36) Channel with memory.

Consider the discrete memoryless channel $Y_i = Z_i X_i$ with input alphabet $X_i \in \{-1, 1\}$.

a) What is the capacity of this channel when $\{Z_i\}$ is i.i.d. with

$$Z_i = \begin{cases} 1, & p = 0.5 \\ -1, & p = 0.5 \end{cases}$$
 (579)

Now consider the channel with memory. Before transmission begins, Z is randomly chosen and fixed for all time. Thus $Y_i = ZX_i$.

b) What is the capacity if

$$Z = \begin{cases} 1, & p = 0.5 \\ -1, & p = 0.5 \end{cases}$$
 (580)

36) Channel with memory solution.

- a) This is a BSC with cross over probability 0.5, so C = 1 H(p) = 0.
- b) Consider the coding scheme of sending $X^n=(1,b_1,b_2,\ldots,b_{n-1})$ where the first symbol is always a zero and the rest of the n-1 symbols are ± 1 bits. For the first symbol $Y_1=Z$, so the receiver knows Z exactly. After that the receiver can recover the remaining bits error free. So in n symbol transmissions n bits are sent, for a rate $R=\frac{n-1}{n}\to 1$. The capacity C is bounded by $\log |\mathcal{X}|=1$, therefore the capacity is 1 bit per symbol.

1) **Differential entropy.** Evaluate the differential entropy $h(X) = -\int f \ln f$ for the following:

- a) The exponential density, $f(x) = \lambda e^{-\lambda x}$, $x \ge 0$.
- b) The Laplace density, $f(x) = \frac{1}{2}\lambda e^{-\lambda|x|}$.
- c) The sum of X_1 and X_2 , where X_1 and X_2 are independent normal random variables with means μ_i and variances σ_i^2 , i = 1, 2.

1) Differential Entropy.

a) Exponential distribution.

$$h(f) = -\int_0^\infty \lambda e^{-\lambda x} [\ln \lambda - \lambda x] dx \tag{690}$$

$$= -\ln \lambda + 1 \text{ nats.} \tag{691}$$

$$= \log \frac{e}{\lambda} \text{ bits.} \tag{692}$$

b) Laplace density.

$$h(f) = -\int_{-\infty}^{\infty} \frac{1}{2} \lambda e^{-\lambda|x|} \left[\ln \frac{1}{2} + \ln \lambda - \lambda |x| \right] dx \tag{693}$$

$$= -\ln\frac{1}{2} - \ln\lambda + 1 \tag{694}$$

$$= \ln \frac{2e}{\lambda} \text{ nats.} \tag{695}$$

$$= \log \frac{2e}{\lambda} \text{ bits.} \tag{696}$$

c) Sum of two normal distributions.

The sum of two normal random variables is also normal, so applying the result derived the class for the normal distribution, since $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$,

$$h(f) = \frac{1}{2} \log 2\pi e(\sigma_1^2 + \sigma_2^2)$$
 bits. (697)

2) Concavity of determinants. Let K_1 and K_2 be two symmetric nonnegative definite $n \times n$ matrices. Prove the result of Ky Fan [?]:

$$|\lambda K_1 + \overline{\lambda} K_2| \ge |K_1|^{\lambda} |K_2|^{\overline{\lambda}}, \quad \text{for } 0 \le \lambda \le 1, \ \overline{\lambda} = 1 - \lambda,$$

where $\mid K \mid$ denotes the determinant of K.

Hint: Let $\mathbf{Z} = \mathbf{X}_{\theta}$, where $\mathbf{X}_1 \sim N(0, K_1)$, $\mathbf{X}_2 \sim N(0, K_2)$ and $\theta = \text{Bernoulli}(\lambda)$. Then use $h(\mathbf{Z} \mid \theta) \leq h(\mathbf{Z})$.

2) Concavity of Determinants. Let X_1 and X_2 be normally distributed n-vectors, $\mathbf{X}_i \sim \phi_{K_i}(\mathbf{x})$, i=1,2. Let the random variable θ have distribution $\Pr\{\theta=1\}=\lambda$, $\Pr\{\theta=2\}=1-\lambda$, $0\leq \lambda \leq 1$. Let θ , \mathbf{X}_1 , and \mathbf{X}_2 be independent and let $\mathbb{Z}=\mathbf{X}_{\theta}$. Then \mathbb{Z} has covariance $K_Z=\lambda K_1+(1-\lambda)K_2$. However, \mathbb{Z} will not be multivariate normal. However, since a normal distribution maximizes the entropy for a given variance, we have

$$\frac{1}{2}\ln(2\pi e)^n|\lambda K_1 + (1-\lambda)K_2| \ge h(\mathbb{Z}) \ge h(\mathbb{Z}|\theta) = \lambda \frac{1}{2}\ln(2\pi e)^n|K_1| + (1-\lambda)\frac{1}{2}\ln(2\pi e)^n|K_2|.$$

Thus

$$|\lambda K_1 + (1 - \lambda)K_2| \ge |K_1|^{\lambda} |K_2|^{1 - \lambda} , \tag{698}$$

as desired.

7) **Differential entropy bound on discrete entropy:** Let X be a discrete random variable on the set $\mathcal{X} = \{a_1, a_2, \ldots\}$ with $\Pr(X = a_i) = p_i$. Show that

$$H(p_1, p_2, \ldots) \le \frac{1}{2} \log(2\pi e) \left(\sum_{i=1}^{\infty} p_i i^2 - \left(\sum_{i=1}^{\infty} i p_i \right)^2 + \frac{1}{12} \right).$$
 (688)

Moreover, for every permutation σ ,

$$H(p_1, p_2, \ldots) \le \frac{1}{2} \log(2\pi e) \left(\sum_{i=1}^{\infty} p_{\sigma(i)} i^2 - \left(\sum_{i=1}^{\infty} i p_{\sigma(i)} \right)^2 + \frac{1}{12} \right).$$
 (689)

Hint: Construct a random variable X' such that $Pr(X'=i)=p_i$. Let U be an uniform(0,1] random variable and let Y=X'+U, where X' and U are independent. Use the maximum entropy bound on Y to obtain the bounds in the problem. This bound is due to Massey (unpublished) and Willems(unpublished).

7) Differential outnomy hound on discusts outnomy

7) Differential entropy bound on discrete entropy

Of all distributions with the same variance, the normal maximizes the entropy. So the entropy of the normal gives a good bound on the differential entropy in terms of the variance of the random variable.

Let X be a discrete random variable on the set $\mathcal{X} = \{a_1, a_2, \ldots\}$ with

$$\Pr(X = a_i) = p_i. \tag{717}$$

$$H(p_1, p_2, \ldots) \le \frac{1}{2} \log(2\pi e) \left(\sum_{i=1}^{\infty} p_i i^2 - \left(\sum_{i=1}^{\infty} i p_i \right)^2 + \frac{1}{12} \right).$$
 (718)

Moreover, for every permutation σ ,

$$H(p_1, p_2, \ldots) \le \frac{1}{2} \log(2\pi e) \left(\sum_{i=1}^{\infty} p_{\sigma(i)} i^2 - \left(\sum_{i=1}^{\infty} i p_{\sigma(i)} \right)^2 + \frac{1}{12} \right).$$
 (719)

Define two new random variables. The first, X_0 , is an integer-valued discrete random variable with the distribution

$$\Pr(X_0 = i) = p_i. \tag{720}$$

Let U be a random variable uniformly distributed on the range [0,1], independent of X_0 . Define the continuous random variable \tilde{X} by

$$\tilde{X} = X_0 + U. \tag{721}$$

It is clear that $H(X) = H(X_0)$, since discrete entropy depends only on the probabilities and not on the values of the outcomes. Now

$$H(X_0) = -\sum_{i=1}^{\infty} p_i \log p_i$$
 (722)

$$= -\sum_{i=1}^{\infty} \left(\int_{i}^{i+1} f_{\tilde{X}}(x) dx \right) \log \left(\int_{i}^{i+1} f_{\tilde{X}}(x) dx \right)$$
 (723)

$$= -\sum_{i=1}^{\infty} \int_{i}^{i+1} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) dx$$
 (724)

$$= -\int_{1}^{\infty} f_{\tilde{X}}(x) \log f_{\tilde{X}}(x) dx \tag{725}$$

$$= h(\tilde{X}), \tag{726}$$

since $f_{\tilde{X}}(x) = p_i$ for $i \le x < i + 1$.

Hence we have the following chain of inequalities:

$$H(X) = H(X_0) (727)$$

$$= h(\tilde{X}) \tag{728}$$

$$\leq \frac{1}{2}\log(2\pi e)\operatorname{Var}(\tilde{X}) \tag{729}$$

$$= \frac{1}{2}\log(2\pi e)\left(\operatorname{Var}(X_0) + \operatorname{Var}(U)\right) \tag{730}$$

$$= \frac{1}{2}\log(2\pi e)\left(\sum_{i=1}^{\infty}p_{i}i^{2} - \left(\sum_{i=1}^{\infty}ip_{i}\right)^{2} + \frac{1}{12}\right). \tag{731}$$

Since entropy is invariant with respect to permutation of p_1, p_2, \ldots , we can also obtain a bound by a permutation of the p_i 's. We conjecture that a good bound on the variance will be achieved when the high probabilities are close together, i.e, by the assignment $\ldots, p_5, p_3, p_1, p_2, p_4, \ldots$ for $p_1 \geq p_2 \geq \cdots$. How good is this bound? Let X be a Bernoulli random variable with parameter $\frac{1}{2}$, which implies that H(X) = 1. The corresponding random variable X_0 has variance $\frac{1}{4}$, so the bound is

$$H(X) \le \frac{1}{2}\log(2\pi e)\left(\frac{1}{4} + \frac{1}{12}\right) = 1.255 \text{ bits.}$$
 (732)

2) The two-look Gaussian channel.

$$X \longrightarrow (Y_1, Y_2)$$

Consider the ordinary Gaussian channel with two correlated looks at X, i.e., $Y = (Y_1, Y_2)$, where

$$Y_1 = X + Z_1 (780)$$

$$Y_2 = X + Z_2 (781)$$

with a power constraint P on X, and $(Z_1, Z_2) \sim \mathcal{N}_2(\mathbf{0}, K)$, where

$$K = \begin{bmatrix} N & N\rho \\ N\rho & N \end{bmatrix}. \tag{782}$$

Find the capacity C for

- a) $\rho = 1$
- b) $\rho = 0$
- c) $\rho = -1$

2) The two look Gaussian channel.

It is clear that the input distribution that maximizes the capacity is $X \sim \mathcal{N}(0, P)$. Evaluating the mutual information for this distribution,

$$C_2 = \max I(X; Y_1, Y_2) (801)$$

$$= h(Y_1, Y_2) - h(Y_1, Y_2|X)$$
(802)

$$= h(Y_1, Y_2) - h(Z_1, Z_2|X)$$
(803)

$$= h(Y_1, Y_2) - h(Z_1, Z_2) (804)$$

Now since

$$(Z_1, Z_2) \sim \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} N & N\rho \\ N\rho & N \end{bmatrix}\right),$$
 (805)

we have

$$h(Z_1, Z_2) = \frac{1}{2}\log(2\pi e)^2|K_Z| = \frac{1}{2}\log(2\pi e)^2N^2(1 - \rho^2).$$
(806)

Since $Y_1 = X + Z_1$, and $Y_2 = X + Z_2$, we have

$$(Y_1, Y_2) \sim \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} P+N & P+\rho N \\ P+\rho N & P+N \end{bmatrix}\right),$$
 (807)

and

$$h(Y_1, Y_2) = \frac{1}{2}\log(2\pi e)^2|K_Y| = \frac{1}{2}\log(2\pi e)^2(N^2(1-\rho^2) + 2PN(1-\rho)).$$
 (808)

Hence the capacity is

$$C_2 = h(Y_1, Y_2) - h(Z_1, Z_2) (809)$$

$$= \frac{1}{2}\log\left(1 + \frac{2P}{N(1+\rho)}\right). \tag{810}$$

- a) $\rho=1$. In this case, $C=\frac{1}{2}\log(1+\frac{P}{N})$, which is the capacity of a single look channel. This is not surprising, since in this case $Y_1=Y_2$.
- b) $\rho = 0$. In this case,

$$C = \frac{1}{2}\log\left(1 + \frac{2P}{N}\right),\tag{811}$$

which corresponds to using twice the power in a single look. The capacity is the same as the capacity of the channel $X \to (Y_1 + Y_2)$.

c) $\rho = -1$. In this case, $C = \infty$, which is not surprising since if we add Y_1 and Y_2 , we can recover X exactly.

Note that the capacity of the above channel in all cases is the same as the capacity of the channel $X \to Y_1 + Y_2$.