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Preliminaries

- Regular/irregular LDPC codes
- Message passing and BP threshold

- Protograph, lifting and edge spreading



LDPC code—Tanner graph

Bipartite graph represents parity-check equations

(j, K)-regular LDPC code
Each variable node has the same degree, and each

@ i check nodes has the same degree
J: degree of variable nodes
° 9 k: degree of check nodes

' Example

(2,4)-LDPC code

£ Ci:Vi+ v, +v,+vg=0

C2:V1+V2+V3+V4:O

@ < C3:V3+ Vv +vs+vs=0
e Cy Vst Vgt v +13=0




LDPC code—Tanner graph

Bipartite graph represents parity-check equations

irregular LDPC code
‘. Defined by degree distribution functions

d, d.
Ax) = Z /Il-xl_l p(x) = Z pix’_l
i=1 i=2

d (d.) : max degree of variable(check) nodes

A(p.) : fraction of edges connected to
variable(check) nodes of degree i

ONORORONORO

Example
- JPNUIE U TVROER SR IO I
X)=—+—x px)=—x+—x"+—x
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LDPC code—Design rate

Given a Tanner graph of the LDPC code, the design rate is defined as
#(check nodes)

#(variable nodes)

R=1

Fora (j, k)-regular LDPC code,R = 1 — ];
For anirregular LDPC code with degree distribution (4, p),
Pj

R=1-—1L =

fol p(x)dx
Pk

T [ 01 A(x)dx



LDPC decoding—message passing

BEC as example

o Variable to check message

G s Aggregate information from all other check

\ nodes
_ %

- All other incoming messages are *, send *

—() 7’ o= 4®V<>




LDPC decoding—message passing

BEC as example
° Variable to check message
@ s Aggregate information from all other check

\ nodes
— 9 . All other incoming messages are *, send *
O -

M2=*

l - - Any other incoming messagesisb € {0,1}, send

b.lluy = *,setuy, = b.




LDPC decoding—message passing

BEC as example
° Variable to check message
@ s Aggregate information from all other check

\ nodes
— 9 . All other incoming messages are *, send *
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l - - Any other incoming messagesisb € {0,1}, send
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LDPC decoding—message passing

BEC as example

o Check to variable message
° s Aggregate information from all other

\ variable nodes
— 7 - Any other incoming messages are *, send *

/]
// - 4

O o
' v =0
° c; v, =%
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LDPC decoding—message passing

BEC as example

Check to variable message

Aggregate information from all other
variable nodes

- Any other incoming messages are *, send *

u=-=

<
V2=1 Cl
V3:0
— 3k

- All other incoming messages are O or 1, send

XOR of all other incoming messages

u=20

<
V2=1 Cl
V3=O
V4:1
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BP threshold—density evolution
BEC as example

Finding the largest erasure probability € * (threshold) such that using a BEC with erasure probably
e < €™, we can reliably transmit the LDPC code with (4, p)-Tanner graph for large enough block length.
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BP threshold—density evolution
BEC as example

Finding the largest erasure probability € * (threshold) such that using a BEC with erasure probably
e < €™, we can reliably transmit the LDPC code with (4, p)-Tanner graph for large enough block length.

Assume cycle-free, so the messages are independent
py :=Pr{v =" atround ¢}, p, = etheerasure probability

<Remark> Recall that v denotes a variable-to-check message.

Density evolution gives a recursion expression of pintermsof p,_;

The threshold £* is defined as the largest erasure probability such that

£ — 0

For more detailed analysis, we refer the readers to [1], [ 2].

1. Luby, Michael, Michael Mitzenmacher, and Mohammad Amin Shokrollahi. "Analysis of Random Processes via And-Or Tree Evaluation.” SODA. Vol. 98.1998.

2. Richardson, Thomas J., and Riidiger L. Urbanke. "The capacity of low-density parity-check codes under message-passing decoding.” IEEE Transactions on
information theory 47.2 (2001): 599-618.



Asymptotic analysis—density evolution
BEC as example

For a variable node with degree d

Pr{v = * atround £ | node degree = d}

= Pr{all other incoming messages are * atroundZ — 1}
= Pr{uy = *}Pr{Vie[d—-1], u, = * atround — 1}
= poPr{u = * atround £ — 1141

dv
p,:=Pr{v="*atround ¢} = Zgipopr{u — * 1tround Z — 1}d_1
i=1
= poA(Pr{u = * atround 7 — 1})

Next we need to analyze Pr{u = * atround ¢ — 1}

14



Asymptotic analysis—density evolution
BEC as example

For a check node with degree d

Pr{u = * atround ¢ | node degree = d}

= Pr{exists some other incoming messageis * atroundZ — 1}
=1—-Pr{Viel[d-1], v.# * atroundZ — 1}
=1—(1-Pr{v=%*atroundZ — 1})%-!

dC
Priu=* atround '} = Zpi(l — Pr{u = * atround Z — 1})%~!
=2
=1—p(1l —=Pr{u=*atround? — 1})

=1—-p(1 =py_1)
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BP threshold—density evolution
BEC as example

By analyzing Pr{u = * atroundZ — 1} and Pr{v = * atround £ — 1}, We
obtain the recursionp, = eA(1 — p(1 = p,_1))

Toensure lim p, = 0,weneedp, < (1 — 6)p,_ forall &

£ — 00

This leads to finding the largest € * such that
e*A(1 —p(1 -x)—x<0.

There are close-form solutions for regular LDPC codes.
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BP threshold—threshold saturation

In general, BP decoding is weaker than MAP decoder. (Example provided in the next section.)

Threshold saturation: When BP threshold and MAP threshold coincide.

SC-LDPC exhibits the threshold saturation phenomena on
BEC| 3] and BMS|4 | channels!

5. Kudekar, Shrinivas, Thomas J. Richardson, and Riidiger L. Urbanke. "Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so
well over the BEC." IEEE Transactions on Information Theory 57.2 (2011): 803-834.

4. Kudekar, Shrinivas, Tom Richardson, and Riidiger L. Urbanke. "Spatially coupled ensembles universally achieve capacity under belief propagation.” IEEE
Transactions on Information Theory 59.12 (2013): 7761-7813.



LDPC construction—protograph

M-litting: “Copy and permute.”

b

%\ / é Protograph with protomatrix A = [(2) } (1)]

18



LDPC construction—protograph

b

¥

é/

&

7

7

a

) @ @ 99

M-litting: “Copy and permute.”

Protograph with protomatrix A = [(2)

b

b
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Copy M times
(in this example M = 3)



LDPC construction—protograph

M-litting: “Copy and permute.”

b

. . . 12 1 0O
%\ / \ Protograph with protomatrix A = 01 1
a a

a b b b

Copy M times
g/ / i /~ (in this example M = 3)
OROONORONMONO E)

a a a b b b | Theabove graphis disconnected

;"‘ 4'4(
OROROORONONORORO

=Permute the edges



LDPC construction—protograph

M-litting: “Copy and permute.”

b

%\ / é Protograph with protomatrix A = [(2) } (1)]

H — ZIM IM 0 C()pyMtimeS

(in this example M = 3)

Permute the edges
II,+1I, Il © Tesaes .
H = (Here Hl. s denote arbitrary permutation
0 H4 HS matrices)
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Spatially Coupled-LDPC

Edge spreading: “Copy and spread.”

(3,6)—protograph
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Spatially Coupled-LDPC

Edge spreading: “Copy and spread.”

Infinite disjoint copies

(3,6)—protograph
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Spatially Coupled-LDPC

Edge spreading: “Copy and spread.”

Infinite disjoint copies

/

Vi
C
_

g

@\%“\

W

t = -2 —1

Spread the edges. Only forward in 7.

/ /
Vo Vo Vo VO Vo Yo 5

0 1 2

Coupling width (w): the farthest check node that an edge can spread out to.

(In thisexample w = 2.)
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Spatially Coupled-LDPC

Truncation
Vl Vl Vl Vl Vl Vl %
\ \
VO VO VO VO VO VO VO
Truncate.

Keep L copies of variable nodes, all of their edges, and all of the check nodes
they are connected to.
Coupling length (L): the number of copies of variable nodes
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Spatially Coupled-LDPC

Truncation

I'runcate. L=4

Keep L copies of variable nodes, all of their edges, and all of the check nodes
they are connected to.

Coupling length (L): the number of copies of variable nodes
(In this example L = 4.)

26



Spatially Coupled-LDPC

A special class of SC-LDPC: 6(j, k, L) SC-LDPC-BC

(3,6)—protograph % >>c % c

L =4 w=2

(j, k): the parameter of the base protograph.

(In thisexample (/, k) = (3,6))

w: the coupling width is chosen as gcd(J, k) — 1
(In this example w = gcd(3,6) — 1 = 2)

The above figureisa €'(3,6,4) SC-LDPC-BC.
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SC-LDPC vs LDPC

e Pros

e Better BP thresholds
e Low error floor
e Good at burst error correction

e CONs
 Higher decoding latency
e Increase decoding complexity
e Both can be mitigated by slide window decoding

e Applications in 5G, distributed storage, burst error channel...

Abdoul-Hadi Konfé, Pasteur Poda, Raphaél Le Bidan. Design Techniques of Spatially Coupled Low-Density
Parity-Check Codes: A Review and Tutorial on 5G New Radio. CARI 2022, Oct 2022, Yaounde, Cameroon.

Mitchell, David GM, et al. "Spatially coupled generalized LDPC codes: Asymptotic analysis and finite length
scaling." IEEE Transactions on Information Theory 67.6 (2021): 3708-3723.



BP thresholds for
LDPC & SC-LDPC



BP for LDPC




BP for LDPC
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BP Is suboptimal

0 0 1 o0




BP Is suboptimal




BP Is suboptimal




Construct LDPC code
such that
BP decoding algorithm Is optimal



BP for SC-LDPC

e Base graph

1
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BP for SC-LDPC

e L=3,W=1




BP for SC-LDPC




BP for SC-LDPC
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BP for SC-LDPC
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BP for SC-LDPC
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BP for SC-LDPC
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BP for SC-LDPC




Decoding ‘wave’




Bit erasure probability P

1 1 1 1 1

2 < 6 8 10 12 14 16 18 20

Variable node position (time t)

Fig. 1. Evolution of the average bit erasure probability P, of the
variable nodes at time ¢ for the C(3, 6, 20) SC-LDPC-BC ensemble trans-
mitted over a BEC with erasure probability ¢ = 048 for iterations
1 = 1,5, 20, 50,90, 98,99, 100 (from top to bottom).
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Sliding window decoding




Sliding window decoding




Sliding window decoding




Pros & cons of slide window decoding

e Pros
 Reduce decoding complexity
e Low latency

e Cons
e Increasing error floors
e Increase # of iterations

Herrmann, Matthias, and Norbert Wehn. "Beyond 100 gbit/s pipeline decoders for spatially
coupled ldpc codes." EURASIP Journal on Wireless Communications and Networking 2022.1

(2022): 90.

lyengar, Aravind R., et al. "Windowed decoding of protograph-based LDPC convolutional codes
over erasure channels." IEEE Transactions on Information Theory 58.4 (2011): 2303-2320.
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I —~ C(3,6, L) threshold &*
0.8} —— Shannon limit gy, for rate B; | -
oref | _
07l 1 i
"é 0.65f * -
e 0.6k i
8 Shannon Limit R = 1/2, egy = 0.5
A 0.55)
0.5 : : 1
(3.6)-regular MAP threshold eyap = 0.4881
0.451 -
(3.6)-regular BP threshold €* = 0.429
0.4 | i | | | | 1 i |

0 10 20 30 40 50 60 70 80 90 100
Coupling length L

Fig. 10. BEC iterative BP decoding thresholds for C(3, 6, L) SC-LDPC-BC
ensembles with design rate R = (L — 2)/2L and the corresponding
Shannon Iimit eg, = 1 — Ry for rate Ry . Also shown are the BP and MAP
decoding thresholds for the underlying (3, 6)-regular LDPC-BC ensemble,

e* = 0429 and gpap = 0.4881, respectively, and the Shannon limit for
R = 1/2 codes, g = 0.5.
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Linear Minimum Distance of
Protograph-Based LDPC Codes



Why Protograph-Based Code Ensembles?

» SC-LDPC code: Local structures for efficient decoding.

* Consider protograph-based code ensembles in order to both include
randomness and preserve local structures.

» Compared to the usual LDPC ensembles over all Tanner graphs with the
same degree distribution.
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The Minimum Distance of Protograph-Based Codes

* The structures of protograph-based codes are random.

* Use probabilistic argument to characterize the average performance over the code
ensemble.

» With high probability, dmin > Omin? as lifting factor M goes to infinity.
* dmin: Minimum distance of the code.
e n = Mn, is the codelength, where n, is the number of variable nodes in the protograph.

* Omin: The minimum distance growth rate of a code.

* A metric to compare different codes w.r.t. minimum distances.
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Code Ensemble and the Underlying Probability

* (Given a protograph.

* Define the ensemble of codes to be the set of all the Tanner graphs that can
be constructed by M-lifting the protograph [1].

. Define P™) to be the uniform probability measure over the ensemble [3].
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Example

1 1 1
1 1 1

. Consider the protograph B = [ ] and the lifting factor M = 3.

 Tanner graph of B:

 Minimum distance of this protograph is 2.

» There are (3!)° protographs in this ensemble.

1
(3¢

Each with probability
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Example (Conti'd)

» A Tanner graph in the 3-lifted ensemble:

1 001 0010 ‘
O1 0012001

H_ 00100100 1| W\
1 001 0010
O1 0012001
001001020

 The minimum distance of this graph is 2.

 The same as that of the protograph.

- q @
RV
@
Q;QZ»;
K
WA
AN



Example (Conti'd)

» Another Tanner graph in the 3-lifted ensemble:

Q

SO OO =

—_ 0 O O = O

0
1
0
1
0
0

S = OO O =
SO = OO =

0
1
0
0
1
0

1

e The minimum

Q O O = = O O
O = O O = OO
v o= O = OO

iIstance of this graph is 4.

* Increased minimum distance (compared with the protograph).
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Average Number of Codewords of a Specific Weight

» For 1l < d < Mn,, define AO(ZM) as the average number of codewords of weight
d in the M-lifted code ensemble.

« More explicitly, AC(ZM) = —(M)[XC(ZM)], where

5 XC(ZM) is the number of codewords of weight d in a code from the M-lifted
ensemble.

. XCE,M) is a random variable;

=-(M) is the expectation operator w.r.t. the probability measure | M) [3].
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Asymptotic Spectral Shape Function

In(A{D)

n

Define the asymptotic spectral shape function 7(5) = lim sup r,(5), where r,,(5) =

M— o0

» Operational meaning of r,,(0): The exponent of the average number of codewords of weight on.

» For example, say 0 = 0.1.

» There are 2" binary words of length n.

20.3n

» If there are (on average) words that are codewords of weight 0.1n, then ry,(0.1) = 0.3.

* Up to some constant factor depending on the base of logarithm.

* 7(0) only depends on the protograph.
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Minimum Distance Growth Rate

e Define the minimum distance growth rate o,i, to be
the first zero-crossing of the function (o). ()

» Thatis, r(Omin) = 0and r(0) < 0 for 0 < 0 < Omin.

e |f exists.

5min

 For a given protograph, one can calculate r(0) by the
recursive method in [2] and [5] to determine whether

Omin exists, and if exists, its value.
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Probabilistic Guarantee of Linear Minimum Distance

Omin/i—1
min
(M) (M) (M)
_ Consider the probability [ (a’mIn < Omin) < Z A
d=1

. dr(%% is the minimum distance of an M-lifted code in the ensemble, which is a random variable.

« Can be derived by the union bound and Markov's inequality [4, Appendix B]:

%) n—1
min
P(M)(d%z] < Omin/) = PM)(There is a codeword of weight < Ominfl) = P U {XC(ZM) > 1}).
d=1
5m|nn 1 5m|nn 1
_ By the union bound, we have pPM)( U X, 21} < Z [P’(M)(Xd 1).
d=1 d=1
5minn 1 5m|nn 1 5mmn 1

FODLX,
_ By Markov's inequality, we have Z P(M)(Xd 1) < 4 — Z AWM
d

d
d=1 =1 1 =1
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Probabilistic Guarantee of Linear Minimum Distance (Conti'd)

5minn—1
~ We have Z ACE,M) — (0 as M goes to infinity.
d=1

e Intuition: There are O(M) terms in the summation, each of which decays
exponentially in M.

* Rigorous proof: See, for example, [4, Appendix B].
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Probabilistic Guarantee of Linear Minimum Distance (Conti'd)

 Combining the previous two results, we have

5minn—l
(M) (M) . (M)
PIEM < Sy < ), AWM >0,
d=1

« For large enough M, with high probability, the minimum distance of the M
-lifted ensemble is at least Ompin7t-

» Recall again that the codelength is n = Mn,,.

» This result explains why 0min is called the minimum distance growth rate.
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Comments

« The analysis of the minimum distance of a code ensemble using Ac(zM) and r(0) can be
traced back to the thesis of Gallager [6, Chapter ll].

* In [7], exact expressions of r(0) for several code ensembles are given.

* A similar approach can be applied for the asymptotic size of trapping sets [8].

* |n addition to the recursive method of computing 7(0) in [2] and [5], one can also find 7(0)
as the solution to an optimization problem [3, Theorem 1].

e Derivation based on Sanov's theorem.

e Sanov's theorem can also be used similarly in the analysis of trapping sets [8, Theorem
3.3].
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Numerical Examples



C(J,K,L) SC-LDPC-BC Ensembles

Bo
* [1, Definition 6].
B
¢ LetJ, K, L be positive integers.
« [ is the coupling length.

« The €(J, K, L) ensemble is the weight-lifting code ensemble whose

protograph has a parity check matrix on the right [1, (8)]. Bo,L-11=| By

e a = gcd(J, K) be the greatest common divisors of J and K.
e WriteJ = aJ and K = aK'.

e w=a—1l.

. Each Bj is a J' by K’ all-one matrix.

* The vertical pattern is repeated L times.

(2



Minimum Distance Growth Rate of SC-LDPC-BC Codes

« Consider the ¢(3,6,L) SC-LDPC-BC code ////////

ensembles [1, Definition 6]. 01 9 e I
time ¢
* That s, the code ensemble with protograph coupling longih L and coupling width 1~ 2 obiained by terminating 3
(3, 6)-regular convolutional protograph.
T3 _
11|11
1 1|1 1}-. TABLE 1
Boo,L-11= 11 : MINIMUM DISTANCE GROWTH RATES FOR THE C(3, 6, L)
11 SC-LDPC-BC ENSEMBLES
i i } 112t L | Design Rate Ry, | Growth rate 5&21 5r(nLi31L/(w +1)
3 1/6 0.1419 0.142
| 4 1/4 0.0814 0.109
« On the right are the Tanner graph of B[o L—1] : 31//130 0.0573 0.096
[1, Fig. 6] and the minimum distance growth ’ 53//184 0.0374 0.087
rate for different L [1, Table I]. ° e 0.0287 0.086
20 9/20 0:0129 0:086
00 1/2 0
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Minimum Distance Growth Rate of SC-LPDC-BC Codes (Conti'd)

» Consider 6(J,2J, L) code ensembles.

* On the right are the minimum distance growth

rate v.s. the design rate of 6 (J,2J, L) code
ensembles [1, Fig. 9].

* The Gilbert-Varshamov (G-V) bound: There
exist a code with R > 1 — H(0min) [91, [10],

[11, Problem 1.15].

 The gap between the proposed codes in [1]
and the G-V bound is expected: It is difficult

to explicitly construct a binary linear code

achieving the G-V bound [12].

74

x (J, K)-regular

Gilbert-Varshamov

Rate

0.2} L:5 N
0.15 T L=3
Increasing
0.1 coupling
length L
005 | | | | | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Growth rate Oy

Fig. 9. Minimum distance growth rates for C(J,2J, L) SC-LDPC-BC
ensembles with design rate Ry, = (L — J + 1)/2L and some (J, K)-regular
LDPC-BC ensembles with design rate R = 1 — J/K. Also shown is the

Gilbert-Varshamov bound for random block code minimum distance growth
rates.



BEC Threshold and Minimum Distance of SC-LDPC-BC Ensembles

08 | | | | | 08 |
_ 3.19)x —2-C(3,12, L)
 [1, Fig. 12]. "&b (3,10) o-C(3.9, L)
’ P (3,9) —%C(3,6,L) 1
(4,12) (38) —+-C (4,6, L)
0.6 (4,10) X x (J, K)-regular Ho. :
L=300g(3:7) Shannon
3,6 .

0.5 X X ( X ) limit ~0. i

8 (5,10) (4,8)

<

o _
0.4 L=3 (3,5) 10. .

(4,6) x
0.3+ (3,4) -0. -
| : |
0.2 Increasing 10.2 FIncreasing (34) 7
coupling 123 coupling ’ 123 >
0.1 length L ! ' l l L=3 >, 0.1 length L ! ! ! ! > L=3
0.2 0.3 0.4 0.5 0.6 0.7 0 0.05 0.1 0.15 0.2 0.25 0.3
BEC threshold Growth rate Oyin

Fig. 12. BEC iterative BP decoding thresholds and minimum distance growth rates of four C(J, K, L) SC-LDPC-BC ensembles and several uncoupled
(J, K)-regular LDPC-BC ensembles.
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Conclusion



Conclusion

« SC-LDPC code ensembles constructed from protographs have the following
property:

* 1. BP threshold approaches MAP threshold.

e 2. Minimum distance grows linearly in the codelength n.

’r’
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