27) The Sardinas-Patterson test for unique decodability. A code is not uniquely decodable if and only if
there exists a finite sequence of code symbols which can be resolved in two different ways into sequences
of codewords. That is, a situation such as

| Ay | Ay | Af An |
| B1 | By | B3 el B, |

must occur where each A; and each B; is a codeword. Note that B must be a prefix of A; with some resulting
“dangling suffix.” Each dangling suffix must in turn be either a prefix of a codeword or have another codeword
as its prefix, resulting in another dangling suffix. Finally, the last dangling suffix in the sequence must also be
a codeword. Thus one can set up a test for unique decodability (which is essentially the Sardinas-Patterson
test [?]) in the following way: Construct a set S of all possible dangling suffixes. The code is uniquely
decodable if and only if S contains no codeword.

a) State the precise rules for building the set S.

b) Suppose the codeword lengths are /;, i« = 1,2,...,m. Find a good upper bound on the number of
elements in the set S.

¢) Determine which of the following codes is uniquely decodable:

i) {0,10,11}.
ii) {0,01,11}.
iii) {0,01, 10}.
iv) {0,01}.
v) {00,01,10,11}.
vi) {110,11,10}.
vii) {110, 11,100, 00, 10}.

d) For each uniquely decodable code in part (c), construct, if possible, an infinite encoded sequence with a
known starting point, such that it can be resolved into codewords in two different ways. (This illustrates
that unique decodability does not imply finite decodability.) Prove that such a sequence cannot arise in
a prefix code.



27) Test for unique decodability.
The proof of the Sardinas-Patterson test has two parts. In the first part, we will show that if there is a code
string that has two different interpretations, then the code will fail the test. The simplest case is when the
concatenation of two codewords yields another codeword. In this case, Sy will contain a codeword, and hence
the test will fail.
In general, the code is not uniquely decodeable, iff there exists a string that admits two different parsings
into codewords, e.g.

T1TRTITITETELTLY = T1T2, L3TYT5, TeTTELY = T1T2T3L4, T3TELT LS. (414)

In this case, S5 will contain the string x3x4, S3 will contain x5, Sy will contain xgz7xs, which is a codeword.
It is easy to see that this procedure will work for any string that has two different parsings into codewords;
a formal proof is slightly more difficult and using induction.

In the second part, we will show that if there is a codeword in one of the sets S;,7 > 2, then there exists
a string with two different possible interpretations, thus showing that the code is not uniquely decodeable.
To do this, we essentially reverse the construction of the sets. We will not go into the details - the reader is
referred to the original paper.

a) Let S) be the original set of codewords. We construct S;;; from S; as follows: A string y is in S;4 iff
there is a codeword x in S, such that zy is in S; or if there exists a z € S; such that zy is in S (i.e.,
is a codeword). Then the code is uniquely decodable iff none of the S;, i > 2 contains a codeword.
Thus the set S = U;>25;.

b) A simple upper bound can be obtained from the fact that all strings in the sets .S; have length less than
Lmaz, and therefore the maximum number of elements in S is less than 2lma=.

c) i) {0,10,11}. This code is instantaneous and hence uniquely decodable.

ii) {0,01,11}. This code is a suffix code (see problem 11). It is therefore uniquely decodable. The sets
in the Sardinas-Patterson test are S; = {0,01,11}, So = {1} =Sz =S4 =....

iii) {0,01,10}. This code is not uniquely decodable. The sets in the test are S; = {0,01, 10}, Sy = {1},
S3 = {0}, .... Since 0 is codeword, this code fails the test. It is easy to see otherwise that the code
is not UD - the string 010 has two valid parsings.

iv) {0,01}. This code is a suffix code and is therefore UD. THe test produces sets S; = {0,01},
S = {1}, S3 = ¢.

v) {00,01,10,11}. This code is instantaneous and therefore UD.

vi) {110, 11,10}. This code is uniquely decodable, by the Sardinas-Patterson test, since 51 = {110, 11, 10},
Sp = {0}, S3 = ¢.

vii) {110, 11,100, 00, 10}. This code is UD, because by the Sardinas Patterson test, S; = {110, 11, 100, 00, 10},
Sy = {0}, S3 = {0}, etc.

d) We can produce infinite strings which can be decoded in two ways only for examples where the Sardinas
Patterson test produces a repeating set. For example, m part (i1), the string 011111... could be parsed
either as 0,11,11,... or as 01,11,11,.... Similarly for (viii), the string 10000... could be parsed as
100,00,00,. .. or as 10,00,00,.... For the instantaneous codes, it is not possible to construct such a
string, since we can decode as soon as we see a codeword string, and there is no way that we would
need to wait to decode.



34) Huffman algorithm for tree construction. Consider the following problem: m binary signals Sy, Sa,..., S,
are available at times 77 <75 < ... < T,,, and we would like to find their sum S} & So & --- & S, using 2-
input gates, each gate with 1 time unit delay, so that the final result is available as quickly as possible. A simple
greedy algorithm is to combine the earliest two results, forming the partial result at time max(7},7%) + 1.
We now have a new problem with S; & So, Ss, ..., Sy, available at times max(7y,7%) + 1,73, ..., T,,. We
can now sort this list of T’s, and apply the same merging step again, repeating this until we have the final
result.

a) Argue that the above procedure is optimal, in that it constructs a circuit for which the final result is
available as quickly as possible.
b) Show that this procedure finds the tree that minimizes

C(T) = max(T; + ;) (372)

where 7; is the time at which the result alloted to the i-th leaf is available, and /; is the length of the
path from the i-th leaf to the root.
c) Show that

C(T) > log, <Z 2T'> (373)

for any tree 7.

d) Show that there exists a tree such that

C(T) < log, (Z 2T1'> +1

Thus log, (Zz 2Ti) is the analog of entropy for this problem.



34) a) The proof is identical to the proof of optimality of Huffman coding. We first show that for the optimal
tree if T; < T}, then I; > I;. The proof of this is, as in the case of Huffman coding, by contradiction.
Assume otherwise, i.e., that if T; < T} and [; < [;, then by exchanging the inputs, we obtain a tree with
a lower total cost, since

max{T; + I;, T; + lj} > max{T; + 1,15 + l;} (442)

Thus the longest branches are associated with the earliest times.

The rest of the proof is identical to the Huffman proof. We show that the longest branches correspond
to the two earliest times, and that they could be taken as siblings (inputs to the same gate). Then we
can reduce the problem to constructing the optimal tree for a smaller problem. By induction, we extend
the optimality to the larger problem, proving the optimality of the above algorithm.

Given any tree of gates, the earliest that the output corresponding to a particular signal would be available
is T; + l;, since the signal undergoes [; gate delays. Thus max;(7T; + [;) is a lower bound on the time
at which the final answer is available.

The fact that the tree achieves this bound can be shown by induction. For any internal node of the
tree, the output is available at time equal to the maximum of the input times plus 1. Thus for the gates
connected to the inputs 7; and T, the output is available at time max(7;,T;) + 1. For any node, the
output is available at time equal to maximum of the times at the leaves plus the gate delays to get from
the leaf to the node. This result extneds to the complete tree, and for the root, the time at which the
final result is available is max;(7; + ;). The above algorithm minimizes this cost. N

b) Lete; = Y ;27 and ¢» = ¥, 271, By the Kraft inequality, c; < 1. Now let p; = #, and let
2

r = Z;;’EJ Clearly, p; and r; are probability mass functions. Also, we have T; = log(p;c;) and

li = — lég(ncg). Then

¢(T) = max(T; +1) (443)

= max (log(picr) — log(ricy)) (444)

= logec; —loges + max log ? (445)

Now the maximum of any random variable is greater than its average under any distribution, and therefore
C(T) > loger —loges + Zp log% (446)

> logey —logea + D(pl|r) (447)

Since —logce > 0 and D(p||r) > 0, we have
C(T) > log ey (448)

which is the desired result.
;) From the previous part, we achieve the lower bound if p; = r; and c¢o = 1. However, since the [;’s are
constrained to be integers, we cannot achieve equality in all cases.

Instead, if we let
1 273
li = [log —W = |log 2 , (449)
Pi 2

T’l
it is easy to verify that > 92—l < > p; = 1, and that thus we can construct a tree that achieves

T +1; <log(D_27) +1 (450)
J

for all i. Thus this tree achieves within 1 unit of the lower bound.
Clearly, log(}_; 275) is the equivalent of entropy for this problem!



45) Random “20” questions. Let X be uniformly distributed over {1,2,...,m}. Assume m = 2". We ask
random questions: Is X € 5;? Is X € S,?...until only one integer remains. All 2 subsets of {1,2,...,m}
are equally likely.

a)
b)

<)
d)

e)

How many deterministic questions are needed to determine X?

Without loss of generality, suppose that X = 1 is the random object. What is the probability that object
2 yields the same answers for k& questions as object 1?

What is the expected number of objects in {2,3,...,m} that have the same answers to the questions
as does the correct object 1?

Suppose we ask n + \/n  random questions. What is the expected number of wrong objects agreeing
with the answers?

Use Markov’s inequality Pr{X > tu} < %, to show that the probability of error (one or more wrong
object remaining) goes to zero as n — oc.

45) Random “20” questions.

a)

b)

Obviously, Huffman codewords for X are all of length n. Hence, with n deterministic questions, we
can identify an object out of 2" candidates.
Observe that the total number of subsets which include both object 1 and object 2 or neither of them
is 21 Hence, the probability that object 2 yields the same answers for k£ questions as object 1 is
(zm—1/2m)k _ 2—1:‘
More information theoretically, we can view this problem as a channel coding problem through a
noiseless channel. Since all subsets are equally likely, the probability the object 1 is in a specific random
subset is 1/2. Hence, the question whether object 1 belongs to the kth subset or not corresponds to the
kth bit of the random codeword for object 1, where codewords X* are Bern(1/2) random k-sequences.
Object Codeword
1 0110...1
2 0010...0

Now we observe a noiseless output Y* of X* and figure out which object was sent. From the same
line of reasoning as in the achievability proof of the channel coding theorem, i.e. joint typicality, it is
obvious the probability that object 2 has the same codeword as object 1 is 2%,



c) Let

L — { 1, object j yields the same answers for k& questions as object 1
10

otherwise

Then,

H

for j=2,...,m.

m
E(# of objects in {2,3,...,m} with the same answers) = E(Z 15)

J
= (m—1)27%
= (2" —1)27F

d) Plugging k = n + /n into (c¢) we have the expected number of (2" — 1)2_"_\/5.
e) Let N by the number of wrong objects remaining. Then, by Markov’s inequality

P(N>1) <

b IA

where the first equality follows from part (d).

EN

(2n —1)27 V"
o—Vn
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