ECE 534 Final Exam

Tuesday, December 17, 2013 1:30 p.m. — 4:30 p.m. 106B1&B8 Engineering Hall

- 1. (a) Since $R_X(0) = 5$, $R_X(1) = 0$, and $R_X(2) = -\frac{5}{9}$, the covariance matrix of the vector is $\begin{pmatrix} 5 & 0 & -5/9 \\ 0 & 5 & 0 \\ -5/9 & 0 & 5 \end{pmatrix}$.
 - (b) The variables are jointly Gaussian so the expectation is the best linear estimator. The variables X(2) and X(3) are uncorrelated (so independent) and the variables are mean zero, so

$$E[X(4)|X(2),X(3)] = \frac{\operatorname{Cov}(X(4),X(2))X(2)}{\operatorname{Var}(X(2))} + \frac{\operatorname{Cov}(X(4),X(3))X(3)}{\operatorname{Var}(X(2))} = -\frac{X(2)}{9}.$$

- 2. (a) Let $P_k = E[X_k^2]$. Note that $A_k X_k$ is orthogonal to B_k , and A_k is independent of X_k . Thus $P_{k+1} = E[(A_k X_k)^2] + E[B_k^2] = \sigma_A^2 P_k + \sigma_B^2$. (Some students solved for the X_k 's in terms of the A_k 's and B_k 's and then took expectations to get an expression for P_k . That answer was accepted.)
 - (b) Yes, the sequence X_k is determined by a recursion driven by a sequence of independent random vectors, $((A_k, B_k) : k \ge 0)$. The proof of the Markov property in this case is identical to the case that a sequence is determined by a recursion driven by a sequence of independent random variables.
 - (c) The random variables X_k are already orthogonal, so the innovations sequence is simply the same as the original sequence.
- 3. (a) $Q = \begin{pmatrix} -a-1 & a & 1 \\ 1 & -b-1 & b \\ c & 1 & -c-1 \end{pmatrix}$ and simple algebra shows that

by three to get $\theta = (\pi_1 a + \pi_2 b + \pi_3 c - 1)/3$.

(1+c+cb, 1+a+ac, 1+b+ba)Q = (0,0,0). (Since the row sums of Q are zero it suffices to check two of the equations. By symmetry in fact it suffices to check just the first equation.

- (b) The long term rate of jumps from state 1 to state 2 is $\pi_1 a$ and the long term rate of jumps from state 2 to 1 is π_2 . The difference is the mean cycle rate: $\theta = \pi_1 a \pi_2$. Similarly, $\theta = \pi_2 b \pi_3$ and $\theta = \pi_3 c \pi_1$.

 ALTERNATIVELY, the average rate of clockwise jumps per unit time is $\pi_1 a + \pi_2 b + \pi_3 c$ and the average rate of counterclockwise jumps is one. So the net rate of jumps in the clockwise direction is $\pi_1 a + \pi_2 b + \pi_3 c 1$. Since there are three jumps to a cycle, divide
- (c) By part (a), $\pi = (1+c+cb, 1+a+ac, 1+b+ba)/Z$ where Z = 3+a+b+c+ab+ac+bc. So then using part (b), $\theta = \frac{(1+c+bc)a-1-a-ac}{Z} = \frac{abc-1}{3+a+b+c+ab+ac+bc}$. The mean net cycle rate is zero if and only if abc = 1. (Note: The nice form of the equilibrium for this problem, which generalizes to rings of any integer circumference, is a special case of the tree based formula for equilibrium distributions that can be found, for example, in the book of Freidlin and Wentzell, Random perturbations of dynamical systems.
- 4. (a) $P(X=i|Y_1=1,Y_2=2,Y_3=2)=\frac{P(X=i,Y_1=1,Y_2=2,Y_3=2)}{P(Y_1=1,Y_2=2,Y_3=2)}=\frac{a_{i,1}a_{i,2}a_{i,2}}{\sum_{i'}a_{i',1}a_{i',2}a_{i',2}}$ so $\widehat{X}_{MAP}=\arg\max_i a_{i,1}a_{i,2}a_{i,2}=2$. Here we use the fact that $a_{i,1}a_{i,2}a_{i,2}$ is 2 for i=1, 4 for i=2, and 1 for i=3.

(b) By the calculations in part (a),

$$P(X = i | Y_1 = 1, Y_2 = 2, Y_3 = 2) = \begin{cases} \frac{2}{7} & i = 1\\ \frac{4}{7} & i = 2\\ \frac{2}{7} & i = 3 \end{cases}$$

5. (a) Fix h and let $Y_t = X_{t+h}X_t$. Clearly Y is stationary with mean $\mu_Y = R_X(h)$. Observe that

$$C_{Y}(\tau) = E[Y_{\tau}Y_{0}] - \mu_{Y}^{2}$$

$$= E[X_{\tau+h}X_{\tau}X_{h}X_{0}] - R_{X}(h)^{2}$$

$$= R_{X}(h)^{2} + R_{X}(\tau)R_{X}(\tau) + R_{X}(\tau+h)R_{X}(\tau-h) - R_{X}(h)^{2}$$

$$= R_{X}(\tau)R_{X}(\tau) + R_{X}(\tau+h)R_{X}(\tau-h)$$

Therefore, $C_Y(\tau) \to 0$ as $|\tau| \to \infty$. Hence Y is mean ergodic, so X is correlation ergodic. (Note that $R_Y(\tau) \to R_X(0)^2$ as $\tau \to \infty$.)

(b) $X_t = A\cos(t + \Theta)$, where A is a random variable with positive variance, Θ is uniformly distributed on the interval $[0, 2\pi]$, and A is independent of Θ . Note that $\mu_X = 0$ because

$$E[\cos(t+\Theta)] = 0$$
. Also, $\left| \int_0^T X_t dt \right| = \left| A \int_0^T \cos(t+\Theta) dt \right| \le 2|A|$ so $\left| \frac{\int_0^T X_t dt}{T} \right| \le \frac{2|A|}{T} \to 0$

in the m.s. sense. So X is m.s. ergodic. Similarly, we have $\frac{\int_0^T X_t^2 dt}{T} \to \frac{A^2}{2}$ in the m.s. sense. The limit is random, so X_t^2 is not mean ergodic, so X is not correlation ergodic. (The definition is violated for h=0.)

ALTERNATIVELY $X_t = \cos(Vt + \Theta)$ where V is a positive random variable with nonzero variance, Θ is uniformly distributed on the interval $[0, 2\pi]$, and V is independent of Θ . In this case, X is correlation ergodic as before. But $\int_0^T X_t X_{t+h} dt \to \frac{\cos(Vh)}{2}$ in the m.s. sense. This limit is random, at least for some values of h, so Y is not mean ergodic so X is not correlation ergodic.

6. (a)

$$E\left[\int_0^T X_t^2 dt\right] = E[B^2] \int_0^T \sin^2\left(\frac{\pi t}{T}\right) dt = \int_0^T \frac{1 - \cos(\frac{2\pi t}{T})}{2} dt = \frac{T}{2}$$

- (b) The definition of X is equivalent to $X_t = (B\sqrt{T/2})\phi_1(t)$ where $\phi_1(t) = \sqrt{\frac{2}{T}}\sin\left(\frac{\pi t}{T}\right)$, which is a KL expansion of X with a single nonzero term. Also, $\lambda_1 = E\left[\left(B\sqrt{T/2}\right)^2\right] = \frac{T}{2}$. Alternatively, since there is only one (nonzero) term in the KL expansion, λ_1 is equal to the total average energy found in part (a).
- (c) The facts $X_1 = B\sqrt{T/2}$, N_1 has mean zero and variance σ^2 , and $Y_1 = X_1 + N_1$ imply

$$E[B|Y_1] = \frac{\text{Cov}(B, Y_1)Y_1}{\text{Var}(Y_1)} = \frac{(\sqrt{\frac{T}{2}})Y_1}{\sigma^2 + \frac{T}{2}}$$

7. (a) By the orthogonality principle, it suffices for $X_T - \hat{X}_T \perp X_u$ for all $u \leq 0$. Or $E\left[\left(X_T - \int_0^T g(t)X_t dt\right)X_u\right]$ 0 for all $u \leq 0$. Which yields the desired equations: $R_X(T-u) = \int_{-\infty}^0 g(t)R_X(t-u)dt$ for all $u \leq 0$.

- (b) The Markov property of X implies that $\widehat{X}_T = E[X_T|X_0] = \frac{R_X(T)X_0}{R_X(0)} = X_0e^{-\alpha T}$. Equivalently, $g(t) = \delta(t)e^T$, which we see satisfies the conditions of part (a).
- 8. (a) Yes, the integral of a m.s. continuous process is (continuously) m.s. differentiable.
 - (b) No, R_Y is not even continuous, so Y is not even m.s. continuous, so is not m.s. differentiable.
 - (c) Yes. We should expect the answer is yes because if the sum is differentiated term by term, the resulting sum is still m.s. convergent. That is, we expect $Z'_t = Y_t \stackrel{\triangle}{=} \sum_{n=0}^{\infty} \frac{V_n \cos(nt)}{n}$. To check this out, note that

$$E\left[\left(\frac{Z_{t+h} - Z_t}{h} - Y_t\right)^2\right] = E\left[\left(\sum_{n=1}^{\infty} V_n \left(\frac{\sin(n(t+h)) - \sin(nt)}{n^2 h} - \frac{\cos(nt)}{n}\right)\right)^2\right]$$
$$= \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{\sin(n(t+h)) - \sin(nt)}{n h} - \cos(nt)\right)^2$$

For each $n \ge 1$, $\frac{\sin(n(t+h))-\sin(nt)}{nh}-\cos(nt) \to 0$ as $h \to 0$ and the terms $\frac{\sin(n(t+h))-\sin(nt)}{nh}-\cos(nt)$ are bounded by 2 (use the intermediate value form of Taylor's theorem). Hence by the dominated convergence theorem,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{\sin(n(t+h)) - \sin(nt)}{nh} - \cos(nt) \right)^2 \to 0 \text{ as } h \to 0.$$

 $\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\frac{\sin(n(t+h)) - \sin(nt)}{nh} - \cos(nt) \right)^2 \to 0 \text{ as } h \to 0.$ ALTERNATIVE, note that, since the terms in the series defining Z are orthogonal random variables, $R_Z(s,t) = \sum_{n=1}^{\infty} \frac{\sin(ns)\sin(nt)}{n^4}$. From this we see that $\partial_2 R_Z$ and $\partial_1 \partial_2 R_Z$ exist and are continuous. Therefore, R_Z is continually m.s. differentiable.