Problem Solving Session - 2

1. **Inequalities.** Let X, Y and Z be joint random variables. Prove the following inequalities and find conditions for equality.
 a) $H(X, Y \mid Z) \geq H(X \mid Z)$.
 b) $I(X, Y; Z) \geq I(X; Z)$.
 c) $H(X, Y, Z) - H(X, Y) \leq H(X, Z) - H(X)$.
 d) $I(X; Z \mid Y) \geq I(Z; Y \mid X) - I(Z; Y) + I(X; Z)$.

 \textbf{Inequalities.}
 a) Using the chain rule for conditional entropy,
 \begin{align*}
 H(X, Y \mid Z) &= H(X \mid Z) + H(Y \mid X, Z) \geq H(X \mid Z),
 \end{align*}
 with equality iff $H(Y \mid X, Z) = 0$, that is, when Y is a function of X and Z.
 b) Using the chain rule for mutual information,
 \begin{align*}
 I(X, Y; Z) &= I(X; Z) + I(Y; Z \mid X) \geq I(X; Z),
 \end{align*}
 with equality iff $I(Y; Z \mid X) = 0$, that is, when Y and Z are conditionally independent given X.
 c) Using first the chain rule for entropy and then the definition of conditional mutual information,
 \begin{align*}
 H(X, Y, Z) - H(X, Y) &= H(Z \mid X, Y) = H(Z \mid X) - I(Y; Z \mid X) \\
 &\leq H(Z \mid X) = H(X, Z) - H(X),
 \end{align*}
 with equality iff $I(Y; Z \mid X) = 0$, that is, when Y and Z are conditionally independent given X.
 d) Using the chain rule for mutual information,
 \begin{align*}
 I(X; Z \mid Y) + I(Z; Y) &= I(X, Y; Z) = I(Z; Y \mid X) + I(X; Z),
 \end{align*}
 and therefore
 \begin{align*}
 I(X; Z \mid Y) &= I(Z; Y \mid X) - I(Z; Y) + I(X; Z).
 \end{align*}
 We see that this inequality is actually an equality in all cases.

2. **Entropy of a sum.** Let X and Y be random variables that take on values x_1, x_2, \ldots, x_r and y_1, y_2, \ldots, y_s, respectively. Let $Z = X + Y$.
 a) Show that $H(Z \mid X) = H(Y \mid X)$. Argue that if X, Y are independent, then $H(Y) \leq H(Z)$ and $H(X) \leq H(Z)$. Thus the addition of independent random variables adds uncertainty.
 b) Give an example of (necessarily dependent) random variables in which $H(X) > H(Z)$ and $H(Y) > H(Z)$.
 c) Under what conditions does $H(Z) = H(X) + H(Y)$?
Entropy of a sum.

a) \(Z = X + Y \). Hence \(p(Z = z | X = x) = p(Y = z - x | X = x) \).

\[
\begin{align*}
H(Z | X) &= \sum_x p(x) H(Z | X = x) \\
&= -\sum_x p(x) \sum_z p(Z = z | X = x) \log p(Z = z | X = x) \\
&= \sum_x p(x) \sum_y p(Y = z - x | X = x) \log p(Y = z - x | X = x) \\
&= \sum_x p(x) H(Y | X = x) \\
&= H(Y | X).
\end{align*}
\]

If \(X \) and \(Y \) are independent, then \(H(Y | X) = H(Y) \). Since \(I(X; Z) \geq 0 \), we have \(H(Z) \geq H(Z | X) = H(Y | X) = H(Y) \). Similarly we can show that \(H(Z) \geq H(X) \).

b) Consider the following joint distribution for \(X \) and \(Y \) Let

\[
X = -Y = \begin{cases}
1 & \text{with probability } 1/2 \\
0 & \text{with probability } 1/2
\end{cases}
\]

Then \(H(X) = H(Y) = 1 \), but \(Z = 0 \) with prob. 1 and hence \(H(Z) = 0 \).

c) We have

\[
H(Z) \leq H(X, Y) \leq H(X) + H(Y)
\]

because \(Z \) is a function of \((X, Y)\) and \(H(X, Y) = H(X) + H(Y | X) \leq H(X) + H(Y) \). We have equality iff \((X, Y)\) is a function of \(Z \) and \(H(Y) = H(Y | X) \), i.e., \(X \) and \(Y \) are independent.

3.

AEP

Let \(X_i \) be iid \(\sim p(x), \ x \in \{1, 2, \ldots, m\} \). Let \(\mu = EX \), and \(H = -\sum p(x) \log p(x) \). Let \(A^n = \{ x^n \in X^n : | -\frac{1}{n} \log p(x^n) - H | \leq \epsilon \} \). Let \(B^n = \{ x^n \in X^n : |\frac{1}{n} \sum_{i=1}^n X_i - \mu | \leq \epsilon \} \).

a) Does \(\Pr\{X^n \in A^n\} \to 1 \)?

b) Does \(\Pr\{X^n \in A^n \cap B^n\} \to 1 \)?

c) Show \(| A^n \cap B^n | \leq 2^{n(H+\epsilon)} \), for all \(n \).

d) Show \(| A^n \cap B^n | \geq (\frac{1}{2}) 2^{n(H-\epsilon)} \), for \(n \) sufficiently large.

a) Yes, by the AEP for discrete random variables the probability \(X^n \) is typical goes to 1.
b) Yes, by the Strong Law of Large Numbers $Pr(X^n \in B^n) \to 1$. So there exists $\epsilon > 0$ and N_1 such that $Pr(X^n \in A^n) > 1 - \frac{\epsilon}{2}$ for all $n > N_1$, and there exists N_2 such that $Pr(X^n \in B^n) > 1 - \frac{\epsilon}{2}$ for all $n > N_2$. So for all $n > \max(N_1, N_2)$:

$$Pr(X^n \in A^n \cap B^n) = Pr(X^n \in A^n) + Pr(X^n \in B^n) - Pr(X^n \in A^n \cup B^n)$$

$$> 1 - \frac{\epsilon}{2} + 1 - \frac{\epsilon}{2} - 1$$

$$= 1 - \epsilon$$

So for any $\epsilon > 0$ there exists $N = \max(N_1, N_2)$ such that $Pr(X^n \in A^n \cap B^n) > 1 - \epsilon$ for all $n > N$, therefore $Pr(X^n \in A^n \cap B^n) \to 1$.

c) By the law of total probability $\sum_{x^n \in A^n \cap B^n} p(x^n) \leq 1$. Also, for $x^n \in A^n$, from Theorem 3.1.2 in the text, $p(x^n) \geq 2^{-n(H+\epsilon)}$. Combining these two equations gives $1 \geq \sum_{x^n \in A^n \cap B^n} p(x^n) \geq \sum_{x^n \in A^n \cap B^n} 2^{-n(H+\epsilon)} = |A^n \cap B^n|2^{-n(H+\epsilon)}$. Multiplying through by $2^{n(H+\epsilon)}$ gives the result $|A^n \cap B^n| \leq 2^{n(H+\epsilon)}$.

d) Since from (b) $Pr\{X^n \in A^n \cap B^n\} \to 1$, there exists N such that $Pr\{X^n \in A^n \cap B^n\} \geq \frac{1}{2}$ for all $n > N$. From Theorem 3.1.2 in the text, for $x^n \in A^n$, $p(x^n) \leq 2^{-n(H-\epsilon)}$. So combining these two gives $\frac{1}{2} \leq \sum_{x^n \in A^n \cap B^n} p(x^n) \leq \sum_{x^n \in A^n \cap B^n} 2^{-n(H-\epsilon)} = |A^n \cap B^n|2^{-n(H-\epsilon)}$. Multiplying through by $2^{n(H-\epsilon)}$ gives the result $|A^n \cap B^n| \geq \frac{1}{2}2^{n(H-\epsilon)}$ for n sufficiently large.