectors < £

» or x # 0 that is the "largest” (component-wise) approximate
eigenvector with x < ¢

So the initialization £ serves as an "upper bound”
(component-wise) for the returned vector.

Consistent Splitting

Definition

Let H be a labeled graph and x = (x,)cv be an (Ay, n)
approximate eigenvector.

We do state splitting on some state u, so we get a partition of the
outgoing edges E, = ELSl) U Elsz)

The splitting is called x—consistent if it " maintains” the
approximate eigenvector property:

x is (A, n) approximate eigenvector means

Z Xr6(e) > nxy

eckE,

we do state splitting

Z Xr(e) = ny and Z Xr(e) = ny(2)

ecEWM ecEP

for some non-negative integers y() + y(= x,

Observation

If we have a state u and some (A, n) approximate eigenvector x
and we perform x—consistent splitting, then we get

A new graph H' from the partition ELSl), E'? of E, with
two new states u(!), y(?
A partition of x, into y(!) and y(®

So take a new vector x’ = (x,)vev,, With

x, ifv#u
(x), =<y if v =@
y@ if v = 0@

Then x’ is an (A, n) approximate eigenvector.

» We have the original Graph H
» We have some (Ay, n) approximate eigenvector x
» We do x-consistent splitting and we get

» A new graph H' with more edges
» A new (Ay, n) approximate eigenvector x’ and that
eigenvector has smaller values in its coordinates than x.

Is there an x-consistent splitting

If we have an irreducible graph H and x is an Ay approximate
eigenvector that is not the all-one vector and is strictly positive
— Then there exists a basic x-consistent splitting of H

Build the Encoder

Start with a graph G of finite anticipation that describes a
constraint system. Choose two integers p, g so that

p/q < cap(S).
1. Begin with G9
2. Find a (Agq, 2P) approximate eigenvector (it exists).

> Ifitisa 0—1a (Ags, 2P) approximate eigenvector we are
done.

Otherwise

» We reduce ourselves into the non-zero states of x; let’s call
the subgraph G, and the eigenvector xg:

» If the graph G is not irreducible, we reduce it to an
irreducible sink
» We do xp-consistent splitting.

» We get a graph G; that is irreducible and an (Ag,, 2°)
approximate eigenvector x; with positive coordinates.

» If that is a 0-1 vector then we are done. Otherwise repeat
the same with G; and x;

G G
~ x an (Aga, 2P) appr. eig.

GY keep non-zero entries Go
G — , _ \
x an (Agaq, 2P) appr. eig. of x X0

G9 keep non-zero entries Go
G— . g
x an (Agas, 2P) appr. eig. of x X0

Xp consistent splitting . Gl
4
X1

G1 keep non-zero entries Go
G — _ \
x an (Aga, 2P) appr. eig. of x X0

Xo consistent splitting . Gl X1 consistent splitting . G2
7 7
X1 X2

q .
G G keep non-zero entries Go

7

x an (Aga, 2P) appr. eig. of x X0
Xo consistent splitting . G1 X1 consistent splitting . G2
7 7
X1 X2
Gr
— —

XT

The last graph G+ has a minimum out-degree of 2P
and out-splitting preserves finite anticipation

= G 1 has finite anticipation

We delete excess edges and we get an (59, 2P) encoder.

We tag it with input labels and we get a p : g finite state encoder.

References

Chapters 1 - 5 of:

Marcus, Brian H., Ron M. Roth, and Paul H. Siegel. "An
introduction to coding for constrained systems.” Lecture notes
(2001).

