
Deep learning for music genre classification

Tao Feng
University of Illinois

taofeng1@illinois.edu

Abstract

In this paper we will present how to use Re-
stricted Boltzmann machine algorithm to build
deep belief neural networks.The goal is to use
it to perform a multi-class classification task of
labelling music genres and compare it to that
of the vanilla neural networks. We expected
that deep learning would out-perform how-
ever the results we obtained for 2 and 3 class
classification turn out to be on par for deep
neural networks and the vanilla version with
small data set. By generating more dataset
from the original limited music tracks, we see
a great classification accuracy improvement in
the deep belief neural network and its out-
performance than neural networks.

1 Introduction

Artificial neural networks have great potential in
learning complex high level knowledge from raw in-
puts thanks to its non-linear representation of the
hypothesis function. Training and generalizing a
neural network with many hidden layers using stan-
dard techniques are challenging. According to some
related research literatures(2), training deep neural
network with the traditional back-propagation al-
gorithm tend to get the network stuck in a local
minima. However with the development in pre-
training algorithms such as auto-encoder and re-
stricted Boltzmann machine one can achieve better
results. Furthermore recently there is a surge in the
interests of the deep learning algorithms in both aca-
demic and industries. This is partly due to the re-
cent advancements in computational techniques and

hardware such as GPU, a lot of deep learning algo-
rithms can now be effectively trained. Many recent
findings show that deep neural networks in some
tasks outperform most of the traditional classifica-
tion algorithms such as support vector machine and
random forest. What we will be focused on in this
project is a branch of automatic speech recogni-
tion. Specifically we would like to apply various
deep learning algorithms to classify music genres
and study their performances. In the first section of
the paper, we will set up the problems of interest for
the paper and describes the algorithms that we will
compare. In section.3 data and data preprocessing
are discussed. We then describe the implementation
of the algorithms in section.4 and finally in section.5
and 6 I will report the results and discuss what could
be done in the future to improve the classifier.

2 Setup and Theory

Here we will describe the general set up of the ex-
periment. Early neural network arises from an at-
tempt to simulate how the brain learns concepts. The
way the brains learn is based on network of neurons.
Each neuron receives signals from nearby neurons
as its input which it then combines and transforms
into its output, the activation signal. The activation
signal is then fed to other neuron as the input. An in-
dividual neuron is represented as a perceptron unit.
The only slight difference from the common percep-
tron is that the activation is computed using a logistic
function:

h(~x) = logistic(~w · ~x+ θ) (1)

This logistic function can be chosen according to a
specific problem. In the case we will use a sigmoid
function, f(z) = 1

1+e−z . A digram showing one of
a neural network representations, feed-forward net-
work is shown in figure.1. The diagram shows the
different layers of a neural network: input layer, hid-
den layers, and an output layer. Each node of the in-
put layer is an element of the feature vector of a data
point. Specific to the problem, the feature vector is
a vector of transformed amplitudes that we will dis-
cuss in more detailed in section. 3. The output layer
is a logistic function that takes in activation values of
the previous hidden layer and use a softmax function
perform multi-class classification task. We expect it
to be able to predict the label of the data(the music
genre).

Pr(label = i|x,w, θ) = softmaxi(w · x+ θ)

=
ew·xi+θi∑
j e

w·xj+θj

ypred = argmaxiPr(label = i|x,w, θ) (2)

The network is considered deep if there is more than
one hidden layer. By stacking more hidden layers,
neural network is more capable to represent com-
plex concept with high degree of correlation(such as
the audio data). The goal here is by training this
neural network, we would like to predict the genre
accurately in an unseen test data.

Figure 1: An illustration of the neural network hy-
pothesis representation

2.1 Algorithms
As mentioned in the previous section traditional
training method(backward-propagation with ran-
domized initial weights) generally yields bad result

when number of hidden layers is greater than 2. To
train the neural network efficiently we explored two
algorithms for ”pre-training”

2.1.1 Auto Encoder
As we mention before that randomized configura-

tion of the network is usually bad for training. Let
us pose a problem of learning the good initial repre-
sentation of the hidden layers. Vincent and collarbo-
rators suggested (2) a simple solution. One can con-
sider an unsupervised learning algorithm that learns
a sparse hidden representation of the input data it-
self. This can be done by devising a neural network,
which its hidden layer is optimized to learn the in-
put. Following from the algorithm of neural network
one can concisely write down that

y = s(~w · ~x+ θ)

and z = s(~w′ · ~x+ θ) (3)

The goal here is to learn weights and bias that min-
imize the reconstruction error loss,

∑
i(zi − xi)

2.
This learned hidden representation is meaningful if
there is a high degree of correlation in the data which
we expect to be the case for audio data and that there
is a constraint imposed that it has to be sparse. It is
important to note that without the sparse constraint
the auto encoder will just learn an identity mapping.
To make a deep network we can stack these auto en-
coder on top of each others. This means that the
code(learned hidden representation) of the kth − 1
layer is fed as an input to the kth layer which will
also encodes it further. At the top most layer the
logistic unit performs the classification. Once we
pre-trained the hidden layers layer-wise we then fine
tune the model by back-propagation. We will dis-
cuss how we can get around the constraint prob-
lem and how we could implement this efficiently in
a later section. This can be described by the fol-
lowing diagram(figure.2). Since the implementation
of auto-encoder has not been tuned to be success-
ful yet, we restrict not to display the results from
auto-encoder we have so far, but provide more re-
sults from Restricted Boltzmann Machine discussed
below.

2.1.2 Restricted Boltzmann Machine
Here is another way to pre-train the parameters of

the deep neural networks. Hinton and Salakhutdi-

Figure 2: A neural network that maps an input fea-
ture vector onto itself.

nov(2) came up in 2006 with an energy based model.
The probability distribution can be written as a func-
tion of an energy of a system as follow:

p(x) =
e−E(x)

Z
(4)

where Z is a normalization constant (5)

Z =
∑

all config

e−E(x) (6)

from equations above we see that learning in this
case corresponds to finding parameters that mini-
mizes the the energy of the configuration of param-
eters. This can be done by minimizing the negative
log-likelihood of the model.

1

N

∑
all config

log p(x)

This concept is a well known theory in physics
called canonical ensemble approach in statistical
mechanics. Minimizing the negative log-likelihood
is the same as minimizing the free energy and hence
finding the equilibrium state of the system. In re-
stricted Boltzmann machine(RBM) we don’t ob-
served the model fully hence we have hidden vari-
ables(hidden layers). The specific energy func-
tion(Hamiltonian) we used is

E(v, h) = −b′v − c′h− h′Wv (7)

where W is the weights in the neural networks. This
Hamiltonian corresponds to the free energy of the
form

F (v) = −b′v −
∑
i

log
∑
hi

ehi(ci+Wiv) (8)

Because of the fact that the visible unit and the hid-
den unit are conditionally independent given one-
another we can write down

Pr(h|v) =
∏
i

Pr(hi|v)

Pr(v|h) =
∏
j

Pr(vj |h) (9)

If we can write down what the free energy is then we
can minimize it using something like stochastic gra-
dient descent. In general computing the free energy,
eq.2.1.2 cannot be done analytically so we employ a
Monte Carlo algorithm to find an expectation value
of the stochastic gradient(2). The training algorithm
of RBMs using Monte Carlo is described in more
detailed in section.4.1

3 Dataset

3.1 Data collection

We have compared several open sthece music
dataset with associated metadata and select GTZAN
Genre Collection, of which contains 1000 audio
tracks each 30 seconds long. There are 10 genres
represented, each containing 100 tracks. All the
tracks are 22050 Hz Mono 16bit audio files in .au
format. The 10 music genre includes: classical, jazz,
metal, pop, country, blues, disco, metal, rock, reggae
and hiphop.

3.2 Feature selection: Mel frequency Cepstral
Coefficient (MFCC)

As discussed in last section, each audio snip-
pet could be represented as 30 seconds ×
22050 sample/second = 661500 length of vector,
which would be heavy load for a convention ma-
chine learning method. From the acoustic literature
we researched, the MFCC features is the most popu-
lar way to represent the long time domain waveform,
reduce the dimension dramatically while still cap-
tures most information. As a pipeline, we first use
a hamming window of 25 ms with 10 ms of over-
lap to generate consecutive smoothed frames. We
than apply the Ftheier Transform over the frames to
get frequency component and further map the fre-
quency to mel scale, which models human percep-
tion of changes in pitch that is approximately linear

below 1kHz and logarithm above 1kHz. This map-
ping groups the frequencies into 20 bins by calcu-
lating triangle window coefficients based on the mel
scale, multiplying that by the frequencies, and tak-
ing the log. We then take the Discrete Cosine Trans-
form to de-correlate the frequency components. Fi-
nally, we keep the first 13 of these 20 frequencies
since higher frequencies are the details that make
less of a difference to human perception and contain
less information about the song. This would result
in 2600 × 13 features for each sample. In the ex-
periment set up, we further divided the MFCC fea-
tures into 4 roughly equal sized section and extracted
first 40 of each section. In general, we generated a
13× 160 = 2080 length of MFCC features to repre-
sent a 30 second audio file for the later experiment.
We use the package t-SNE (Lvan der Maaten & Hin-
ton, 2008) to scatter plot the data distributions. As
shown in figure 4, the data set can be clearly differ-
entiate in the 2-class cases, but then the data points
gradually mix together as the number of classes in-
creases. In the 10-class case, the dataset looks like
squally spread out across different classes, which
suggests it would be challenging to classify multi-
class music genre.

(a) 2 class scatter plot

(b) 3-class scatter plot

(c) 4-class scatter plot

(d) 10-class scatter plot

Figure 3: t-SNE (Lvan der Maaten & Hinton)

4 Implementation detail

4.1 Connect RBM with multilayer network

We build a 5-layer deep neural network (3 hidden
layers) as the fundamental structure. We than train
RBMs for each network layer except the output layer
as the weight initialization. The key idea is to train
RBMs iteratively between layers and stack them to-
gether on the multilayer architecture in the end. The
steps of training is described below:

1. Pre-training

(a) Train a RBM for the first layer with raw
input data

(b) Iteratively train another RBM for next
layer with the hidden layer values from
previous step

2. network-training

(a) Stack the RBMs to corresponding layers
as the initial weight of the network.

(b) Use forward, backward propagation (or
conjugate gradient method) to train the
multilayer network.

Figure 4: Iteratively train RBMs

4.2 Contrastive Divergence learning

To train an RBM, as discussed in previous sec-
tion, we try to approximate P̂train(v) ≈ P (v)
(the true, underlying distribution of the data)

with the derived condition distribution

Pr(hi|v) = g(bi +
∑
j

wi,jvj) (10)

Pr(vi|h) = g(ai +
∑
j

wi,jhj) (11)

we apply the Contrastive Divergence learning,
an variation of Gibbs sampling, to update the
parameters:

Algorithm 1 Contrastive Divergence
1: For a training sample v1, compute the weight

combinationW × vi for hidden layer.
2: Generate hidden layer activation vector h1 :
h1 = f(W × v1)

3: Map back from h1 to input layer to generate
v2 = g(W × h1)

4: Generate h2 again from v2: h2 : h2 = f(W ×
v2)

** where we keep h1, v2 as binary value
5: let m1 = h1× v1, m2 = h2× v2
6: Update

W with (m1 - m2)
b with (v1 - v2)
c with (h1 - h2)

As indicated by (2), 1 iteration of Contrastive
Divergence would already generate good re-
sults. While in the experiment, we find more
iterations would improve the performance, and
we choose 5 iterations in the experiment.

4.3 Experiment setup

We use 60% of mfcc features as training set,
and the rest 40% as testing set. 10 genres are
equally weighted, each has 100 samples.
The number of iterations for RMB training
fixed to be 5, the number of hidden nodes and
the number of iteration of on the back propaga-
tion stage varies with different experiment and
we report the parameters that achieves optimal
result. We first test on 2 class classification, and
then continue the experiment on 3 class classi-
fication and 10 class classification.

4.4 First experiment results

(a) 2 class classification

(b) 3-class classification

(c) 4-class classification

Figure 5: Initial experiment result

From the 2 class classification result, we can see
that both neural networks and deep belief neural
networks almost perfectly classify the two genres,
with both achieves 100% accuracy on training set
and 97.5%, 98.75% for the testing set on NN and
DBN respectively. This result is consistent with
graph (a) in Figure 1, and get higher accuracy

than the graph (a) indicates. However, the training
of DBN is much more computational intensive
that requires larger hidden layers and take more
iterations than NN to achieve high performance.
For the 3 class classification, the NN and DBN is
also competitive with each other, while DBN has
the worse problem of over-fitting (higher accuracy
on training set and less accuracy on testing set).
the experiment on 4 class classification shows that
NN outperform DBN to a noticeable scale.

4.5 Second experiment results

(a) 3-genre classification with
larger dataset

(b) 4-genre classification with
larger dataset

Figure 6: Second experiment result

The experiment result above indicate that DBN
doesn’t outperform NN as we expected before the
exam. The first explanation we investigated was
whether the it was because the relatively small
dataset we have for the experiment. Use the same
feature selection scheme disscussed in section 3.2,

we chop the 2600×13 features into 15 160×13 sub-
set of mfccs to simply generate more samples for the
experiment, i.e. we now can generate 15 samples for
each sound track with the same class so that we have
1500 samples for each genre instead of 100. We run
the same experiment again and got some promising
result:

• In both cases, with 15X more data set, the ac-
curacy for both NN and DBN improves by an
noticeable scale. And in both cases, the DBN
outperforms the NN interms of train set accu-
racy and test set accuracy.

• For the DBN in 3-genre cases, the accuracy of
training set improves by 3.5% and the accuracy
of testing set improves by 8.78%, which sig-
nificantly reduce the over-fitting problem with
smaller dataset. Similar large improvement in
4-genre classification cases, with 6.13% im-
provement in train set and 9.27% improvement
in testing set.

In general with larger data set, the DBN improves
more than NN and gradually outperforms NN. And
we are promising about the trend if we could create
even larger dataset.

5 Future Works

We see the great improvement in experiment set 2
over experiment 1. But the original goal is to give
correct classification for the 1000 (10 by 100) mu-
sic track instead of the generated 10 by 1500 sub-
samples. The natural idea to solve this problem is we
can think of the sub-examples created as in the con-
text of ensemble method, in other words, we chop
each music track to generate 15 samples with the
same class labels, we then can use the majority vote
of the 15 samples as the final prediction of the orig-
inal music music track. This should be an effective
method to combine ensemble method with deep neu-
ral networks architecture. Due the the time limita-
tion, we haven’t get time to implement this idea yet
but will put it in schedule in near future.

Further we would like to improve the project on a
more parallelepiped format to speed up the training
process.

References
H.Lee, Y. Largman, P. Pham, A.Y. Ng Unsupervised

feature learning for audio classification using convo-
lutional deep belief networks. In NIPS 2009.

Yoshua Bengio Learning Deep Architecures for AI.
Foundations and Trend in Machine Learning Vol.2,
No. 1(2009)

Quac V. Le, et al. Building High-level Features Using
Large Scale Unsupervised Learning

GE. Hinton and R. R. Salakhutdinov Reducing the
Dimensionality of Data with Neural Networks 28 July
2006 VOL 313 Science

Vincent, H. Larochelle Y. Bengio and P.A. Manzagol,
Extracting and Composing Robust Features with
Denoising Autoencoders, Proceedings of the Twenty-
fifth International Conference on Machine Learning
(ICML?08), pages 1096 - 1103, ACM, 2008.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Good-
fellow, A. Bergeron, N. Bouchard, D. Warde-Farley
and Y. Bengio. ?Theano: new features and speed
improvements?. NIPS 2012 deep learning workshop

http://deeplearning.net/tutorial/rbm.html

