
ECE 543 Project Report

ON THE CONVERGENCE OF SGD, ADAM, & AMS-
GRAD

Hassan Dbouk
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
hdbouk2@illinois.edu

1 INTRODUCTION

The tremendous success of Deep Learning over the pass decade or so has often been credited to
the work of Krizhevsky et al. (2012). In their work, they demonstrated how a deep network can
be trained efficiently using two GPUs. However, the main reason why training deep networks is
relatively easy to parralelize in hardware is due to the simplicity of the Stochastic Gradient Descent
(SGD) algorithm (Bottou (2010)).
Despite being easy to implement, the SGD algorithm requires a lot of tuning for hyper-parameters
(such as step size schedule) in order for training to converge for large networks where the loss
function is high dimensional and highly non-convex. To facilitate the training process, several works
have tried to implement optimizers with adaptive learning rates. That is, the learning rate is adjusted
dynamically during training.
ADAM, which is derived from adaptive moment estimate, is a recent and popular adaptive optimizer
proposed by Kingma & Ba (2015). Empirically it has been shown that ADAM accelerates training of
deep networks, compared to SGD, with little overhead in terms of computation. Despite its success,
the convergence analysis used for analyzing the ADAM algorithm is actually wrong, as discovered
by various sources, including a very recent paper by Reddi et al. (2019).

Reddi et al. (2019) further suggest slight modifications to the ADAM algorithm, which they call
AMSGRAD. They also analyze the convergence of AMSGRAD and show that it converges.

2 ERM SETUP

Assume the following notation:

• X ⊆ Rd a subset of d−dimensional euclidean space.

• Z is a set of tuples z of the form z = (u, v).

• Pz be a probability distribution on z ∈ Z.

• f : X× Z→ R, is a cost function taking in the parameter vector x and a sample z.

The main idea for using gradient based algorithms is to solve the optimization problem of the form:

x∗ = argmin
x∈X

Ez [f(x, z)]

Where f(x, z) is a cost function for using the parameter x ∈ X on a sample z ∈ Z, following some
distribution Pz . In practice, the distribution of z is unknown, but we are usually given a set of N
training samples {z}Nn=1, where zn are i.i.d. following Pz . Thus the optimization problem becomes
an empirical risk minimization (ERM) problem:

x∗ = argmin
x∈X

1

N

N∑
n=1

f(x, zn)

The variable z can be thought of as a tuple (u, v) where u is the feature and v is the label or output
that needs to be predicted from u, via a predictor paremeterized by x, and the ”loss” of using the

1

ECE 543 Project Report

predictor on a sample z = (u, v) is f(x, z).
Assuming that the loss function is convex and differentiable with respect to the parameter x, the
gradient of f(x) with respect to x: ∇xf(x) is unique and SGD can be used trivially.

3 ONLINE FUNCTION OPTIMIZATION AS ERM

The online function minimization framework presented in Zinkevich (2003) has been very popular
for studying the convergence behaviour of gradient based optimizers for solving ERM problems. In
the online optimization framework, we usually assume the following:

• X has a bounded diameter: ‖x1 − x2‖2 ≤ D & ‖x1 − x2‖∞ ≤ D∞, ∀x1, x2 ∈ X.

• ft : X → R, ∀t ∈ [T], is a sequence of convex functions with bounded gradients:
‖∇xft(x)‖2 ≤ G & ‖∇xft(x)‖∞ ≤ G∞.

In the online optimization framework, the goal is to find the sequence xt ∈ X to minimize the total
cost incurred for T iterations:

J(T) =

T∑
t=1

ft(xt)

The catch is that, at each iteration t, the algorithm has access to only the 1, ..., t − 1 functions,
so xt = A(f1, f2, ..., ft−1, x1, x2, ..., xt−1), but the loss for choosing xt is evaluated at ft(xt).
Because of this setup, it is often useful to assess the performance of an algorithm by looking at the
total regret compared to the best fixed strategy. That is, we compare the cost of running an algorithm
A sequentially to that of an offline algorithm that has access to all the T functions, and can choose
a fixed solution. The regret can be written as:

R(T) = J(T)− inf
x∗∈X

T∑
t=1

ft(x
∗)

To relate this framework to the ERM framework, we first observe that the sequence of functions
ft(x) can be thought of as a function f evaluated on a sequence of zt and a parameter vector x:
f(x, zt) = fzt(x) = ft(x). Moreover, Cesa-Bianchi et al. (2004) have shown that an online learn-
ing algorithm with an average regret R(T)/T → 0 as T → ∞ yields a stochastic optimization
algorithm for the ERM problem, which is also seen in class under the generalization of online learn-
ing algorithms section. This result essentially allows us to use the online learning framework to
prove the convergence of an optimizer in the ERM setup, which is an attractive mathematical tool.

4 SGD

4.1 ALGORITHM

The SGD algorithm is described in Algorithm (1). The projection operation is used to force the
requirement that xt ∈ X. Implementation of SGD is very straightforward, and is heavily deployed.

x1: initial parameter vector;
for t = 1, 2, 3, ..., T-1 do

gt ← ∇xft(xt);
xt+1 ←

∏
(xt − αtgt);

end
Algorithm 1: SGD Algorithm

4.2 REGRET BOUND

As seen in class, and based on the result in Zinkevich (2003), the regret for running SGD after T
iterations with a step size αt = α√

t
is upper bounded as follows:

2

ECE 543 Project Report

R(T) ≤ D2
√
T

2α
+ (
√
T − 1

2
)G2α

Choosing α = D
G
√
2

yields:

R(T) ≤ DG
√
2T

Thus we have:

lim
T→∞

R(T)

T
= 0

Therefore R(T) = o(T).
The proof of the bound is explained in the notes, and therefore for brevity I won’t rewrite it here.

5 ADAM

5.1 ALGORITHM

The ADAM algorithm is described in Algorithm (2). Note that vector operations are element wise

x1: initial parameter vector;
m0 = v0 = 0: initial moments;
β1, β2 ∈ [0, 1);
for t = 1, 2, 3, ..., T-1 do

gt ← ∇xft(xt);
mt ← β1mt−1 + (1− β1)gt;
vt ← β2vt−1 + (1− β2)g2t ;
m̂t ← mt/(1− βt1);
v̂t ← vt/(1− βt2);
xt+1 ←

∏
(xt − αtm̂t/

√
v̂t);

end
Algorithm 2: ADAM Algorithm

operations. The normalization term for both first and second moment estimates are there to ensure
that the estimates are unbiased. To see that, let us unroll the recursion for mt. Using the fact that
m0 = 0, we can write:

mt = (1− β1)
t∑

k=1

βt−k1 gk

Taking the expectation of both sides (with respect to gt), we get:

E [mt] = (1− β1)
t∑

k=1

βt−k1 E [gk]

Assuming that E [gk] = E [g], which means that gt is stationary, we get:

E [mt] = E [g] (1− β1)
t∑

k=1

βt−k1 = E [g] (1− β1)
1− βt1
1− β1

= E [g] (1− βt1)

Therefore, to construct an unbiased estimate of the mean, we divide mt by 1 − β2
1 as indicated in

Algorithm (2). Note that following the same exact line of reasoning, the second moment estimate vt
should be divided by 1− β2

2 in order for it to be unbiased.
Intuitively, what ADAM does is that for every parameter dimension i ∈ [d] an effective learning
rate of αt/

√
v̂t,i is used to scale the gradient estimate m̂t,i. If g2t,i is large, that means the gradient

estimate is not ”reliable” and hence a small learning rate is used because of the lack of confidence in
the gradient estimate. In practice, ADAM has shown to be a very simple optimizer to use, with little
to no tuning required. The recommended setting of the hyperparameters is β1 = 0.9 and β2 = 0.99,
with a fixed step size α typically around 10−2.

3

ECE 543 Project Report

5.2 REGRET BOUND

In their paper, Kingma & Ba (2015) claim that under the following assumptions:

• β1, β2 ∈ [0, 1) and β2
1/
√
β2 < 1

• αt = α/
√
t

• β1,t = β1λ
t, for some λ ∈ (0, 1)

• γ =
β2
1√
β2

the regret for running ADAM for T iterations is upper bounded by:

R(T) ≤ D2

2α(1− β1)

d∑
i=1

√
T v̂T,i +

α(1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

‖g1:T,i‖2 +
d∑
i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ)2

Where g1:T = [g1, g2, ..., gT] and g1:T,i is the vector of the ith coordinate: g1:T,i =
[g1,i, g2,i, ..., gT,i]. Using the fact that:

‖g1:T,i‖2 =

√√√√ T∑
t=1

g2t,i ≤

√√√√ T∑
t=1

G2
∞ = G∞

√
T

Thus Kingma & Ba (2015) claim that R(T)
T = O(1√

T
)→ 0 as T →∞. The claim is mathematically

incorrect, for a number of reasons. The proof used by Kingma & Ba (2015) has some mistakes,
which we will point out in section (7).

5.3 COUNTER EXAMPLE

In a recent paper by Reddi et al. (2019), an online optimization counter example is shown where
ADAM fails to converge to the right solution. In fact, the paper proves that, for any constant β1, β2 ∈
[0, 1) such that β2

1 <
√
β2, there is an online convex optimization problem where ADAM has non-

zero average regret i.e., R(T)/T 9 0 as T →∞.
The proof assumes that ft are linear functions over X = [−1, 1], specifically we have:

ft(x) =

{
Cx if t mod C = 1

−x otherwise

for some C ∈ N, C > 2. Note that the value x∗ = −1 is the optimal fixed strategy one can use after
observing T functions. Assume that T = nC, we have:

T∑
t=1

ft(x) =

nC∑
t=1

ft(x) = n(f1(x) + f2(x) + ...+ fC(x)) = n(Cx− (C − 1)x) = nx

Which is minimized when x∗ = −1.
The main idea behind the proof of the counter example is that the gradient sequence gt = gt(x) =
∇xft(x) becomes:

∇xft(x) =
{
C if t mod C = 1

−1 otherwise

And then using mathematical induction, they show that using the ADAM update equation, the fol-
lowing inequality holds:

xt+C ≥ min{1, xt +
λ√
t
}

for some λ > 0 independent of t. Intuitively, this means there will exist t such that t mod C = 0
with xt = 1, due to the divergence of the sum

∑
1√
t
. Moreover, this implies that ADAM will suffer

a regret of at least 2 every C steps, therefore R(T)/T 9 0 as T →∞.
In order to verify that ADAM will actually not converge properly in this setup, a simulation is done.
For simplicity, we chose C = 3, β1 = 0, β2 = 0.1, and αt = 0.3/

√
t. Figures 1a & 1b show the

4

ECE 543 Project Report

0 100 200 300 400 500 600 700 800 900 1000

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Parameter Convergence xt

0 100 200 300 400 500 600 700 800 900 1000

-0.5

0

0.5

1

1.5

2

2.5

3

(b) Regret Convergence R(t)/t

Figure 1: Convergence of SGD vs ADAM

simulation result. For comparison, we also run the SGD algorithm with similar stepsize αt. Figure
1a shows that the solution xt will converge to the optimal solution x∗ = −1 in the case of SGD.
However, for ADAM it will converge to the highly un-optimal solution of x′ = 1. Consequently,
Figure 1b shows that the average regret of SGD converges to 0, as opposed to that of ADAM, which
converges to some value larger than 0.

6 AMSGRAD

6.1 ALGORITHM

Reddi et al. (2019) propose their own version of ADAM, with some modifica-
tions. They call their algorithm AMSGRAD, which is described in Algorithm (3).
x1: initial parameter vector;
m0 = v0 = v̂0 = 0: initial moments;
β1, β2 ∈ [0, 1);
for t = 1, 2, 3, ..., T-1 do

gt ← ∇xft(xt);
mt ← β1,tmt−1 + (1− β1,t)gt;
vt ← β2vt−1 + (1− β2)g2t ;
v̂t = max(vt, v̂t−1);
xt+1 ←

∏
(xt − αtmt/

√
v̂t);

end
Algorithm 3: AMSGRAD Algorithm

Again, the vector operations are element wise operations. The major difference between AMS-
GRAD and ADAM is the auxiliary second moment estimate v̂t = max(vt, v̂t−1). This insures that
for every dimension i ∈ [d]: √

v̂t+1

αt+1
−
√
v̂t
αt
≥ 0

Which insures a non increasing learning rate for AMSGRAD. Reddi et al. (2019) claim that the
above inequality is assumed to be true for ADAM by Kingma & Ba (2015). Although the update
rules of ADAM do not guarantee such inequality, the proof presented in Kingma & Ba (2015) and
explained in section (7) does not assume the inequality to be true.

6.2 REGRET BOUND

Reddi et al. (2019) claim that under the following assumptions:

• β1, β2 ∈ [0, 1) and β2
1/
√
β2 < 1

5

ECE 543 Project Report

• αt = α/
√
t

• β1,t = β1λ
t, for some λ ∈ (0, 1)

• γ = β1√
β2

the regret for running AMSGRAD for T iterations is upper bounded by:

R(T) ≤ D2
∞

2α(1− β1)

d∑
i=1

√
T v̂T,i +

β1D
2
∞G∞

2(1− β1)(1− λ)2
+

α
√
1 + log T

(1− β1)2(1− γ)
√
1− β2

d∑
i=1

‖g1:T,i‖2

Where g1:T = [g1, g2, ..., gT] and g1:T,i is the vector of the ith coordinate: g1:T,i =
[g1,i, g2,i, ..., gT,i]. Again, we have:

‖g1:T,i‖2 =

√√√√ T∑
t=1

g2t,i ≤

√√√√ T∑
t=1

G2
∞ = G∞

√
T

which implies that R(T) = o(T), and hence AMSGRAD converges.

7 ADAM REGRET BOUND PROOF

In this section, we present the proof for the regret bound of ADAM claimed by Kingma & Ba (2015).
As previously mentioned, the proof contains a few mistakes, which we will highlight.
Recall that the regret after T iterations is:

R(T) =

T∑
t=1

ft(xt)− inf
x∗∈X

T∑
t=1

ft(x
∗)

The main idea of the proof is to use the convexity of ft(x):

ft(xt)− ft(x∗) ≤ ∇ft(xt)(xt − x∗) =
d∑
i=1

gt,i(xt,i − x∗,i)

If gt,i(xt,i − x∗,i) can be upper bounded, then summing over t ∈ [T] can upper bound the regret:

R(T) ≤
T∑
t=1

d∑
i=1

gt,i(xt,i − x∗,i)

In order to bound gt,i(xt,i − x∗,i), we start by using the update rule of ADAM:

xt+1 = xt − αt
m̂t√
v̂t

= xt −
αt

1− βt1

(β1,tmt−1 + (1− β1,t)gt√
v̂t

)
Focusing on the ith dimension, subtracting x∗,i from both sides and taking the square:

(xt+1,i − x∗,i)2 = (xt,i − x∗,i)2 −
2αt

1− βt1
(
β1,t√
v̂t,i

mt−1,i +
1− β1,t√

v̂t,i
gt,i)(xt,i − x∗,i) + α2

t (
m̂t,i√
v̂t,i

)2

Re arranging the terms we get:

2αt(1− β1,t)
(1− βt1)

√
v̂t,i

gt,i(xt,i − x∗,i) = (xt,i − x∗,i)2 − (xt+1,i − x∗,i)2

− 2αtβ1,t

(1− βt1)
√
v̂t,i

mt−1,i(xt,i − x∗,i)

+ α2
t (
m̂t,i√
v̂t,i

)2

6

ECE 543 Project Report

Diving both sides by 2αt(1−β1,t)

(1−βt
1)
√
v̂t,i

:

gt,i(xt,i − x∗,i) =
(1− βt1)

√
v̂t,i

2αt(1− β1,t)
(
(xt,i − x∗,i)2 − (xt+1,i − x∗,i)2

)
− β1,t

(1− β1,t)
mt−1,i(xt,i − x∗,i)

+
αt(1− βt1)

√
v̂t,i

2(1− β1,t)
(
m̂t,i√
v̂t,i

)2

The term (xt,i−x∗,i) in the RHS is annoying to deal with, especially when we end up summing over
the dimension d. Using the identity ab ≤ a2/2 + b2/2, with:

a =
(v̂t−1,i)

1
4

√
αt−1

(x∗,i − xt,i) & b =

√
αt−1

(v̂t−1,i)
1
4

mt−1,i

We have:

β1,t
(1− β1,t)

mt−1,i(x
∗
,i − xt,i) ≤

β1,t
(1− β1,t)

(√v̂t−1,i
2αt−1

(x∗,i − xt,i)2 +
αt−1

2
√
v̂t−1,i

m2
t−1,i

)
Plugging back in the previous inequality, we get:

gt,i(xt,i − x∗,i) ≤
(1− βt1)

√
v̂t,i

2αt(1− β1,t)
(
(xt,i − x∗,i)2 − (xt+1,i − x∗,i)2

)
+

β1,t
(1− β1,t)

(√v̂t−1,i
2αt−1

(x∗,i − xt,i)2 +
αt−1

2
√
v̂t−1,i

m2
t−1,i

)
+
αt(1− βt1)

√
v̂t,i

2(1− β1,t)
(
m̂t,i√
v̂t,i

)2

Plugging αt = α/
√
t, summing over i ∈ [d] and t ∈ [T], using Lemma (2) and the fact that

βt1 ≤ β1 < 1 and 1
1−β1,t

≤ 1
1−β1

we have:

R(T) ≤
d∑
i=1

1

2α(1− β1)
(x1,i − x∗,i)2

√
v̂1,i +

d∑
i=1

T∑
t=2

1

2(1− β1)
(xt,i − x∗,i)2(

√
v̂t,i

αt
−
√
v̂t−1,i

αt−1
)

+
β1αG∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

‖g1:T,i‖2 +
αG∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

‖g1:T,i‖2

+

d∑
i=1

T∑
t=1

β1,t
2αt(1− β1,t)

(x∗,i − xt,i)2
√
v̂t,i

Note that, as explained later, the proof of Lemma (2) is not correct, and therefore the above bound is
not correct. What is interesting is that Reddi et al. (2019) claim that the proof for ADAM assumes
the following inequality: √

v̂t+1

αt+1
−
√
v̂t
αt
≥ 0

However, using the bounded diameter assumption, we have (xt,i − x∗,i)2 ≤ D2
∞, therefore the term√

v̂t+1

αt+1
−
√
v̂t
αt

will telescope, without any assumption of it being positive.
On the other hand, the proof assumes that X has a bounded diameter, but the original ADAM al-
gorithm presented by Kingma & Ba (2015) does not involve a projection operation, which seems
weird.

7

ECE 543 Project Report

7.1 LEMMA 1

Kingma & Ba (2015) claim that:
T∑
t=1

√
g2t,i
t
≤ 2G∞‖g1:T,i‖2

They attempt to prove it using mathematical induction on T . However the proof is actually flawed,
as we shall see.
First consider the base case T = 1, we have:√

g21,i = ‖g1,i‖2 = |g1,i| ≤ G∞
However, the paper claims that the base case holds:√

g21,i = ‖g1,i‖2 = |g1,i| ≤ 2G∞‖g1,i‖2
which holds only if G∞ > 0.5, and that is not stated by Kingma & Ba (2015). Furthermore,
examining the inductive step also uncovers another mistake for proving this lemma. To perform the
inductive step, assume that the inequality holds for T = K − 1, then we have:

K−1∑
t=1

√
g2t,i
t
≤ 2G∞‖g1:K−1,i‖2

Need to prove that it holds for T = K:
K∑
t=1

√
g2t,i
t

=

K−1∑
t=1

√
g2t,i
t

+

√
g2K,i
K

≤ 2G∞‖g1:K−1,i‖2 +

√
g2K,i
K

= 2G∞

√√√√K−1∑
t=1

g2t,i + g2K,i − g2K,i +

√
g2K,i
K

= 2G∞

√
‖g1:K,i‖22 − g2K,i +

√
g2K,i
K

Using the inequality:

‖g1:K,i‖22 − g2K,i ≤ ‖g1:K,i‖22 − g2K,i +
g4K,i

4‖g1:K,i‖22
= (‖g1:K,i‖2 −

g2K,i
2‖g1:K,i‖2

)2

We get:
K∑
t=1

√
g2t,i
t
≤ 2G∞(‖g1:K,i‖2 −

g2K,i
2‖g1:K,i‖2

) +

√
g2K,i
K

≤ 2G∞(‖g1:K,i‖2 −
g2K,i

2
√
KG2

∞
) +

√
g2K,i
K

= 2G∞‖g1:K,i‖2 −
g2K,i√
K

+

√
g2K,i
K

Following the proof in Kingma & Ba (2015), they claim that:

2G∞‖g1:K,i‖2 −
g2K,i√
K

+

√
g2K,i
K
≤ 2G∞‖g1:K,i‖2

If that were true, then the inductive step would hold. However, there is no guarantee that the above
inequality holds. Equivalently the claim can be written as:

g2K,i ≤ |gK,i|
which only holds if |gK,i| ≤ 1.
Therefore Lemma 1, which is used in the proof for Lemma (2), does not hold.

8

ECE 543 Project Report

7.2 LEMMA 2

Kingma & Ba (2015) claim that:

T∑
t=1

m̂2
t,i√
t ˆvt,i

≤ 2

1− γ
1√

1− β2
‖g1:T,i‖2

where γ , β2
1√
β2

such that γ < 1. Recall that:

m̂t =
(1− β1)
(1− βt1)

t∑
k=1

βt−k1 gk

v̂t =
(1− β2)
(1− βt2)

t∑
k=1

βt−k2 g2k

To prove the claim, we start by loooking at the summand:

m̂2
t,i√
t ˆvt,i

=

√
1− βt2

(1− βt1)2
(
∑t
k=1(1− β1)β

t−k
1 gk,i)

2√
t
∑t
j=1(1− β2)β

t−j
2 g2j,i

which implies:

m̂2
t,i√
t ˆvt,i

≤
√
1− βt2

(1− βt1)2
t∑

k=1

t((1− β1)βt−k1 gk,i)
2√

t
∑t
j=1(1− β2)β

t−j
2 g2j,i

≤
√
1− βt2

(1− βt1)2
t∑

k=1

t((1− β1)βt−k1 gk,i)
2√

t(1− β2)βt−k2 g2k,i

=
t(1− β1)2√
t(1− β2)

√
1− βt2

(1− βt1)2
t∑

k=1

(β2
1√
β2

)t−k
|gk,i|

Using the assumptions, we have
√

1−βt
2

(1−βt
1)

2 ≤ 1
(1−β1)2

, therefore we can write:

m̂2
t,i√
t ˆvt,i

≤ t√
t(1− β2)

t∑
k=1

γt−k|gk,i|

Summing over t ∈ [T] we get:

T∑
t=1

m̂2
t,i√
t ˆvt,i

≤
T∑
t=1

t√
t(1− β2)

t∑
k=1

γt−k|gk,i|

However, Kingma & Ba (2015) claim that the resultant upper bound should be:

T∑
t=1

m̂2
t,i√
t ˆvt,i

≤
T∑
t=1

|gt,i|√
t(1− β2)

T−t∑
j=0

tγj

which is not straightforward to derive from the previous inequality, and most likely a mistake in the
proof.
Assuming that the bound is true, using the upper bound on

∑
t tγ

t < 1
(1−γ)2 and using Lemma (1)

(which is also false), then the proof of Lemma (2) is complete.

8 CONCLUSION & FUTURE WORK

In conclusion, adaptive learning rate based gradient optimizers are of much interest for training
deep neural networks. ADAM, despite being popular amongst deep learning researches, need not

9

ECE 543 Project Report

necessarily converge in convex settings, as shown by the counter example presented by Reddi et al.
(2019). Furthermore, AMSGRAD is introduced in Reddi et al. (2019) which is a slightly modified
version of ADAM that has guarantees on the convergence in convex settings.
Naturally, it would be interesting to see what extra constraints on the optimization problem can be
constructed in order to insure that ADAM converges.
Another interesting direction is comparing the performance of SGD with ADAM and AMSGRAD
in different convex settings. SGD with a proper stepsize schedule has always been favored by deep
learning researchers, however finding this schedule is often very time consuming. If a proper stepsize
schedule is given, will SGD outperform ADAM or AMSGRAD?

REFERENCES

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pp. 177–186. Springer, 2010.

Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Proceedings of
3rd International Conference on Learning Representations, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 928–936,
2003.

10

	Introduction
	ERM Setup
	Online Function Optimization as ERM
	SGD
	Algorithm
	Regret Bound

	ADAM
	Algorithm
	Regret Bound
	Counter Example

	AMSGRAD
	Algorithm
	Regret Bound

	ADAM Regret Bound Proof
	Lemma 1
	Lemma 2

	Conclusion & Future Work

