36) Channel with memory.
Consider the discrete memoryless channel Y; = Z; X; with input alphabet X; € {—1,1}.

a) What is the capacity of this channel when {Z;} is i.i.d. with

7, = { Lo p=05, (579)

Now consider the channel with memory. Before transmission begins, Z is randomly chosen and fixed
for all time. Thus Y; = ZX;.
b) What is the capacity if

|1, p=0.5 o
Z = { Y p=05 (580)

36) Channel with memory solution.
a) This is a BSC with cross over probability 0.5, so C'=1— H(p) = 0.
b) Consider the coding scheme of sending X" = (1,by,bo,...,b,_1) where the first symbol is always a
zero and the rest of the n — 1 symbols are 41 bits. For the first symbol Y; = Z, so the receiver knows Z
exactly. After that the receiver can recover the remaining bits error free. So in n symbol transmissions
n bits are sent, for a rate R = ”n;l — 1. The capacity C' is bounded by log |X| = 1, therefore the
capacity is 1 bit per symbol.

1) Differential entropy. Evaluate the differential entropy h(X) = — [ fIn f for the following:
a) The exponential density, f(z) = Ae™** , = > 0.
b) The Laplace density, f(z) = %)\e‘”‘”'.
¢) The sum of X; and Xy, where X; and X, are independent normal random variables with means p;
and variances o2,i = 1,2.
1) Differential Entropy.
a) Exponential distribution.

hf) = — f Ae™M[In A — \z]dzx (690)
0
= —InA+ 1 nats. (691)
log ; bits. (692)
b) Laplace density.
il SNV |
hf) = — e [In 5 TinA- Az|] da: (693)
= lnéln)\+1 (694)
2
- m; nats. (695)
% .
— log 7‘ bits. (696)

¢) Sum of two normal distributions.
The sum of two normal random variables is also normal, so applying the result derived the class for
the normal distribution, since X1 + Xo ~ N (1 + p2, 0% + 03),

1
h(f) = 5 log 2ne(os 4 03) bits. (697)



2) Concavity of determinants. Let A; and K5 be two symmetric nonnegative definite n x n matrices. Prove

2)

7)

the result of Ky Fan [?]:

| AKy + NG |2 Ky Y Ko [P, for 0€A<1, X=1- A,
where | K | denotes the determinant of K.
Hint: Let Z = Xy, where X; ~ N(0, K1), Xo ~ N(0, Ky) and § = Bernoulli(\). Then use h(Z | ) < h(Z).
Concavity of Determinants. Let X; and X, be normally distributed n-vectors, X; ~ ¢, (x), i = 1,2. Let
the random variable @ have distribution Pr{6 = 1} = A\, Pr{# =2} =1— X, 0 < A < 1. Let 0, Xy, and
X5 be independent and let Z = Xy. Then Z has covariance Kz = AK; + (1 — A)K5. However, Z will not

be multivariate normal. However, since a normal distribution maximizes the entropy for a given variance, we
have

1 1 1
5 In(2me)" | AK; + (1 — N)Ka| > h(Z) > h(Z|#) = ,\§ In(2me)" | K| + (1 — A)§lrl(27re)n|K2| :
Thus
MK + (1= NG| > K MKy ™ (698)

as desired.
Differential entropy bound on discrete entropy: Let X be a discrete random variable on the set A =
{ay,as,...} with Pr(X = a;) = p;. Show that

2
1 = — . 1
H(pi,pa2,...) < 3 log(2me) Ep@f — (Z ?,p?:) + i (688)

i=1

Moreover, for every permutation o,

2
1 - , = 1
H(p1,p2....) < 510g(2776) > pogiyi® - (Z lpa(z‘)) t5 ] (689)
i=1

i=1

Hint: Construct a random variable X’ such that Pr(X’ = i) = p;. Let U be an uniform(0,1] random variable
and let Y = X' 4+ U, where X’ and U are independent. Use the maximum entropy bound on Y to obtain the
bounds in the problem. This bound is due to Massey (unpublished) and Willems(unpublished).



7) Differential entropy bound on discrete entropy
Of all distributions with the same variance, the normal maximizes the entropy. So the entropy of the normal
gives a good bound on the differential entropy in terms of the variance of the random variable.

Let X be a discrete random variable on the set X = {a1,az,...} with

Pr(X = a;) = p;. (717)
1 . - C
.92 .
H(py,pa,...) < 5 log(2me) ;pﬂ - (; zpz-) +45 |- (718)
Moreover, for every permutation o,
1 - — t
H(p1,p2,...) < 51(3%(2”6) > pogi® - (Z ipa(i)) t35 - (719)
i=1 i=1

Define two new random variables. The first, X, is an integer-valued discrete random variable with the
distribution
Pr(Xo = 1) = pi. (720)

Let U be a random variable uniformly distributed on the range [0, 1], independent of Xy. Define the continuous
random variable X by )
X =X,+U. (721)

It 1s clear that H(X) = H(Xj), since discrete entropy depends only on the probabilities and not on the
values of the outcomes. Now

H(Xo) = —) pilogp; (722)

i=1
00 i+1 1+1

_ f~(m)da:) 10g( f~(m)d$) (723)
([ ) (s
00 it

- -y [ fo(@)log fz () de (724)
i=1""

= - /1 fi(x)log fi(z)dx (725)

= h(X), (726)

since fg(x) =p; fori <z <i+ 1.
Hence we have the following chain of inequalities:

H(X) = H(Xp) (727)
— X (728)
< %log(%re)\/ar()?) (729)
_ %log@we) (Var(Xo) + Var(U)) (730)

o0 o 2
1 4 , 1
= §log(27re) 2_1 pite — ( E zpi) + Tk (731)

i=1



Since entropy is invariant with respect to permutation of pj,pe,..., we can also obtain a bound by a
permutation of the p;’s. We conjecture that a good bound on the variance will be achieved when the high

probabilities are close together, i.e, by the assignment ..., ps5, p3, p1,p2,P4,... for p1 > po > -+,
How good is this bound? Let X be a Bernoulli random variable with parameter 5, which implies that

H(X) = 1. The corresponding random variable X has variance %, so the bound is
1

H(X) < %log(Qwe) (i + E) = 1.255 bits. (732)

2) The two-look Gaussian channel.

X - - (Y1,Y3)

Consider the ordinary Gaussian channel with two correlated looks at X, i.e., Y = (Y1, Y5), where

YT = X+, (780)
Yo = X+ 25 (781)
with a power constraint P on X, and (77, Z2) ~ N2(0, K), where
_| N Np
N .
Find the capacity C' for
a) p=1
b) p=20

c) p=-1



2) The two look Gaussian channel.
It is clear that the input distribution that maximizes the capacity is X ~ N(0, P). Evaluating the mutual
information for this distribution,

Cy = maxI(X;Y1,Ys) (801)
= h(Y1,Ys) — h(Y7, Y| X) (802)
= h(11,Y2) — h(Z1, Z3|X) (803)
= h(Y1,Y2) = h(Z1, Z3) (804)

Now since NN
(Z1,Z3) ~ N (0, [ Np N D : (805)

we have

W Zy, Zy) = %10g(2ﬁ6)2|Kz| = %log(Qwe)QNz(l — ). (806)

Since Y7 = X + 71, and Yo = X + 75, we have

v~ (o) g SR (807)
and 1 1
h(Y1,Y3) = 5 log(2me)*| Ky | = S log(2me)*(N*(1 = p) + 2PN(1 = p)). (808)
Hence the capacity is
Cy = WY1,Ys) —h(Zy, Z5) (809)
- s (l T p)) | 10

a) p = 1. In this case, C' = %log(l + %), which is the capacity of a single look channel. This is not
surprising, since in this case Y7 = Y5.

b) p = 0. In this case,
1 2P
C = =log (1+—), (811)

2 N

which corresponds to using twice the power in a single look. The capacity is the same as the capacity
of the channel X — (V7 + Y5).

c) p = —1. In this case, C' = oo, which is not surprising since if we add Y7 and Y5, we can recover X
exactly.

Note that the capacity of the above channel in all cases is the same as the capacity of the channel X — Y7+ Y5.



