ECE 551: (Advanced) Digital Signal Processing, II Fall 2017

https://courses.engr.illinois.edu/ece551/

Official Description:

Basic concept review of digital signals and systems; computer-aided digital filter design, quantization effects, decimation and interpolation, and fast algorithms for convolution and the DFT; introduction to adaptive signal processing.

Pre-requisites: ECE 310 and ECE 313.

Instructor: Prof. Ivan Dokmanić (313 CSL, dokmanic@illinois.edu, 300-1442)

• Lectures: Monday and Wednesdays, 10:00 – 11:20am, 2013 ECEB

• Office hour: Tuesdays 3 – 4pm, 313 CSL

Teaching Assistant: Elad J. Yarkony (yarkony2@illinois.edu)

• Office hour: Fridays, 1 – 3pm, 5034 ECEB

Textbook:

• M. Vetterli, J. Kovačević, and V. K. Goyal, "Foundation of Signal Processing", Cambridge University Press, 2014. Available in open access at http://www.fourierandwavelets.org

Course Plan

Week	Topic	Reading*	Note
#1 (Aug 28)	Introduction; signals as vectors; vector spaces	1; 2.1; 2.2; 2.B	
#2 (Sep 4)	Hilbert spaces; approximation and projections; bases and frames	2.3; 2.4; 2.5	HW #1
#3 (Sep 11)	Discrete-domain signals and systems; DTFT	3.1; 3.2; 3.3; 3.4	HW #2
#4 (Sep 18)	z-transform; DFT; multirate systems	3.5; 3.6; 3.7; 3.9	HW #3
#5 (Sep 25)	Continuous-domain signals and systems; FT	4.1; 4.2; 4.3; 4.4	HW #4
#6 (Oct 2)	Application I: spectral analysis; filter design; filter banks; beamforming; source localization		Midterm #1
#7 (Oct 9)	Sampling and interpolation	5.1; 5.2; 5.3; 5.4	Project proposal
#8 (Oct 16)	Approximation; splines; multiresolution	6.1; 6.2; 6.3	HW #5
#9 (Oct 23)	Stochastic processes and systems; MMSE and Wiener filters	3.8; 4.6	HW #6
#10 (Oct 30)	Adaptive filters; LMS algorithm	Papers; Notes	HW #7
#11 (Nov 6)	Quantization; compression; transform coding	6.4; 6.5; 6.6	HW #8
#12 (Nov 13)	Application II: audio, image, and video compression; inverse rendering		Midterm #2
Nov 18-26	Thanksgiving break		
#13 (Nov 27)	Convolutional neural networks; deep learning	Papers; Notes	
#14 (Dec 4)	Application III: presented by students in class	Papers	Project final presentation
#15 (Dec 11)	Review		Project report

^{*}Note 1: Reading x.y denotes Chapter x, Section y of the textbook.

^{*}Note 2: The homework schedule is subject to change.

Grading:

- Homework: 30% (using the best 7 out of 8 homework scores)
- First midterm: 25% (Monday Oct 2, 6:00pm-7:30pm)
- Second midterm: 25% (Wednesday Nov 15, 10:00am–11:20am; regular class time)
- Final project: 20% (3% proposal; 7% presentation; 10% final report)

<u>Grade cutoffs</u>: A+: 95%; A: 90%; A-: 85%; B+: 80%; B: 75%; B-: 70%; C+: 65%; C: 60%; C-: 55%; D: 50%

Course objectives:

By the end of this course you should:

- 1. Master modern signal processing tools including vector spaces, bases and frames, operators, signal expansions and approximation, as well as classical signal processing tools including Fourier and *z*-transforms, filtering, and sampling.
- 2. Apply the above tools to real-world problems including spectral analysis, filter design, noise cancellation, signal compression, rate conversion, feature extraction, inverse problems, machine learning and justify why these are appropriate tools.
- 3. Learn how to think critically, ask questions, and apply problem-solving techniques to homework and midterm exams.
- 4. Research, present, and report on a selected topic that is of current interest within a specified time.

Course guidelines:

- We will only cover topics that have significant practical impacts, though often "nothing is more practical than a good theory" (Vapnik)
- "It is with logic that one proves; it is with intuition that one invents." (Poincaré). As is often done in engineering disciplines, we will aim to invent first and prove later.
- As computation and simulation are essential in applying the signal processing theory to practical problems, all homework and projects will have a significant computer assignment (in Python!).