Problem 1: Properties of mutual information. Let X, Y_1, Y_2 be three RVs.

- (a) Given $I(X; Y_1) = I(X; Y_2) = 0$, does it follow that $I(X; Y_1, Y_2) = 0$?
- (b) Given $I(X; Y_1) = I(X; Y_2) = 0$, does it follow that $I(Y_1; Y_2) = 0$?

Problem 1

(a) No. Let
$$X_1Y_1, Y_2$$
 be three pairwise independent $Ber(\frac{1}{2})RV$,

 $I(X;Y_1)=I(X;Y_2):I(Y_1;Y_2)=0$ (See Sept. 14 Recitation)

Let $X:Y_1$ By then

 $I(X;Y_1,Y_2)=H(X)-H(X|Y_1,Y_2)=H(X)\neq 0$
 $I(X;Y_1,Y_2)=H(X)-H(X|Y_1,Y_2)=H(X)\neq 0$

(b) No. (et $Y_1=Y_2$ where Y_1 is a RV set $I(X;Y_1)=0$. This implies $I(X;Y_2)=0$. However, $I(Y_1,Y_2)=H(Y_1)-H(Y_1,X_2)=H(Y_1)$

Problem 2: Data Processing Inequality. Let the RVs X, U, Z form a Markov chain, $X \to Y \to Z$.

- (a) Show that H(X|Y) = H(X|Y,Z).
- **(b)** Show that $H(X|Y) \leq H(X|Z)$.
- (c) Show that $I(X;Y) \ge I(X;Z)$.
- (d) Show that I(X; Z|Y) = 0.

Problem 2

(a)
$$H(X,Z|Y) = H(Z|Y) + H(X|Y,Z)$$
 $= H(X|Y) + H(Z|X,Y)$

Since $X \Rightarrow Y \Rightarrow Z$ is a Markor Chain we have

 $P(Z|X,y) = P(Z|X,Y)$
 $= H(X|Y) = H(Z|X,Y)$
 $= H(X|Y) = H(X|Y)$

(b) $H(X|Y) \stackrel{\text{form}}{=} H(X|Y,Z) = H(X|Z)$ (conditioning decreases entropy)

(c) $I(X,Y) - I(X,Z) = (H(X) - H(X|Y)) - (H(X) - H(X|Z))$
 $= H(X|Z) - H(X|Y) = 0$ (from b)

 $= H(X|Z) - H(X|Z,Y) = 0$ (from b)

6) An AEP-like limit. Let X_1, X_2, \ldots be i.i.d. drawn according to probability mass function p(x). Find

$$\lim_{n\to\infty} \left[p(X_1,X_2,\ldots,X_n)\right]^{\frac{1}{n}}.$$

6) An AEP-like limit. X_1, X_2, \ldots , i.i.d. $\sim p(x)$. Hence $\log(X_i)$ are also i.i.d. and

$$\lim (p(X_1, X_2, \dots, X_n))^{\frac{1}{n}} = \lim 2^{\log(p(X_1, X_2, \dots, X_n))^{\frac{1}{n}}}$$

$$= 2^{\lim \frac{1}{n} \sum \log p(X_i)} \text{ a.e.}$$

$$= 2^{E(\log(p(X)))} \text{ a.e.}$$

$$= 2^{-H(X)} \text{ a.e.}$$

by the strong law of large numbers (assuming of course that H(X) exists).

- 10) Random box size. An n-dimensional rectangular box with sides $X_1, X_2, X_3, \ldots, X_n$ is to be constructed. The volume is $V_n = \prod_{i=1}^n X_i$. The edge length l of a n-cube with the same volume as the random box is $l = V_n^{1/n}$. Let X_1, X_2, \ldots be i.i.d. uniform random variables over the unit interval [0,1]. Find $\lim_{n \to \infty} V_n^{1/n}$, and compare to $(EV_n)^{\frac{1}{n}}$. Clearly the expected edge length does not capture the idea of the volume of the box. The geometric mean, rather than the arithmetic mean, characterizes the behavior of products.
- 10) Random box size. The volume $V_n = \prod_{i=1}^n X_i$ is a random variable, since the X_i are random variables uniformly distributed on [0,1]. V_n tends to 0 as $n \to \infty$. However

$$\log_e V_n^{\frac{1}{n}} = \frac{1}{n} \log_e V_n = \frac{1}{n} \sum \log_e X_i \to E(\log_e(X))$$
 a.e.

by the Strong Law of Large Numbers, since X_i and $\log_e(X_i)$ are i.i.d. and $E(\log_e(X)) < \infty$. Now

$$E(\log_e(X_i)) = \int_0^1 \log_e(x) \, dx = -1$$

Hence, since e^x is a continuous function,

$$\lim_{n\to\infty} V_n^{\frac{1}{n}} = e^{\lim_{n\to\infty} \frac{1}{n} \log_e V_n} = \frac{1}{e} < \frac{1}{2}.$$

Thus the "effective" edge length of this solid is e^{-1} . Note that since the X_i 's are independent, $E(V_n) = \prod E(X_i) = (\frac{1}{2})^n$. Also $\frac{1}{2}$ is the arithmetic mean of the random variable, and $\frac{1}{e}$ is the geometric mean.

2) How many fingers has a Martian? Let

$$S = \begin{pmatrix} S_1, \dots, S_m \\ p_1, \dots, p_m \end{pmatrix}.$$

The S_i 's are encoded into strings from a D-symbol output alphabet in a uniquely decodable manner. If m=6 and the codeword lengths are $(l_1, l_2, \ldots, l_6) = (1, 1, 2, 3, 2, 3)$, find a good lower bound on D. You may wish to explain the title of the problem.

2) How many fingers has a Martian?

Uniquely decodable codes satisfy Kraft's inequality. Therefore

$$f(D) = D^{-1} + D^{-1} + D^{-2} + D^{-3} + D^{-2} + D^{-3} \le 1.$$
(379)

We have f(2) = 7/4 > 1, hence D > 2. We have f(3) = 26/27 < 1. So a possible value of D is 3. Our counting system is base 10, probably because we have 10 fingers. Perhaps the Martians were using a base 3 representation because they have 3 fingers. (Maybe they are like Maine lobsters?)

3) Slackness in the Kraft inequality. An instantaneous code has word lengths l_1, l_2, \dots, l_m which satisfy the strict inequality

$$\sum_{i=1}^{m} D^{-l_i} < 1.$$

- The code alphabet is $\mathcal{D} = \{0, 1, 2, \dots, D-1\}$. Show that there exist arbitrarily long sequences of code symbols in \mathcal{D}^* which cannot be decoded into sequences of codewords.
- 3) Slackness in the Kraft inequality. Instantaneous codes are prefix free codes, i.e., no codeword is a prefix of any other codeword. Let $n_{max} = \max\{n_1, n_2, ..., n_q\}$. There are $D^{n_{max}}$ sequences of length n_{max} . Of these sequences, $D^{n_{max}-n_i}$ start with the *i*-th codeword. Because of the prefix condition no two sequences can start with the same codeword. Hence the total number of sequences which start with some codeword is $\sum_{i=1}^q D^{n_{max}-n_i} = D^{n_{max}} \sum_{i=1}^q D^{-n_i} < D^{n_{max}}$. Hence there are sequences which do not start with any codeword. These and all longer sequences with these length n_{max} sequences as prefixes cannot be decoded. (This situation can be visualized with the aid of a tree.)

Alternatively, we can map codewords onto dyadic intervals on the real line corresponding to real numbers whose decimal expansions start with that codeword. Since the length of the interval for a codeword of length n_i is D^{-n_i} , and $\sum D^{-n_i} < 1$, there exists some interval(s) not used by any codeword. The binary sequences in these intervals do not begin with any codeword and hence cannot be decoded.