University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering

ECE 534: RANDOM PROCESSES

Spring 2005

Problem Set 4

Kalman Filtering, Random Processes, Properties of Random Processes

Issued: Monday, March 14th Due: Wednesday, March 30th (beginning of lecture)

Reading from Hajek: Chapter 3, Section 3.5; Chapter 4, Sections 4.1–4.7.

Reading from Stark and Woods: Chapter 6, Section 6.1; Chapter 7, Sections 7.1–7.2.

Problem 4.1

From Hajek, Chapter 3: Problem 8.

Problem 4.2

From Hajek, Chapter 4: Problems 1, 2 and 3.

Problem 4.3

(a) Let X[n] be a discrete-time random process defined for n = 1, 2, 3, Samples X[1], X[2], X[3], ..., are independent, identically distributed (i.i.d.) random variables and have $\Pr(X[n] = 0) = \Pr(X[n] = 1) = 1/2$. Let the random process Y[n] be defined by

$$Y[n] = X[n] - X[n-1] .$$

Find E[Y[n]] and Var[Y[n]].

- (b) Let X(t) be a random process defined by X(t) = At + B.
 - (i) If A is constant and B is a random variable that is uniformly distributed in [0,2], sketch a sample function of this process and find E[X(t)].
 - (ii) If A, B are independent, identically distributed (i.i.d.) Gaussian random variables with mean 0 and variance σ^2 , find the joint pdf $f_{X(t_1),X(t_2)}(x_1,x_2)$.

Problem 4.4

Let B[n] be a Bernoulli random sequence equally likely to take values ± 1 (independently between different time steps). Define the random process

$$X(t) = \sqrt{p} \sin\left(2\pi f t + B[n]\frac{\pi}{2}\right)$$
 for $nT \le t < (n+1)T$ for all n ,

where \sqrt{p} and f_0 are real numbers.

- (a) Determine the mean function $\mu_X(t)$.
- (b) Determine the covariance function $K_{XX}(t_1, t_2)$.

Problem 4.5

Let X be a random variable and $Y_0, Y_1, Y_2, ...$ be a sequence of random variables. Show that the random process defined by

$$Z[n] = E[X \mid Y_0, Y_1, ..., Y_n]$$

is a Martingale.

Problem 4.6

A nonuniform Poisson counting process N(t) with time varying rate $\lambda(t)$ ($\lambda(t) \ge 0$ for all $t \ge 0$) is defined for $t \ge 0$ as follows:

- (i) N(0) = 0;
- (ii) N(t) has independent increments;
- (iii) For all $t_2 \geq t_1$,

$$P[N(t_2) - N(t_1) = k] = \frac{u^k}{k!} \exp(-u), \text{ for } k \ge 0,$$

where
$$u = \int_{t_1}^{t_2} \lambda(v) dv$$
.

Answer the following:

- (a) Find $\mu_N(t)$.
- (b) Find $R_N(t_1, t_2)$.
- (c) Repeat parts (a) and (b) for the case when $\lambda(t) = 1 + 2t$.

Problem 4.7

From Hajek, Chapter 4: Problems 4, 5, 6 and 7.