Attenuation: Optimal Probability Estimation

Ben Kim, Ye Liu, Rong Wei

From the paper “Always Good Turing: Asymptotically Optimal Probability Estimation”
Alon Orlitsky, Narayana P. Santhanam, Junan Zhang



Topics

Introduction and Preliminaries
Ben (Slides 3 - 11)
Unbounded- and Constant-Attenuation Estimators
Ye (Slides 12 - 22)
Diminishing-attenuation Estimators
Rong (Slides 23 - 41)
Examples, Applications, and Conclusions

Ben (Slides 42 - 46)



Introduction

e Say we are choosing pebbles from a bag, with only a
couple of tries.

e We choose one yellow pebble, and one green pebble.

Se

e How do we estimate the true probability distribution? O

ey
0 ¢

N

Image Credits: Bamboozle Math Games



How do we estimate the probabillity distribution?

e Naive Empirical: half green, half red
P(Yellow) = 0.5, P(Green) = 0.5

e Laplace estimator: Addition of one to every possibility: 1 red, 2 green, 2 yellow

2 2
P(Yellow) = =, P(Green) = -, P(Red) =
5 5] :
o Other add constant estimators have taken a similar approach
o This approach is weak when the number of possibilities is too large compared to sample
size

S

e Alan Turing and I.J. Good had the same problem deciphering encrypted messages
during WWII. (Good Turing Estimator!!)



Good Turing Estimator

e |.J. Good and Alan Turing had obtained the German Cipher Book wanted to
apply the cipher book for a cryptanalysis to help decipher messages

e Derived the “Good Turing Estimator”
o Conceptually: “smooths” probability distribution and reallocating probability to rare events
o Useful for small sample size, or many events with small possibilities
o Turing and Good had a small sample size of German intercepted ciphers

e Since publication, has had useful applications in information retrieval, spelling
correction, speech recognition

Image Credits: Science Museum, Virginia Tech Science Magazine



Main Contributions

e This paper introduces a novel framework which can be used to evaluate
probability estimators based on their attenuation

e The authors derive diminishing attenuation estimators, which approach
optimal performance as there is an increase in samples

e They then evaluate the performance of all these estimators by bounding them
as well as analyzing simple examples



Definitions

e Estimator - Assigns probability distribution to observed samples
e Patterns - abstract the sequence of observations, replaces each unique
element with its order of first appearance.

Valid for each new outcome i@, ¢ > 1 occurs after the (i — 1)-th index.
o Ex: (121),(132)
o Denoted by W(z), ¥(a,a,b,c) = 1123

e Probability of Patterns - the probability that a sequence generates a pattern
when sampled from a distribution

Wl o el &
p'(v) = plx € A" : ¥(z) = v}

o Ex: W(11)



Definitions

e Maximum pattern probability: B N
o Highest probability assigned to the pattern by any distribution. 7" (%f’) - m!?xi’w (W)
o Ex: Constant Distribution p¥ (1. .. 1) = 1 and Continuous Distribution pY (12...n) =1

e We denote a pattern ¢ = 919 . ..,, and the number of distinct symbols
appearing in the pattern m = [{¥1,...,¥n}|.

e Sequential Estimators:
o A mapping q that associates with every pattern %71 a probability distribution over
o Chain Rulet+ 1] ={1,2,...,m + 1}
n—1 _
a(y?) = || a@inal)

1=0



Definitions

e EXx: Add-one estimator producing ‘1213’

. 1+1 2
fa’+1ﬁl|1}_T_T}
_ 041 1
Ga(@ll) = o = 5
q+1(1213) = g1 (1A) - g41(2[1) - g41(1]12) - g41(3[121)
1 1 2 1
1 356
1



Definitions

® Seguence attenuation of an estimator ¢ for a pattern (A

R(g. ) ;}m(t'i'} highest probability assigned to ¢/] by any distribution
{ q(¢¥1) probability assigned to it by q

e Ex: Estimator ¢ assigns a probability of 0.1 to pattern
o True probability P assigns it 0.3 to pattern 1/}’

o (s probability for this pattern is three times smaller than the best possible probability
distribution



Definitions

e worst-case sequence attenuation of g (largest sequence attenuation of g for any length-n pattern):
R"(q) = MATynepn R(gq,¥7)

1
n

e worst-case symbol attenuation of g for length-n patterns: (12"(q))

1
LL

e (asymptotic, worst-case, symbol) attenuation of g: £°(¢) = lim sup,,_,..(R"(q))

e Diminishing attenuation estimator, as samples increase we approach optimal distribution estimation



A Preliminary Result

e multiplicity of g in ¥} (number of times y appears in pattern):
Ly = [ L_-':('r;"i’f') — |1 <i<mihy= 'ff"'»‘|

e prevalence of the multiplicity p (number of symbols appearing p times in pattern):

P, =P, =0 py =
e Example
For pattern ¥ --'T' = 1213,
fy =2, 0 = 13 =1:1 appears twice, 2 and 3 each appear once
Y2 = 1, Y1 = 2.2 symbols including 2 and 3 appear once, 1 symbol including 1 appear

twice



A Preliminary Result

Number of distinct patterns with prevalences %1: %2, ... ¥n:
n! def
TL = -‘N-(Lplv .. :ipﬂ)' where n = Hfp
Hp:l (MI)(FF {PP[I ‘Z‘

Since maximum probability is achieved by having a distribution with the same probability,




Unbounded- and Constant-Attenuation Estimators

Add-constant estimators have unbounded attenuation.

A modified version of the add-one estimator and the Good-Turing
estimator have constant, albeit non-diminishing, attenuations.



Add-One Estimator

Add-constant estimators have unbounded attenuation.

Theorem1 R*(qs1) = o0

11 1 246---2n  2°(12---m)  2'nl

Ex: For pattern 123...n, ¢+1(123---n) = 13 "2n+1 (@2n+1)! (2n+ 1)! " (2n +.IlJ.r (14.1)

pY(12---n) = 1 since a string of positive integers is pattern iff the first appearance of any i = 2
occurs after that of i — 1

e i < o L i < pY(12---n) lim s (2n + 1)!

(qe1) = lim sup,,_, _(R"(q))* = lim sup, 0 (123 n) 1 sup,, o ou (14.2)
(2n+1)! _ nl{?ﬂ:+ 1)! > 99 (2n+ 1)! on (2n+1)! g, (2t 1)(2n) - (n+2)

2np) 22¥lpn! = 22 (n+ 1) T (n+ 1) (n+1)! (n+1jn---21

1

E . 37
2 2n 2 2n- = % by using the fact 2" grows slower than (n+1)!

As n goes to infinity, 2“1 goes to infinity.
.4

27y

Therefore, the attenuation of add one estimator is infinity so that unbounded.



Modified Add-one Estimator

The estimator uses the add-one rule to estimate the probability of the next symbol being new or repeated,
and for repeated symbols it assigns a probability proportional to the number of occurrences of the symbol.

m: number of distinct symbols appearing in a pattern Uy
H: multiplicity of g in VY for 1 < y<m

Then estimator assigns probability as :

G141/ (Vns1|¥7) = ?:"'21 i Ynys =m +1 15.1
n 1 H;Tg_l ”"i’:-’rl lf 1 E {l,if;ﬂ-}—l {_: m ( . )

If the next symbol has never been seen, define the probability as the add-one rule; if the next symbol has
been seen from 1 to m, define the probability multiply the proportion of number of times of the symbol to

length n.



Modified Add-one Estimator

Theorem 2 1.69 < R*(q.1) < 2.85

n

Ex: pattern v = 12--- 212- s estimator assigns probability

2 ~ ().O8"n "*
(n+Dln-1)!  (@16.1)
n T
by using Stirling’s approximation 7! & QW”(E) and approximate terms like
n-1 to n for large n

—nf2

uniform distribution over an alphabet of size 0.628n assigns to y the probability 0.98"n

s ¢ n Tt —it2

1 pr(vy). . 098" ,

[rj{” FRT, 1 ;:7’ - n — - TN ]_fﬂ
(ff 1 )] - f I'j":{'f} ] LUI_;-}HHH—H,.-'J) !

Te=—00 N

R*(qyy) = lim sup



Modified Add-one Estimator

sequence attenuation of any length-n pattern g with m distinct symbols is bounded by

1

AW oy N7 .
R(gor, §) = 0L« X2 quay-miotz

q+1(¥) q¢+1(¥)

o d m m
Then try to maximize by mto let z,,;*#(;) - m; =0

d m mn m. n*
EHH{—] - mfr;q{—} = log(1 — —] - fm;r{ ] - IUJ[ } —1=log((1 - ;jm?} -1=0 (18.1)

~l.5n

By solving the equation above, we get n = 2m. Take this back to (1. ), we have 2!

Then the attenuation of estimator is bounded by

(R™(q41))" = (2"%")% ~ 2.85



Good-Turing Estimator

7= ftg,., (¥1) : number of ¢.+1 appearing in ¥i

s

£, r=0 (19.1)
q(Pns1|U7) = { r Phe s
= e T2l
where % is a smoothed value v, = max(p,, 1) : simplest smoothing technique
max(g1,1) =)
b1y 9 ) Sgp, BF)° i
qCTx(Qr"n+l|‘*’l) = ',-+1 max(@,s1.1) r>1
Sary (¥7) Pr » T (19.2)

where

max(@u+1,1)

¢

Y

def
Sor (¥1) = max(er, 1)+ Y @u(u+l)
pipu >0

try to ensure probability sumto 1

is a normalization factor.



Good-Turing Estimator

Theorem 3 1.39 < R*(qggr) < 2
Ex: for the pattern 12(132)™/% < 12132132...132
Reason to choose this pattern: there are always some symbols appearing different times than others
Gors (Y) = 9[72-"“] by considering probability associate with pattern 132 with 3, 4, 6 possible
values
p*(¥) =©(3™™) by having uniform distribution assign to y

s T

* i : T vy L 1” {'{-}
R (gem ) = lim sup,,_, (R (g ) = ( — 2 (573
gar1 () fa ™




Good-Turing Estimator

Upper bound

def
?{?] d—LrﬂLuTl{Uﬂ ll:""':i "J‘"j!{h;l}

:r: 1y u — ]na_}({ (i ,]_:]
Gerrs {T.".Jii:]‘ _ l—ll 1 '” } H T ( 141 (211)

=1
l-[:_l ll5'1'11 Ul i

“"ff )
P (V) < 1 _ [y ()Y (21.2)
B ‘w{"r?lvﬂ- -'*Fn) n!
S (g " Py ¥ ) Ty n L max(e! 1)
i _ max P (47) _ H,;_ (put)Vmit Tt . max(g) .y
R'(q) = wpev quop) <= T p T son@D L o

_ ].—IH "‘.’"pt! n!l | [E. :I ! i
= | max —— “'r_' z - - m-,}x"—“” =ER.-R?
L | max{ey 412 1/ ¥ n!

Reason to separate to Rg and Rs: make calculation of upper bound much easier



Good-Turing Estimator

[y FE -

i TLimy max(e) )00 D/90)

T n n—1 11
H = ‘i‘:’ T = S —Y lef
(max - = ) : (mlmz [Tic1 S (V1) = R{-RY

. - T BLO RS O
According to the definition, we observe that lj[. = H Yur (22.1)

Fr(i) =1

Place it into Rg, we could get R < 2"~ 1.

1 n—1 1
Also, because S(:’I‘l (I":I?} sn+vén Rs < (1 ! O(ﬁ)) n

n

Multiplying Rs and Rg together we could get upper bound 2.



Diminishing-attenuation Estimator



Diminishing-attenuation Estimator

Probability

- distribution over
Estimator q > seqliences

To evaluate the performance of an estimator, We compare their sequence (symbol) attenuation.
l R*(g) = lim Sup,, ol R"(q))n

Diminish-attenuation estimator: R* (q) — 1
Per-symbol probability assigned by the estimator is asymptotically the best possible.



Diminishing-attenuation Estimator

~ q2 Computationally more efficient
3 (requires only a constant number of operations per symbol)

- Q% Attenuation approaches 1 more quickly



A Low Complexity Estimator



A Low Complexity Estimator

Definition
We define the estimator as the following:

(6| 0) 1 fenia (1 + 1), r=0
n = = X [ 4
BV = 5w “ Y (r + 1}%}” r>0

If'71'r+1 Fr ’

Here p, is multiplicity of 4 and ¢, is the prevalence of u. Recall
the symbols:

f. () = max(g, c), o = [n3]
r= Mnﬂ(wij)

Additionally, S, (%) is a normalization factor.

fl:'n+.'l {{PH'{']- + 1)
an-i-l (‘P,u,)

Serir (V1) = fe, ., (1 + 1) + Z{Pﬁ(# +1)

p=1



A Low Complexity Estimator

Theorem
The upper bound on the q: estimator’s attenuation is at most

20(n§).
2
n __n0(n3)
R"(qz) =2
Where the implied constant is at most 10.

Remark
The symbol attenuation diminishes to 1 at a rate of at least

20(n"3)



A Low Complexity Estimator

Proof.
v 0<p<
We denote g.(p) = fe(k) = ic ’ =%=C Then the
ael, p=c

sequence estimator can be calculated through induction on n:

n—=1

()% ge, (])) 2o ()
H?:E sCi(¢i_1) E(;:!;[l gCHI({i?L))

q2 (Y1) =

Recall the maximum probability of a pattern is:

AT
P (¥) < -
We can get the upperbound for the sequence attenuation:
n n| n=1 i
R"(q:) < max H {P . Max H (ﬂ"l) . max (H gc,H(‘P”))

it - () R n! e R B - U



A Low Complexity Estimator

> Since gc(p) = ¢!, then RE = maxyy [[/_, ﬁ:‘%ﬂj <1
» Lemma 21[2] indicates that:

2
S,(04) < (1+ )n+ \/m

Through Arithmetic Mean-Geometric Mean Inequality, we get:

[171 S (¥4)

Rs = I"I:I'.:)( _
1 — 1 2(2¢i41 + 1)2 1
<~ - ! n-1_ =
N (" -1 E{{l " Ca'+1] " \/ ICit1 ) n
» Lemma 20[2] includes the inequality:
Re = max(]] 2 %4)) < ’ﬁ[crﬂ W
FUW L ga(e)

[2]Orlitsky, A., Santhanam, N.P. and Zhang, J., 2004. Universal compression of memoryless sources over unknown alphabets. IEEE
Transactions on Information Theory, 50(7), pp.1469-1481.



A Low Complexity Estimator

Finally, we incorporate inequalities above and get:

R7(ap) < r[f'“ ViR

2(2¢i41 + 1) -1 L
l+1 n

ICi+1

Plug ¢; = [n:l%] into above inequality, we get the upperbound of
R”(qg) is 20("§)



A Low Complexity Estimator

Remark

The number of operations required to compute all of

92 (1), G2 (Valt), -, G2 (a0 ") grows linearly with . It
means that it requires only a constant number of operations per
symbol. Recall the construction of estimator:

1 C_n+1 (@1 + 1—] r= D

3(1}}) +1 |1"£"1) ens lEre141)
3 n 'SCn-hl{wl) (r+ 1)W r>>0
Since ¢, = fn%] then compute cy, ..., c, requires only O(n%)

multiplications and O(n) compansons It suffices to evaluate the
complexity to calculate S, (V] 1). The proof is done by separating

i € perfect cubes Z* = {13 23 .Y and i ¢ Z3, and then discuss
the computation complexity of S.: (1 i=1) under two sets.

[2]Orlitsky, A., Santhanam, N.P. and Zhang, J., 2004. Universal compression of memoryless sources over unknown alphabets. IEEE Transactions on
Information Theory, 50(7), pp.1469-1481.



A Low Attenuation Estimator



A Low Attenuation Estimator

Definition
We define the estimator as the following:

2 yewtn (97 $ns1)B(7)
2yevtn(f)5(7)

91 (¥ns1l¥7) =

1
2

Here
2(47) = 1 _ H;=1(H!)@”(%¢!)
YNy %) !
) z(¥7)
p(YT) = -
( 1} Z?EW" Z(}")
t, = 28I+l is the smallest power of 2 that is larger than n
Wi (yr) = {yi" € Wy = 41}
denotes the set of patterns of length t, with prefix 17

is the distribution over W"



A Low Attenuation Estimator

We observe that the construction of the g estimator is closely
2
related to the partition of an integer.

> 9= Y ey = 1"

yew” yewn

Here |®"| is the total partitions of the integer n.

For example, n = 4, the number of length-n patterns is |W*| = 15,
the 4th Bell number, and [®%| =5

> 4=14+0= {1111}

> 4=3+1= {1112,1121,1211, 1222}

> 4=2+2= {1122,1212,1221}

> 4=1+1+2= {1123,1213,1231, 1223, 1232, 1233}
> 4=1+1+1+1= {1234}



A Low Attenuation Estimator

Recall for any pattern ¢ € W" of profile ¥ € W", since every i.i.d.
distribution assigns the same probability to all patterns of the same
profile, the maximum probability of a pattern is upperbounded by:

1
p(Y7) <
WIS N, 60)
Inspired by this upperbound, we construct following distributions:
1
- z(y7 N{W1,.10n) 1
pvp) = <) P

> yewn 2(¥) 2 gewn m T N1, -, Un)[07]

.....

We denote p*(y7) = p(W* (7)) = EFE‘U"[&?] p(¥) Therefore,

Lyewn(erva)bls) _ B ()
2 yewn (¢D)(7) ph(v1)

as (Yniaf) =



A Low Attenuation Estimator

Theorem
The upper bound on the q 1 estimator’s attenuation is bounded by:

47
V3(2 - V2)

R(3) < exp( V)

Remark 1
g1 achieves a sequence attenuation of 2°("?) hence a symbol
2

= |
attenuation diminishes to 1 at a rate of at least 2°(7 2).



A Low Attenuation Estimator

Proof.
For n =1, the theorem holds trivially.
We rewrite the attenuation:

oUW YWD )
R"(q,) = P¥1) _ -
9= 0,000 = 5@ @y ()

In next several slides, we will show bounds for each ratio.Then
combine two parts together, we get the upperbound for sequence

attenuation of q:.
2

[2] Orlitsky, A., Santhanam, N. P., & Zhang, J. (2004). Universal compression of memoryless sources over unknown alphabets. IEEE
Transactions on Information Theory, 50(7), 1469-1481.



A Low Attenuation Estimator

For the first part, we first observe that:

Pan=sp Y < Y A< 2 ﬁ

Y1 yewtn(yp) yewn(yl) yewn (yf)
- X s N < en(m/ 2V Y AY)
yeWn (1) yEw'ﬂ{v"}

(1) - exp(m \/7\/—

The last inequality comes from Hardy and Ramanujan[3], which
shows that the number of unordered partitions of n is:

explmy| 2 V(L — (1) < [67] < exp(ry 2V

Then we claim that:

B
Feop) < oot 5ve

[3] Hardy, G. H., & Ramanujan, S. (1918). Asymptotic formulaze in combinatory analysis. Proceedings of the London Mathematical Society,
2(1), 75-115.



A Low Attenuation Estimator

For the second part, we prove by induction on i > 0. We claim
that for all 2/ < n < 2/*1,

p~2"+1(¢?) g \/2i+1
o) =PV

First,
a1 (¥2) = B(u?) = =
el 1 2
Then for i which satisfies 2/ < n < 2/*1, we have

52

52(3)

a3 (1) = a3 (W) (wi1vd) = a3 (})

Hence,

ﬁziﬂ(?&'&f) _ ﬁ26+1(¢ff) _ ﬁz;ﬂ(‘t,ﬁﬁ?} | ﬁ(‘ffz‘%’}
W) q@) AW  ay@f)




A Low Attenuation Estimator

By the induction hypothesis,

B(y?) ol |2 V2
q%(w?] < exp( \/; )

By definition of p, we get:

U wd) B (wd)
- i - 1
Av1) N2 )07 |

< (N@3?) 5" (v3))- expm/% Vi)
<( ), B»)- exp(ﬂ\/g\/?_@

FE‘“QF.FI

= exp{?r\/g@}




Lower Bound on Attenuation



Lower bound on attenuation

Can we make the sequence attenuation arbitrarily small?

Theorem

For every estimator q, the sequence attenuation of any estimator

grows at least exponentially in the cube root of the sequence
length.

R"(q) > exp{3n¢[1 — o(1)]}

[4] Orlitsky, A., & Santhanam, N. P. (2003, March). Performance of universal codes over infinite alphabets. In Data Compression Conference, 2003.
Proceedings. DCC 2003 (pp. 402-410). IEEE.

[5] Jevti¢, N., Orlitsky, A., & Santhanam, N. P. (2005). A lower bound on compression of unknown alphabets. Theoretical computer science, 332(1-3),
293-311.



Performance Examples

e Consider the low complexity estimator 41/3 utilized for simple sequences
e Repeating Sequence ‘aaaa’
o Estimates 1-6(1/n) that the next symbol is ‘a’, ©(1/7) that it is new
e Alternating sequences ‘ababa...’
o ©(l/n) Thatitis new, splits remaining 1 — ©(1/n) between ‘@’ and ‘b’
e Unique symbols ‘abcdef’
o 1—0(1/n**) That the next symbol is new

e Doubled symbols ‘aabbcc...’
o 1/4that the next symbol is new, 3/2r that the symbol is a preceding one

e The estimator generally aligns with one’s intuition for simple patterns



Applications of Good Turing Estimation

e Distribution estimating in Machine Learning [6]
o  Good-Turing estimators is near optimal for discrete distributions

e Life sciences [7], [8]
o Applied to estimate the unseen species in a habitat
o  Occurrence of genetic variants

e Language Processing [9]
o Applied in speech recognition and computational linguistics

[6] Orlitsky, A., & Suresh, A. T. (2015). Competitive distribution estimation: Why is Good-Turing good. Advances in Neural Information Processing Systems (pp.

2143-2151).
[7] Chao, A., & Lee, S. M. (1992). Estimating the number of classes via sample coverage. Journal of the American Statistical Association, 87(417), 210-217.

[8] lonita-Laza, I., Lange, C., & Laird, N. M. (2009). Estimating the number of unseen variants in the human genome. Proceedings of the National Academy of

Sciences, 106(13), 5008-5013.
[9] Gale, W. A., & Sampson, G. (1995). Good-Turing frequency estimation without tears. Journal of Quantitative Linguistics, 2(3), 217-237.



Conclusion

e This paper introduces a novel framework which can be used to evaluate
probability estimators based on their attenuation

e The authors derive diminishing attenuation estimators, which approach
optimal performance as there is an increase

e They then evaluate the performance of these estimators by bounding them as
well as analyzing simple examples
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Thanks for Listening !
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