Problem Solving Session 6

7.28

28) Choice of channels.

Find the capacity C of the union of 2 channels $(\mathcal{X}_1, p_1(y_1|x_1), \mathcal{Y}_1)$ and $(\mathcal{X}_2, p_2(y_2|x_2), \mathcal{Y}_2)$ where, at each time, one can send a symbol over channel 1 or over channel 2 but not both. Assume the output alphabets are distinct and do not intersect.

- a) Show $2^C = 2^{C_1} + 2^{C_2}$. Thus 2^C is the effective alphabet size of a channel with capacity C.
- 28) Choice of Channels
 - (a) This is solved by using the very same trick that was used to solve problem 2.10. Consider the following communication scheme:

$$X = \begin{cases} X_1 & \text{Probability } \alpha \\ X_2 & \text{Probability } (1 - \alpha) \end{cases}$$

Let

$$\theta(X) = \begin{cases} 1 & X = X_1 \\ 2 & X = X_2 \end{cases}$$

Since the output alphabets \mathcal{Y}_1 and \mathcal{Y}_2 are disjoint, θ is a function of Y as well, i.e. $X \to Y \to \theta$.

$$I(X;Y,\theta) = I(X;\theta) + I(X;Y|\theta)$$

= $I(X;Y) + I(X;\theta|Y)$

Since $X \to Y \to \theta$, $I(X; \theta|Y) = 0$. Therefore,

$$\begin{split} I(X;Y) &= I(X;\theta) + I(X;Y|\theta) \\ &= H(\theta) - H(\theta|X) + \alpha I(X_1;Y_1) + (1-\alpha)I(X_2;Y_2) \\ &= H(\alpha) + \alpha I(X_1;Y_1) + (1-\alpha)I(X_2;Y_2) \end{split}$$

Thus, it follows that

$$C = \sup_{\alpha} \{ H(\alpha) + \alpha C_1 + (1 - \alpha)C_2 \}.$$

Maximizing over α one gets the desired result. The maximum occurs for $H'(\alpha) + C_1 - C_2 = 0$, or $\alpha = 2^{C_1}/(2^{C_1} + 2^{C_2})$.

7.33

- 33) **BSC with feedback.** Suppose that feedback is used on a binary symmetric channel with parameter p. Each time a Y is received, it becomes the next transmission. Thus X_1 is Bern(1/2), $X_2 = Y_1$, $X_3 = Y_2$, ..., $X_n = Y_{n-1}$.
 - a) Find $\lim_{n\to\infty} \frac{1}{n}I(X^n;Y^n)$.
 - b) Show that for some values of p, this can be higher than capacity.
- 33) BSC with feedback solution.

$$I(X^n; Y^n) = H(Y^n) - H(Y^n|X^n).$$

$$H(Y^n|X^n) = \sum_i H(Y_i|Y^{i-1}, X^n) = H(Y_1|X_1) + \sum_i H(Y_i|Y^n) = H(p) + 0.$$

$$H(Y^n) = \sum_i H(Y_i|Y^{i-1}) = H(Y_1) + \sum_i H(Y_i|X_i) = 1 + (n-1)H(p)$$

So,

a)

$$I(X^n; Y^n) = 1 + (n-1)H(p) - H(p) = 1 + (n-2)H(p)$$

and,

$$\lim_{n\to\infty}\frac{1}{n}I(X^n;Y^n)=\lim_{n\to\infty}\frac{1+(n-2)H(p)}{n}=H(p)$$

b) For the BSC C = 1 - H(p). For p = 0.5, C = 0, while $\lim_{n \to \infty} \frac{1}{n} I(X^n; Y^n) = H(0.5) = 1$.

7.35

35) Capacity.

Suppose channel \mathcal{P} has capacity C, where \mathcal{P} is an $m \times n$ channel matrix.

a) What is the capacity of

$$\tilde{\mathcal{P}} = \left[\begin{array}{cc} \mathcal{P} & 0 \\ 0 & 1 \end{array} \right]$$

b) What about the capacity of

$$\hat{\mathcal{P}} = \left[\begin{array}{cc} \mathcal{P} & 0 \\ 0 & I_k \end{array} \right]$$

where I_k if the $k \times k$ identity matrix.

35) Solution: Capacity.

a) By adding the extra column and row to the transition matrix, we have two channels in parallel. You can transmit on either channel. From problem 7.28, it follows that

$$\tilde{C} = \log(2^0 + 2^C)
\tilde{C} = \log(1 + 2^C)$$

b) This part is also an application of the conclusion problem 7.28. Here the capacity of the added channel is $\log k$.

$$\hat{C} = \log(2^{\log k} + 2^C)$$

$$\hat{C} = \log(k + 2^C)$$

8.10

10) The Shape of the Typical Set

Let X_i be i.i.d. $\sim f(x)$, where

$$f(x) = ce^{-x^4}.$$

Let $h = -\int f \ln f$. Describe the shape (or form) or the typical set $A_{\epsilon}^{(n)} = \{x^n \in \mathcal{R}^n : f(x^n) \in 2^{-n(h \pm \epsilon)}\}$.

10) The Shape of the Typical Set

We are interested in the set $\{x^n \in \mathcal{R} : f(x^n) \in 2^{-n(h \pm \epsilon)}\}$. This is:

$$2^{-n(h-\epsilon)} \le f(x^n) \le 2^{-n(h+\epsilon)}$$

Since X_i are i.i.d.,

$$f(x^{n}) = \prod_{i=1}^{n} f(x)$$

$$= \prod_{i=1}^{n} ce^{-x_{i}^{4}}$$
(734)

$$= \prod_{i=1}^{n} ce^{-x_i^4} \tag{735}$$

$$i=1 = e^{n\ln(c) - \sum_{i=1}^{n} x_i^4}$$
 (736)

(737)

Plugging this in for $f(x^n)$ in the above inequality and using algebraic manipulation gives:

$$n(ln(c) + (h - \epsilon)ln(2)) \ge \sum_{i=1}^{n} x_i^4 \ge n(ln(c) + (h + \epsilon)ln(2))$$

So the shape of the typical set is the shell of a 4-norm ball $\{x^n: ||x^n||_4 \in (n(\ln(c) + (h \pm \epsilon)\ln(2)))^{1/4}\}$.

8.11

11) Non ergodic Gaussian process.

Consider a constant signal V in the presence of iid observational noise $\{Z_i\}$. Thus $X_i = V + Z_i$, where $V \sim N(0,S)$, and Z_i are iid $\sim N(0,N)$. Assume V and $\{Z_i\}$ are independent.

- a) Is $\{X_i\}$ stationary? b) Find $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n X_i$. Is the limit random?

11) Nonergodic Gaussian process

a) Yes. $EX_i = EV + Z_i = 0$ for all i, and

$$EX_iX_j = E(V + Z_i)(V + Z_j) = \begin{cases} S, & i = j\\ S + N. & i \neq j \end{cases}$$
 (738)

Since X_i is Gaussian distributed it is completely characterized by its first and second moments. Since the moments are stationary, X_i is wide sense stationary, which for a Gaussian distribution implies that X_i is stationary.

b)

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} (Z_i + V)$$
 (739)

$$= V + \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Z_i \tag{740}$$

$$= V + EZ_i$$
(by the strong law of large numbers) (741)

$$=V$$
 (742)

The limit is a random variable $\mathcal{N}(0, S)$.